变隙电感式压力传感器结构图.
合集下载
电感式传感器PPT课件

2
LC
2LC
Q2
(1
2LC)2
2LC Q
2
(4-17)
第4章 电感式传感器
当Q>>ω2LC且Ω2lc<<1
Z
R
(1 2LC)2
;
令
L'
L
(1 2LC)2
则
Z R' jL'
从以上分析可以看出,并联电容的存在,使有效串联损耗电阻及 有效电感增加,而有效Q值减小,在有效阻抗不大的情况下,它 会使灵敏度有所提高,从而引起传感器性能的变化。因此在测量 中若更换连接电缆线的长度,在激励频率较高时则应对传感器的 灵敏度重新进行校准。
为了使输出特性能得到有效改善,构成差动的两个变隙 式电感传感器在结构尺寸、材料、电气参数等方面均应完全 一致。
第4章 电感式传感器 图4-3 差动变隙式电感传感器
第4章 电感式传感器 4.1.3 测量电路
电感式传感器的测量电路有交流电桥、变压器式交流电桥 以及谐振式等。
1.
从电路角度看,电感式传感器的线圈并非是纯电感,该电 感由有功分量和无功分量两部分组成。有功分量包括:线圈线 绕电阻和涡流损耗电阻及磁滞损耗电阻,这些都可折合成为有 功电阻,其总电阻可用R来表示;无功分量包含:线圈的自感L, 绕线间分布电容,为简便起见可视为集中参数,用C来表示。 于是可得到电感式传感器的等效电路如图4-4所示。
其自由端发生位移,带动与自由端连接成一体的衔铁运动, 使线圈1和线圈2中的电感发生大小相等、符号相反的变化。 即一个电感量增大,一个电感量减小。电感的这种变化通 过电桥电路转换成电压输出,所以只要用检测仪表测量出 输出电压,即可得知被测压力的大小。
第4章 电感式传感器 4.1.5
第六章 自感式传感器 ppt课件

L f ,S
线圈中放入圆形衔铁
ppt课件
L f1 变气隙型传感器
L f2 S 变截面型传感器
可变自感 螺管型传感器。
7
6 自感式传感器
6.1 工作原理 6.2 变气隙式自感传感器 6.3 变面积式自感传感器 6.4 螺线管式自感传感器 6.5 自感式传感器测量电路 6.6 自感式传感器应用举例
螺旋管
l r
铁心 x
ppt课件 单线圈螺管型传感器结构图
19
6.4 螺线管式自感传感器
差动式螺管型传感器结构图
1-螺线管线圈Ⅰ; 2-螺线管线圈Ⅱ; 3-骨架; 4-活动铁芯
L0
L10
L20
r 2 m0W 2
l
1
mr
1
rc r
2
lc l
ppt课件
17
6 自感式传感器
6.1 工作原理 6.2 变气隙式自感传感器 6.3 变面积式自感传感器 6.4 螺线管式自感传感器 6.5 自感式传感器测量电路 6.6 自感式传感器应用举例
ppt课件
18
6.4 螺管型自感传感器
有单线圈和差动式两种结构形式。 单线圈螺管型传感器的主要元件为一只螺管线圈和一根 圆柱形铁芯。传感器工作时,因铁芯在线圈中伸入长度的变 化,引起螺管线圈自感值的变化。当用恒流源激励时,则线 圈的输出电压与铁芯的位移量有关。
ppt课件
16
6.3 变面积式自感传感器
传感器气隙长度保持不变,令磁通截面积随被测非电量 而变,设铁芯材料和衔铁材料的磁导率相同,则此变面 积自感传感器自感L为
L
l
W2 l
变气隙厚度电感式压力传感器的工作原理

变气隙厚度电感式压力传感器的工作原理当外部施加压力时,容器内的介质受到压力作用产生位移,从而改变
了容器底部磁铁与容器底部的距离,即气隙的厚度。
磁铁的运动会导致电
感产生变化。
电感是在一个变化的磁场中,电流发生变化时所产生的自感
应电动势。
在变气隙厚度电感式压力传感器中,电感是通过一个螺线管来实现的。
螺线管由若干匝的细铜线组成,上面串联着一个电阻。
当磁铁与螺线管上
的线圈相对运动时,磁场的变化会引起线圈中的电流变化,从而产生自感
应电动势。
通过接入一个外部电路,可以测量出电感式传感器中的电流变化。
电
流的变化与所加入的压力成正比。
因此,我们可以通过测量传感器中的电
流变化来确定压力的大小。
需要注意的是,变气隙厚度电感式压力传感器的灵敏度取决于气隙厚
度的变化。
一般来说,气隙越小,灵敏度越高。
同时,为了减小磁铁与螺
线管的磁阻,可以使用永磁体作为磁铁,以增加传感器的灵敏度。
总结起来,变气隙厚度电感式压力传感器的工作原理是利用介质压力
导致容器底部磁铁和螺线管之间的气隙厚度变化,从而改变电感,进而测
量出压力的变化。
这种传感器具有结构简单、精度高、灵敏度高等优点,
广泛应用于工业自动化控制、航空航天、汽车等领域。
电感式传感器PPT课件

符号相反的变化。即一个电感量增大,另一个电感量减小。电
感的这种变化通过电桥电路转换成电压输出。由于输出电压与 被测压力之间成比例关系, 所以只要用检测仪表测量出输出电 压, 即可得知被测压力的大小。
16
互感式传感器
互感式传感器——把被测的非电量变化转换为线圈互
感变化的传感器。 互感式传感器本身是其互感系数可变的变压器,当一次
Φm
Wi Rm
式中,Wi为磁动势;Rm为磁阻。
自感:L W 2 Rm
因为气隙厚度较小,可以认为气隙磁场是均匀的,若忽
略磁路铁损,则总磁阻近似为:
2
Rm 0 A
A :气隙的有效截面积; 0 :真空磁导率; :气隙厚度 4
电感量计算公式 :
W:线圈匝数;A :气隙的有效截面积; 0 :真空磁导率; :气隙厚度。
20
差动变压器的转换电路:
主要采用反串电路和电桥两种。 反串电路:反串电路是直接把两个二次线
圈反向串接。这种情况下空载输出电压等 于二次侧线圈感应电动势之差,即:
U 0 E21 E22
21
桥路:如图所示:其中R1,R2是桥臂电阻,Rw是供调零用的电位 器。设R1=R2,则输出电压:
17
螺管式差动变压器工作原理
1-活动衔铁; 2-导磁外壳; 3-骨架; 4-匝数为W1初级绕组; 5-匝数为W2a的次级绕组; 6-匝数为W2b的次级绕组
18
工作原理
当没有位移时,衔铁C处于初始平衡位置,两线圈互感相等: M1=M2
两个次级绕组的互感电势相等,即e2a=e2b。 由于次级绕组反向串联,因此,差动变压器输出电压
的差动式电感传感器, 有ΔZ1+ΔZ2≈jω(ΔL1+ΔL2), 则
传感器原理及其应用_第3章_电感式传感器

1
2
P
r
x
为简化分析,设螺管线圈的长径 比 l / r 1 ,则可认为螺管线 圈内磁场强度分布均匀,线圈 中心处的磁场强度为:
B
x
2 2 N NBS 0 N r L0 I I l
IN H l 则空心螺管线圈的电感为:
第3章 电感式传感器
当线圈插有铁芯时,由于铁芯是铁磁性材料,使插入部分的磁 阻下降,故磁感强度B增大,电感值增加。
如果铁芯长度 l e 小于线圈长度l,则线圈电感为
L
0N [lr ( r 1)l e re ]
2 2 2
l2
第3章 电感式传感器 当l e增加 l e 时,线圈电感增大ΔL,则
L L
电感变化量为
0N [lr ( r 1)(l e l e )re ]
0 N 2 S N2 N2 线圈自感L为: L 2 Rm 2 0 S
分类:
变气隙厚度δ的电感式传感器; 变气隙面积S的电感式传感器;
变铁芯磁导率μ的电感式传感器;
第3章 电感式传感器
自感式电感传感器常见的形式
变气隙式
变截面式
螺线管式
1—线圈coil ;2—铁芯Magnetic core ;3—衔铁Moving core
,上式展开成泰勒级数: 1
非线性误差为
0
2
0
100%
0
第3章 电感式传感器
①差动式自感传感器的灵敏度 比单线圈传感器提高一倍 ②差动式自感传感器非线性失 真小,如当Δδ/δ=10%时 , 单线圈γ<10%;而差动式的 γ <1% ③采用差动式传感器,还能抵 消温度变化、电源波动、外界 干扰、电磁吸力等因素对传感 器的影响
2
P
r
x
为简化分析,设螺管线圈的长径 比 l / r 1 ,则可认为螺管线 圈内磁场强度分布均匀,线圈 中心处的磁场强度为:
B
x
2 2 N NBS 0 N r L0 I I l
IN H l 则空心螺管线圈的电感为:
第3章 电感式传感器
当线圈插有铁芯时,由于铁芯是铁磁性材料,使插入部分的磁 阻下降,故磁感强度B增大,电感值增加。
如果铁芯长度 l e 小于线圈长度l,则线圈电感为
L
0N [lr ( r 1)l e re ]
2 2 2
l2
第3章 电感式传感器 当l e增加 l e 时,线圈电感增大ΔL,则
L L
电感变化量为
0N [lr ( r 1)(l e l e )re ]
0 N 2 S N2 N2 线圈自感L为: L 2 Rm 2 0 S
分类:
变气隙厚度δ的电感式传感器; 变气隙面积S的电感式传感器;
变铁芯磁导率μ的电感式传感器;
第3章 电感式传感器
自感式电感传感器常见的形式
变气隙式
变截面式
螺线管式
1—线圈coil ;2—铁芯Magnetic core ;3—衔铁Moving core
,上式展开成泰勒级数: 1
非线性误差为
0
2
0
100%
0
第3章 电感式传感器
①差动式自感传感器的灵敏度 比单线圈传感器提高一倍 ②差动式自感传感器非线性失 真小,如当Δδ/δ=10%时 , 单线圈γ<10%;而差动式的 γ <1% ③采用差动式传感器,还能抵 消温度变化、电源波动、外界 干扰、电磁吸力等因素对传感 器的影响
第4章 电感式传感器

(c) 四节式
3
(d) 五节式
图4.12 差动变压器线圈各种排列形式 1 一次线圈;2 二次线圈;3 衔铁
三节式的零点电位较小,二节式比三节式灵敏度高、线性范 围大,四节式和五节式改善了传感器线性度。
2.2 工作原理
以三节式差动变压器为例,将两个匝数相等的次级绕组的 同名端反向串联,当初级绕组W1加以激磁电压时,根据变压器 的作用原理在两个次级绕组W2a和W2b中就会产生感应电势,如 果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平 衡位置时,输出电压为零。
U1 U 2 j ( M 1 M 2 ) R1 jL1 其有效值为: (M1 M 2 )U1 U2 R12 (L1 ) 2
.
E 21 jM 1 I.1 . E 22 jM 2 I1
.
.
R1
M1
.
. U1 ~ M2
L21 L22 R22
U2
. ~ E22
(c)、(d) 螺线管式差动变压器
(e)、(f) 变面积式差动变压器
二次绕组
二次绕组 衔铁
一次绕组
图4.11 螺线管式差动变压器的结构示意图
螺管型差动变压器根据初、次级排列不同有二节式、三节 式、四节式和五节式等形式。 1 1 1 1 2 1 2 1 2 1 2
2
(a) 二节式
3
(b) 三节式
2
II. 变面积型灵敏度较小,但线性较好,量程较大; III.螺管型灵敏度较低,但量程大且结构简单。
1.4 差动式自感传感器
由于线圈中通有交流励磁电流,因而衔铁始终承受电 池吸力,会引起振动和附加误差,而且非线性误差较大。 外界的干扰、电源电压频率的变化、温度的变化都会 使输出产生误差。
3
(d) 五节式
图4.12 差动变压器线圈各种排列形式 1 一次线圈;2 二次线圈;3 衔铁
三节式的零点电位较小,二节式比三节式灵敏度高、线性范 围大,四节式和五节式改善了传感器线性度。
2.2 工作原理
以三节式差动变压器为例,将两个匝数相等的次级绕组的 同名端反向串联,当初级绕组W1加以激磁电压时,根据变压器 的作用原理在两个次级绕组W2a和W2b中就会产生感应电势,如 果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平 衡位置时,输出电压为零。
U1 U 2 j ( M 1 M 2 ) R1 jL1 其有效值为: (M1 M 2 )U1 U2 R12 (L1 ) 2
.
E 21 jM 1 I.1 . E 22 jM 2 I1
.
.
R1
M1
.
. U1 ~ M2
L21 L22 R22
U2
. ~ E22
(c)、(d) 螺线管式差动变压器
(e)、(f) 变面积式差动变压器
二次绕组
二次绕组 衔铁
一次绕组
图4.11 螺线管式差动变压器的结构示意图
螺管型差动变压器根据初、次级排列不同有二节式、三节 式、四节式和五节式等形式。 1 1 1 1 2 1 2 1 2 1 2
2
(a) 二节式
3
(b) 三节式
2
II. 变面积型灵敏度较小,但线性较好,量程较大; III.螺管型灵敏度较低,但量程大且结构简单。
1.4 差动式自感传感器
由于线圈中通有交流励磁电流,因而衔铁始终承受电 池吸力,会引起振动和附加误差,而且非线性误差较大。 外界的干扰、电源电压频率的变化、温度的变化都会 使输出产生误差。
电感式传感器

2
3
......
L0 0 0 0
忽略高次项:
L 1
L 0
0
K
L
L 0
0
衔铁上移 , 0
L 2
L2
L 0
AN 2 0
2
0
0
AN
2
2
0
L0 0
当 1 时, 0
2
3
L2 L0
0
0
0
......
忽略高次项: L2
L0
0
4.1.3 差动式自感传感器
变气隙型差动式自感传感器
衔铁下移:
AN 2
L 0
1 2( )
0
AN 2
L 0
2 2( ) 0
L 1
L 1
0
0
0
2
0
3
......
L 2
L 1
0
0
0
2
0
3
......
L
L 2
L 1
2L
0 0
0
3
0
5
......
L L0
L L
的特性曲线。说明:电桥 25
输出电压的大小与衔铁的 0
位移量Δδ有关,相位与 25
衔铁的移动方向有关。若 50
设衔铁向上移动Δδ为负,
75
则U0为负;衔铁向下移 动Δδ为正,则U0为正,
100
相位差180°。
Ⅰ
Ⅱ
1
2
4
-Δ lδ Δ lδ 3
1 2 3 4 lδ/mm
2、变压器式交流电桥
电桥两臂Z1、Z2为传感器线圈阻抗 I
电感式传感器

将差动变压器和弹性敏感元件(膜片、膜盒和弹簧管等) 相结合,可以组成各种形式的压力传感器。
5 4 6 7
~220V 稳压电源
振荡器 V
3 差动变压器 1 相敏检波电路
2
1接头 2 膜盒 3 底座 4 线路板 5 差动变压器 6 衔铁 7 罩壳
这种变送器可分档测量(–5×105~6×105)N/m2压力,输出 信号电压为(0~50)mV,精度为1.5级。
3.加速度传感器
• 用于测定振动物体的频率和振幅时其激励频率必 须是振动频率的十倍以上,才能得到精确的测量 结果。可测量的振幅为(0.1~5)mm,振动频率为 (0~150)Hz。
1 2 振荡器 检 波 器 滤 波 器 输出
稳压电源
a
~220V
(b)
1 弹性支承 2 差动变压器
1
(a)
加速度a方向
电感式传感器
电感式传感器的概念
• 电感式传感器建立在电磁感应的 基础上,把输入物理量转换为线 圈的电感或互感的变化,在由电 流或电压的变化。
被测非电量
电磁 感应
自感系数L
互感系数M 测量电路
U I
电感式传感器
优点: 结构简单 工作可靠 灵敏度高 分辨率高 线性度较好 测量精度高 零点稳定 输出功率 较大 ,在检测技术 工业生产和科学研究领 域得到了广泛的应用。 缺点: 存在交流零位信号,不适于高频动态信号 测量。
电涡流式传感器的测量电路 • 利用电涡流式变换元件进行测量时,为了得 到较强的电涡流效应; • 通常激磁线圈工作在较高频率下,所以信号 转换电路主要有调幅电路和调频电路两种。
1.调幅式(AM)电路
调幅式电路结 构
电磁炉工作示意图
电磁炉内部励磁线圈
5 4 6 7
~220V 稳压电源
振荡器 V
3 差动变压器 1 相敏检波电路
2
1接头 2 膜盒 3 底座 4 线路板 5 差动变压器 6 衔铁 7 罩壳
这种变送器可分档测量(–5×105~6×105)N/m2压力,输出 信号电压为(0~50)mV,精度为1.5级。
3.加速度传感器
• 用于测定振动物体的频率和振幅时其激励频率必 须是振动频率的十倍以上,才能得到精确的测量 结果。可测量的振幅为(0.1~5)mm,振动频率为 (0~150)Hz。
1 2 振荡器 检 波 器 滤 波 器 输出
稳压电源
a
~220V
(b)
1 弹性支承 2 差动变压器
1
(a)
加速度a方向
电感式传感器
电感式传感器的概念
• 电感式传感器建立在电磁感应的 基础上,把输入物理量转换为线 圈的电感或互感的变化,在由电 流或电压的变化。
被测非电量
电磁 感应
自感系数L
互感系数M 测量电路
U I
电感式传感器
优点: 结构简单 工作可靠 灵敏度高 分辨率高 线性度较好 测量精度高 零点稳定 输出功率 较大 ,在检测技术 工业生产和科学研究领 域得到了广泛的应用。 缺点: 存在交流零位信号,不适于高频动态信号 测量。
电涡流式传感器的测量电路 • 利用电涡流式变换元件进行测量时,为了得 到较强的电涡流效应; • 通常激磁线圈工作在较高频率下,所以信号 转换电路主要有调幅电路和调频电路两种。
1.调幅式(AM)电路
调幅式电路结 构
电磁炉工作示意图
电磁炉内部励磁线圈
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 变磁阻式传感器的应用
一、电感式压力传感器的应用 •当压力进入膜盒时,膜盒 的顶端在压力P 的作用下 产生与压力P 大小成正比 的位移,于是衔铁也发生 移动,从而使气隙发生变 化,流过线圈的电流也发 生相应的变化,电流表A的 指示值就反映了被测压力 的大小。
2018/9/17
线圈 U~ 铁芯 A
2018/9/17 11
• 2、差动变压器式传感器 • 差动变压器式传感器分变隙式、变面积和螺线管式三种, 螺线管式应用较广。 • 其原理为:当被测物体没有位移时,活动衔铁处于初始平 衡位置,变压器输出电压为零;当被测物体有位移时,变 压器输出电压不为零。 • 3、电涡流式传感器 • 电涡流式传感器是根据电涡流效应制成的。当板块金属导 体置于交变磁场中,或在磁场中做切割磁力线运动时,导 体内将产生涡旋状的感应电流,此即电涡流效应。激磁线 圈通交变电流,周围形成交变磁场,导体内产生涡流,电 涡流磁场反抗原磁场,引起线圈等效阻抗发生变化,即可 建立阻抗与变量的单值关系,测量阻抗值,即可求得该被 测量。
8
三、 电涡流式传感器的应用
可用于测量压力、力、压差、加速度、振动、应变、流 量、厚度、液位等物理量。
1、位移测量
2018/9/17
9
5.3.4
• • • • 1、位移测量 2、振幅测量 3、转速测量 4、无损探伤
2018/9/17
10
本章小结
• 1、电感式传感器 • 它分变气隙厚度和变气隙面积两种,变气 隙厚度式使用广泛。 • 差动变隙式是由两个相同的线圈与磁路组 成。其原理为当被测体带动衔铁移动时, 使两个磁路的磁阻发生大小相等符号相反 的变化,引起两线圈产生大小相等、极性 相反的电感增量。 •ห้องสมุดไป่ตู้差动式的灵敏度与线性度比单线圈的高。
衔铁
膜盒 P
图4-30 变隙电感式压力传感器结构图
1
当被测压力进入C形弹簧管时, 线圈 1 C形弹簧管产生变形, 其自 C形 弹 簧 管 由端发生位移,带动与自由 端连接成一体的衔铁运动, 输出 使线圈1和线圈2中的电感发 生大小相等、符号相反的变 化。即一个电感量增大,另 调机 械 零点 螺钉 一个电感量减小。电感的这 线圈 2 衔铁 P 种变化通过电桥电路转换成 ~ 电压输出。由于输出电压与 被测压力之间成比例关系, 图4-31 变隙式差动电感压力传感器 所以只要用检测仪表测量出 输出电压, 即可得知被测压 力的大小。
差动变压器式加速度传感器:由悬臂梁和差动变压器构成。测量时,将
悬臂梁底座及差动变压器的线圈骨架固定,而将衔铁的A端与被测振动 体相连, 此时传感器作为加速度测量中的惯性元件,它的位移与被测加 速度成正比,使加速度测量转变为位移的测量。当被测体带动衔铁以 Δx(t)振动时,导致差动变压器的输出电压也按相同规律变化。
B 1 2
1 —悬臂梁; 2 —差动变压器 1 A x(t )
2018/9/17
图4-32 差动变压器式加速度传感器原理图 4
2、 测量位移
2018/9/17
5
例1:板厚的测量
~
2018/9/17
6
例2. 测量力或压力
例:张力测量
2018/9/17
7
例3、 振动检测
其外形如右图,它是利用磁电感 应原理把振动信号变换成电信号。主 要由磁路系统、惯性质量、弹簧阻尼 等部分组成。在传感器壳体中刚性地 固定着磁铁,惯性质量(线圈组件) 用弹簧元件悬挂于壳体上。 工作时,将传感器安装在机器上,在机器振动时, 线圈与磁铁相对运动、切割磁力线,产生感应电压, 该信号正比于被测物体的振动速度值,对该信号进行 积分放大处理即可得到位移信号。 2018/9/17
2018/9/17 2
二、 差动变压器式传感器的应用 可直接用于位移测量,也可以测量与位移有关的任何
机械量,如振动、加速度、应变、比重、张力和厚度等。
差动变压器 衔铁 线路板 壳体
插头 通孔 底座 膜盒 接头
图5.21 CPC型差压计
图5.20 微压传感器
2018/9/17
3
1、测量振动和加速度
2018/9/17 12
一、电感式压力传感器的应用 •当压力进入膜盒时,膜盒 的顶端在压力P 的作用下 产生与压力P 大小成正比 的位移,于是衔铁也发生 移动,从而使气隙发生变 化,流过线圈的电流也发 生相应的变化,电流表A的 指示值就反映了被测压力 的大小。
2018/9/17
线圈 U~ 铁芯 A
2018/9/17 11
• 2、差动变压器式传感器 • 差动变压器式传感器分变隙式、变面积和螺线管式三种, 螺线管式应用较广。 • 其原理为:当被测物体没有位移时,活动衔铁处于初始平 衡位置,变压器输出电压为零;当被测物体有位移时,变 压器输出电压不为零。 • 3、电涡流式传感器 • 电涡流式传感器是根据电涡流效应制成的。当板块金属导 体置于交变磁场中,或在磁场中做切割磁力线运动时,导 体内将产生涡旋状的感应电流,此即电涡流效应。激磁线 圈通交变电流,周围形成交变磁场,导体内产生涡流,电 涡流磁场反抗原磁场,引起线圈等效阻抗发生变化,即可 建立阻抗与变量的单值关系,测量阻抗值,即可求得该被 测量。
8
三、 电涡流式传感器的应用
可用于测量压力、力、压差、加速度、振动、应变、流 量、厚度、液位等物理量。
1、位移测量
2018/9/17
9
5.3.4
• • • • 1、位移测量 2、振幅测量 3、转速测量 4、无损探伤
2018/9/17
10
本章小结
• 1、电感式传感器 • 它分变气隙厚度和变气隙面积两种,变气 隙厚度式使用广泛。 • 差动变隙式是由两个相同的线圈与磁路组 成。其原理为当被测体带动衔铁移动时, 使两个磁路的磁阻发生大小相等符号相反 的变化,引起两线圈产生大小相等、极性 相反的电感增量。 •ห้องสมุดไป่ตู้差动式的灵敏度与线性度比单线圈的高。
衔铁
膜盒 P
图4-30 变隙电感式压力传感器结构图
1
当被测压力进入C形弹簧管时, 线圈 1 C形弹簧管产生变形, 其自 C形 弹 簧 管 由端发生位移,带动与自由 端连接成一体的衔铁运动, 输出 使线圈1和线圈2中的电感发 生大小相等、符号相反的变 化。即一个电感量增大,另 调机 械 零点 螺钉 一个电感量减小。电感的这 线圈 2 衔铁 P 种变化通过电桥电路转换成 ~ 电压输出。由于输出电压与 被测压力之间成比例关系, 图4-31 变隙式差动电感压力传感器 所以只要用检测仪表测量出 输出电压, 即可得知被测压 力的大小。
差动变压器式加速度传感器:由悬臂梁和差动变压器构成。测量时,将
悬臂梁底座及差动变压器的线圈骨架固定,而将衔铁的A端与被测振动 体相连, 此时传感器作为加速度测量中的惯性元件,它的位移与被测加 速度成正比,使加速度测量转变为位移的测量。当被测体带动衔铁以 Δx(t)振动时,导致差动变压器的输出电压也按相同规律变化。
B 1 2
1 —悬臂梁; 2 —差动变压器 1 A x(t )
2018/9/17
图4-32 差动变压器式加速度传感器原理图 4
2、 测量位移
2018/9/17
5
例1:板厚的测量
~
2018/9/17
6
例2. 测量力或压力
例:张力测量
2018/9/17
7
例3、 振动检测
其外形如右图,它是利用磁电感 应原理把振动信号变换成电信号。主 要由磁路系统、惯性质量、弹簧阻尼 等部分组成。在传感器壳体中刚性地 固定着磁铁,惯性质量(线圈组件) 用弹簧元件悬挂于壳体上。 工作时,将传感器安装在机器上,在机器振动时, 线圈与磁铁相对运动、切割磁力线,产生感应电压, 该信号正比于被测物体的振动速度值,对该信号进行 积分放大处理即可得到位移信号。 2018/9/17
2018/9/17 2
二、 差动变压器式传感器的应用 可直接用于位移测量,也可以测量与位移有关的任何
机械量,如振动、加速度、应变、比重、张力和厚度等。
差动变压器 衔铁 线路板 壳体
插头 通孔 底座 膜盒 接头
图5.21 CPC型差压计
图5.20 微压传感器
2018/9/17
3
1、测量振动和加速度
2018/9/17 12