认识无理数(第1课时)教学设计

合集下载

北师大版八年级上册 2.1 认识无理数 第一课时 教案-教育文档

北师大版八年级上册 2.1 认识无理数 第一课时 教案-教育文档

2.1认识无理数(第一课时)一、教学目标叙写1.学生通过预习教材21页,并思考情景引入中的问题1.2.学生通过合作探究部分,初步感知数不够用了,让学生充分感受“新数”(无理数)的存在.3.学生通过交流知识点、易错点和思想方法,培养学生归纳能力和有条理的表达能力.4.学生通过完成“五、当堂评价”,能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解.二、教学重难点1.重点:让学生经历无理数的发现过程.2.难点:会判断一个数是否为无理数.三、教学过程(一)、情景引入[师]同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.1、思考:⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?2、已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?(二)、自主探究1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面再请大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a不可能是整数.[生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了.活动内容:【议一议】→【释一释】→【忆一忆】→【找一找】将两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.设这个大的正方形的边长为a,a 满足什么条件?【议一议】: 已知22a =,请问:①a 可能是整数吗?②a 可能是分数吗?【释一释】:释1.满足22a =的a 为什么不是整数?释2.满足22a =的a 为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段(三)、合学应用例:在数轴上表示满足()220x x =>的x .解:(四)、整理反思1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?(五)、当堂评价1、如图,回答下列问题:(1)以直角三角形的斜边为边的正方形的面积是多少?(2)设正方形的边长为b,b 满足什么条件?(3)b 是有理数吗?2、如图,等边三角形ABC 的边长为2,高为h,h 可能是整数吗?可能是分数吗?(六)、变练拓展1.请你在方格纸上按照如下要求设计直角三角形:(1)使它的三边中有一边边长不是有理数;(2)使它的三边中有两边边长不是有理数;(3)使它的三边边长都不是有理数.2. 下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.解:如图,AB =2,BE =1,AB 、BE 是有理数.AD 2=AB 2+BD 2=22+32=13,AC 2=1+1=2.AE 2=AB 2+BE 2=22+12=5.AC 、AD 、AE 既不是整数,也不是分数,所以不是有理数.。

2.1.1认识无理数(教案)

2.1.1认识无理数(教案)
2.1.1认识无理数(教案)
一、教学内容
本节教学内容选自数学教科书八年级上册第二章“数与代数”中的2.1.1节“认识无理数”。主要内容包括:
1.无理数的定义:介绍无理数的概念,让学生理解无理数是无限不循环小数,与有理数的区别。
2.无理数的表示:学习无理数的表示方法,如根号表示、无限小数表示等。
3.常见无理数:列举一些常见的无理数,如π、e、√2、√3等,并简要介绍它们的特点。
2.提升逻辑推理能力:在学习无理数性质和应用的过程中,引导学生运用逻辑推理,培养学生逻辑思维和推理能力。
3.增强数学抽象能力:让学生从具体的实例中抽象出无理数的概念,学会用数学符号表示无理数,提高数学抽象能力。
4.培养数学应用意识:通过探讨无理数在实际问题中的应用,让学生体会数学与现实生活的联系,培养数学应用意识。
此外,学生在小组讨论中的成果分享环节表现不错,能够将所学知识运用到实际问题的解决中。但我也注意到,部分学生对于无理数在实际生活中的应用还不够熟悉。为了提高学生的应用意识,我计划在今后的教学中增加一些与生活密切相关的实例,让学生更好地感受到数学知识的实用性。
在课程结束后,我对学生进行了简单的问卷调查,发现他们在本节课中掌握的知识点较为扎实。但同时,他们也反映出了对无理数性质和证明过程的理解不够深入。针对这个问题,我将在下一节课中进行针对性的讲解,通过更多的实例和练习,帮助学生巩固和深化对无理数性质的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解无理数的基本概念。无理数是无限不循环小数,它与有理数(整数和分数)不同,不能精确表示为有限的小数或分数。无理数在数学中具有重要地位,如在几何中的比例关系、物理学的公式中等。
2.案例分析:接下来,我们来看一个具体的案例。通过圆的周长与直径的比例(π),展示无理数在实际中的应用,以及它如何帮助我们解决几何问题。

认识无理数教案

认识无理数教案

认识无理数教案一、教学目标1.了解无理数的概念,能够区分有理数和无理数。

2.掌握无理数的基本性质,包括无理数的无限不循环小数表示、无理数的数轴表示等。

3.培养学生对无理数的理解、应用和推理能力。

二、教学重点无理数的概念和特点。

三、教学难点无理数的无限不循环小数表示。

四、教学准备教学课件、黑板、白板笔、教学用具。

五、教学过程Step 1 引入新知1.教师出示一组有理数(例如:2、3、4)和一组无理数(例如:√2、π),请学生观察并分析它们的特点。

2.引导学生发现有理数和无理数的不同之处。

3.出示定义:无理数是指不能表示为两个整数的比值的实数。

有理数是指可以表示为两个整数的比值的实数。

4.让学生举例区分有理数和无理数。

Step 2 理解无理数1.通过分数、小数和百分数的例子,帮助学生理解有理数的概念。

2.通过根号、π等例子,引导学生理解无理数的概念。

3.让学生总结无理数的特点。

Step 3 无理数的无限不循环小数表示1.举例介绍无理数的无限不循环小数表示。

2.通过几个简单的例子,帮助学生理解无理数的无限不循环小数表示方法。

3.让学生自己尝试将某些无理数表示为无限不循环小数。

4.让学生总结无理数的无限不循环小数表示的特点。

Step 4 无理数的数轴表示1.通过数轴上有理数和无理数的位置关系,帮助学生理解无理数在数轴上的表示方法。

2.通过绘制数轴上的有理数和无理数,让学生直观感受无理数的数轴表示方法。

3.让学生总结无理数的数轴表示的特点。

六、教学拓展1.引导学生了解无理数的一些应用领域,如几何、物理等。

2.组织学生进行讨论,深入探究无理数的其他性质和应用。

七、课堂小结1.复习本节课的重点内容和要点。

2.检查学生对无理数的理解情况,解答学生提出的问题。

八、课后作业1.查资料,了解无理数的发现历史和研究成果。

2.预习下节课的内容。

认识无理数教学设计

认识无理数教学设计

认识无理数教学设计一、教学目标1.了解无理数的概念和特点。

2.能够区分有理数和无理数。

3.能够正确运用无理数进行简单的计算。

二、教学重难点1.无理数的概念和特点。

2.有理数和无理数的区分方法。

3.无理数的运算规律。

三、教学准备1.教学工具:黑板、白板、投影仪等。

2.教学材料:有理数和无理数的定义、例题、练习题等。

四、教学过程Step 1 引入新知1.教师将黑板上划分为两个区域,一个区域写有理数,一个区域写无理数。

2.教师向学生提问:“你们知道什么是有理数吗?有理数有哪些特点?”学生回答。

3.教师引导学生复习有理数的定义和特点,然后进一步提问:“你们知道什么是无理数吗?无理数有哪些特点?”学生回答。

Step 2 学习无理数的定义和特点1.教师向学生介绍无理数的定义和特点,可以使用PPT或投影仪展示相关内容。

2.教师向学生阐述无理数的定义:“无理数是指不能表示为两个整数的比值(或两个有理数的差)的实数,它们也没有无限循环小数表示。

”3.教师向学生解释无理数的特点:“无理数的小数表示是无限不循环的,它们不能用分数表示,例如π和根号2、”Step 3 区分有理数和无理数1.教师向学生提问:“如何区分有理数和无理数?”学生回答。

2.教师向学生解释区分方法:“有理数和无理数之间不存在其中一种简单的关系,只能通过判断其小数表示是否有循环来确定。

”3.教师通过例题和练习题让学生进行练习,巩固区分有理数和无理数的方法。

Step 4 无理数的运算规律1.教师向学生介绍无理数的运算规律,可以使用PPT或投影仪展示相关内容。

2.教师向学生解释无理数的运算规律:“无理数的加减乘除运算与有理数的运算规律相同。

”3.教师通过例题和练习题让学生进行练习,巩固无理数的运算规律。

Step 5 拓展应用1.教师向学生提问:“无理数在生活中有哪些应用?”学生回答。

2.教师通过举例向学生介绍无理数的应用领域,例如建筑设计、物理学和金融等。

1.1认识无理数(第1课时)教学设计.1 认识无理数(第1课时)教学设计

1.1认识无理数(第1课时)教学设计.1 认识无理数(第1课时)教学设计

第二章实数1. 认识无理数(第1课时)一、教学目标1、通过拼图活动,让学生感受客观世界中无理数的存在;2、能判断三角形的某边长是否为无理数;3、学生亲自动手做拼图活动,培养学生的动手能力和探索精神。

二、学情分析1、学生起点分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了基础。

2、教学任务分析本节内容是让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,认识长度不是有理数的线段。

学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数。

三、重点难点1、认识生活中不是有理数的数。

2、会用特定的情境来描述这些数。

四、教学过程设计本节课设计了5个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:课堂小结;第五环节:作业布置.第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1、【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2、【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题。

第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】a=,请问:①a可能是整数吗?②a可能是分数吗?【议一议】:已知22a=的a为什么不是整数?【释一释】:释1、满足22a=的a为什么不是分数?释2、满足22【忆一忆】:让学生回顾“有理数”概念,既然a不是整数也不是分数,那么a一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:课堂小结内容:1、通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2、客观世界中,的确存在不是有理数的数,你能列举几个吗?3、除了本课所认识的非有理数的数以外,你还能找到其他的数吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化。

认识无理数 教案

认识无理数 教案

第二章实数2.1. 认识无理数教学目标(一)教学知识点1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出理由.(二)能力训练要求1.让学生体验拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观要求1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.理解无理数包含的两个条件:无限性和不循环教学难点无理数存在的探索过程教学过程一.知识回顾:(1)什么叫有理数?(2)有理数是如何分类的?并让学生逐一举例说明。

二、问题引入1则斜边长a为多少?a2=2, a是多少?1三.探究新知活动一:拼图实践Ⅰ、有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一个大11议一议:(1)设大正方形边长为a,则a满足什么条件?解析:因为两个小正方形面积和为2,所以a2=2。

(2)a 可能是整数吗?a2=2 12=1 22=4 ,1<a<2,所以a 不可能是整数。

(3)a 可能是分数吗?任何最简分数的平方都是分数,不会是整数,所以a 不可能是分数。

思考:在等式a2=2中,a 既不是整数,也不是分数,所以a 不是有理数,那么a 究竟是什么数? Ⅱ、探究无理数的概念:估算a 的值 (1)1<a<2(2)a 大约会是1.5吗?1.4?1.4<a<1.5 (3)a 大约会是1.4...呢?1.41<a<1.42 因为计算费时,通过PPT 让学生观察估算过程 问题:还可以继续下去吗?A 可能是有限小数吗?结论:事实上,a=1.414 213 56......,它是一个无限不循环小数。

2.1 认识无理数(第1课时)

2.1 认识无理数(第1课时)
3 3 9 ...... 2 22为分母的
分数.
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。21.9.1321.9.13Monday, September 13, 2021 10、阅读一切好书如同和过去最杰出的人谈话。04:06:3504:06:3504:069/13/2021 4:06:35 AM 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.9.1304:06:3504:06Sep-2113-Sep-21 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。04:06:3504:06:3504:06Monday, September 13, 2021
所以BD DC,则BD AB
由勾股定理得: h
h
h不可能是整数;
B
D
C
h也不可能是分数.
四、强化训练
2、长,宽分别是3,2的长方形,它的对角线的长可能是整数 吗?可能是分数吗?
3 2
四、强化训练
3、如图是16个边长为1的小正方形拼成的,任意连接这些 小正方形的若干个顶点,可得到一些线段,试分别找出两 条长度是有理数的线段和两条长度不是有理数的线段.
八年级数学北师大版·上册
第二章 实数
1.1 认识无理数(第1课时)
一、新课引入
图是两个边长为1的小正方形,剪一剪、拼一拼,设法得到 一个大的正方形.
⑴ 设大正方形的边长为a,a满足什么条件? ⑵ a可能是整数吗?说说你的理由. ⑶ a可能是以2为分母的分数吗?可能是以3为分母的分 数吗?说说你的理由. ⑷ a可能是分数吗?说说你的理由,并与同伴进行交流.

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例
在教学过程中,我注重启发式教学,引导学生主动探究、积极思考,培养他们的创新精神。同时,关注学生的个体差异,实施差异化教学,使每个学生都能在课堂上得到有效的锻炼。
二、教学目标
(一)知识与技能
1.让学生理解无理数的概念,知道无理数的特点,能够识别生活中的无理数实例。
2.使学生掌握无理数的性质,了解无理数与有理数的区别,能够运用性质进行简单的论证和判断。
2.教师对学生的学习情况进行评价,关注他们的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。
3.总结本节课的主要内容,强调无理数的概念、性质和运算方法。
(五)作业小结
1.布置课后作业,让学生运用所学知识解决实际问题,提高他们的实践能力。
2.通过作业的完成情况,了解学生对课堂所学知识的掌握程度,为今后的教学提供参考。
五、案例亮点
(二)讲授新知
1.引导学生提出问题:“无理数有什么特点?”,“无理数与有理数有什么区别?”等,激发他们的思考。
2.组织学生进行小组讨论,鼓励他们发表自己的观点和看法,培养他们的团队合作精神。
3.教师通过讲解,引导学生自主探究无理数的性质,如不能表示为两个整数的比值,不能精确表示等。
4.利用多媒体课件展示无理数的性质,让学生直观地感受无理数的特点。
3.鼓励学生在课后进行深入研究,拓展知识面,提高他们的创新能力。
五、教学反思
本节课通过生活实例引入无理数的概念,引导学生探究无理数的性质和运算方法,注重培养学生的实践能力和创新能力。在教学过程中,关注学生的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。同时,注重启发式教学,培养学生主动探究、积极思考的能力。但在时间安排上,可以更加合理,确保学生有足够的时间进行小组讨论和作业练习。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

序号:6
第二章实数
1. 认识无理数(第1课时)
一、教学目标
本节课的教学目标是:
①通过拼图活动,让学生感受客观世界中无理数的存在;
②能判断三角形的某边长是否为无理数;
③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;
④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;
二、教学重难点
重点:能判断三角形的某边长是否为无理数。

难点:能正确地进行判断某些数是否为有理数。

三、教学过程设计
第一环节:质疑
内容:【想一想】
⑴一个整数的平方一定是整数吗?
⑵一个分数的平方一定是分数吗?
目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.
效果:为后续环节的进行起了很好的铺垫的作用
第二环节:课题引入
内容:1.【算一算】
已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?
2.【剪剪拼拼】
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?
目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.
效果:巧设问题背景,顺利引入本节课题.
第三环节:获取新知
内容:【议一议】→【释一释】→【忆一忆】→【找一找】
【议一议】: 已知2
2a =,请问:①a 可能是整数吗?②a 可能是分数吗?
【释一释】:释1.满足22a =的a 为什么不是整数?
释2.满足22a =的a 为什么不是分数?
【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定
不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习
奠定了基础
【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有
理数的线段
第四环节:应用与巩固
【画一画1】:在右1的正方形网格中,画出两条线段:
1.长度是有理数的线段 2.长度不是有理数的线段
【画一画2】:在右2的正方形网格中画出四个三角形 (右1)
2.三边长都是有理数 2.只有两边长是有理数
3.只有一边长是有理数 4.三边长都不是有理数
【仿一仿】:例:在数轴上表示满足()220x x =>的x 解: (右2)
仿:在数轴上表示满足()2
50x x =>的x
【赛一赛】:右3是由五个单位正方形组成的纸片,请你把
它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)
第五环节:课堂小结
内容: 1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?
2.客观世界中,的确存在不是有理数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数以外,你还能找到吗?
第六环节:布置作业
习题2.1
四、教学设计反思
(一)生活是数学的源泉,兴趣是学习的动力
大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.
(二)化抽象为具体
常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.
(三)强化知识间联系,注意纠错
既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.
五、板书设计。

相关文档
最新文档