实时数据库与关系数据库的区别
实时历史数据库的设计与分析

历史数据库保存实时数据的历史记录。流程工业对历史数据库的需求表现在 两个方面;一个是先进控制和实时优化等应用的需要,它们需要的历史数据的特 点是近期和实时性,也就是说,它们需要常常或者按照某固定的周期尽快地得到 近期的历史数据;另一个是永久存储,提供实时性要求不高的历史数据查询。
1988年发表的ACM SIGMOD Record实时数据库系统专刊提示了RTDBS (Real-Tune Database system,实时数据库系统)研究领域的诞生,标志着实时和传统 数据库的融合产生的新兴研究领域的确立。
在数据库理论中,实时数据库系统就是其事务和数据都可以具有定时特性或 显式的定时限制的数据库系统【9】。系统的正确性不仅依赖于逻辑结果,而且还依赖 于逻辑结果产生的时间110l。实时数据库的主要特征是在其数据和事务上施加了时 间约束。数据的时间约束是在数据的一致性要求之外,增加了时态的一致性要求; 事务的时间约束,即为事务规定了一个执行期限111】。
5
1.3本文的工作
电子科技大学硕士学位论文
本论文是在与中国电力科学研究院下属某公司合作开发的GDREAL系统的基 础上,并进行了理论和实践创新后完成的。GDREAL是一大型实时历史数据库系 统,最多支持100000个标签点。作者有幸参与开发了这一大型项目的完整开发过 程,包括从需求分析、概要设计、详细设计、编码和最终的测试过程。
传统的实时系统虽然支持任务的定时限制,但只针对结构和关系比较简单的 数据,不涉及维护数据的完整性和一致性。因此,实时数据库系统是传统的实时
3
电子科技大学硕士学位论文
系统和数据库系统相结合的产物,但不是二者简单的相加。实时数据库使用与传 统的关系数据库完全不同的算法来保证实时性,使用比实时系统复杂得多的数据 维护机制来管理实时数据。在实时系统中,任务具有时间限制,通常以完成截止 期的形式出现,并且以能够在这些事务的截止期之前完成的方式调度。在传统的 实时系统中不考虑保持数据库的一致性,而在传统的数据库系统中没有事务的时 间限制问题。实时数据库事务和传统的数据库事务一样,也必须保持数据库的一 致性,此外它还必须满足事务的定时限制。也就是说为了成功的提交一个事务, 将不得不同时满足事务的定时限制和事务的逻辑一致性要求。实时数据库事务处 理的目标通常是最大化满足截止期的事务数,而传统数据库事务处理的目标是最 小化事务的平均响应时间或最大化事务的平均吞吐量18J。
主流数据库系统的特点与比较

主流数据库系统的特点与比较随着信息化和数据化的进一步推进,数据库系统越来越成为企业信息管理的关键。
由于数据管理的要求和需求多种多样,各类数据库系统不断涌现,主流数据库系统也在不断演进和创新。
本文将就主流数据库系统的特点进行比较和分析,旨在帮助读者更好地了解和选择适合自身需求的数据库系统。
一、关系型数据库系统关系型数据库系统是目前企业中最为普遍的数据库系统,其特点在于采用表格和关系进行数据存储管理。
表格存储数据的方式使得数据可以快速查询和处理,同时避免了数据冗余和重复。
关系型数据库系统还一般具有以下特点:1. 高度结构化:数据库系统需要经过建模和设计才能创建出适合企业需要的数据库。
2. 类似SQL的命令语言:SQL语言已成为数据库系统最为普遍的数据查询和管理语言。
3. 事务处理和ACID(Atomicity, Consistency, Isolation, Durability)支持:事务处理可以确保数据的完整性和一致性,而ACID支持可以保证数据的可靠性和安全性。
4. 数据完整性检查:关系型数据库系统可以通过约束和索引等手段对数据进行完整性检查,从而避免数据出现错误和重复。
主流的关系型数据库系统包括Oracle、MySQL、Microsoft SQL Server等,不同的数据库系统在处理效率、性能、安全性等方面都有自己的特点和优劣。
二、非关系型数据库系统除了关系型数据库系统,近年来出现了一种新型的数据库系统:非关系型数据库系统(Nosql)。
与关系型数据库不同,Nosql支持非结构化数据的存储和查询,在大数据量环境和高并发环境下有更好的性能表现。
Nosql数据库有以下特点:1. 非结构化数据支持:Nosql数据库支持非结构化或半结构化的数据存储和查询,可以灵活地应对不同的数据存储需求。
2. 分布式处理:Nosql数据库采用分布式架构,可以很好地处理大规模数据和高并发量的数据操作。
3. 可扩展性:Nosql数据库具有良好的可扩展性,可以根据需求高效地进行横向和纵向的自动扩展。
实时数据库与关系数据库

实时数据库与关系数据库
实时数据库是一种特殊类型的数据库,能够在较短时间内为不同的应用程序访问和更新数据。
实时数据库具有较高的响应速度和决策支持能力,特别适用于需要实时数据访问和更新的领域,如物联网、建筑自动化和系统控制等。
关系数据库是常见的基于表格的数据库系统,具备处理多种数据之间相互关系的能力,数据以主键和外键定义与其他数据之间的关系。
关系数据库广泛用于企业内部数据处理和管理,如财务、人力资源等方面。
二者在原理、应用、优势方面的区别如下:
原理:
实时数据库的核心理念是使用内存数据结构。
实时数据库能够迅速读写数据,因为所有的数据都存储在内存中,而不是从磁盘或其他存储器加载数据。
而关系数据库则基于SQL语言的关系理论,可以使用关联、聚合、选择等操作在表格中进行数据操作和管理。
应用:
实时数据库通常应用于智能城市、智能制造和物联网等领域,对于需要对数据进行快速分析和决策的场景特别有用。
关系数据库则广泛应用于企业内部数据处理和管理,如财务、人力资源等方面。
优势:
实时数据库的最大优势是快速访问和处理实时数据,因此很适合于需要接收大量数据并迅速做出决策的应用场景。
关系数据库则运用多种约束条件来保证数据的完整性和一致性,减小数据存储冗余,更适用于需要长期存储和管理大量数据的场景。
综上所述,实时数据库和关系数据库在原理、应用、优势等方面有很大的区别。
实时数据库用于快速的数据获取和实时决策,关系数据库则可以高效地存储和管理大量长期数据。
数据库与数据仓库的区别与联系

数据库与数据仓库的区别与联系在信息时代的背景下,数据处理已经成为各行各业的核心工作。
数据库和数据仓库作为两个常见的数据管理工具,在实践中有着不同的应用场景和特点。
本文将对数据库和数据仓库的区别与联系进行探讨,以帮助读者更好地理解它们的不同之处和相互关系。
一、数据库的概念和特点数据库是指为了满足用户需求而设计、构建和维护的一系列数据集合。
数据库通过数据结构与数据管理系统,实现对数据的存储、查询、更新和删除等基本操作。
其特点主要包括以下几个方面:1. 数据持久化:数据库中的数据可以长期保留,并在需要时进行读取和修改。
2. 数据共享:数据库可以实现多个用户对数据进行共享和协作,提高数据利用效率。
3. 数据一致性:数据库通过事务机制保证数据的一致性和完整性,避免数据冗余和不一致的问题。
4. 高效查询:数据库通过索引等技术快速定位和获取用户需要的数据,提高查询效率。
二、数据仓库的概念和特点数据仓库是指按照时间顺序、面向主题和集成的方式,将多个异构的数据源进行统一整合和管理的大型数据存储库。
它主要用于支持决策分析和业务智能,具有以下特点:1. 面向主题:数据仓库基于企业的业务需求,以主题为中心组织和存储数据,方便用户进行专题分析和决策支持。
2. 集成统一:数据仓库通过数据抽取、转换和加载等技术整合来自不同来源的数据,保证数据的一致性和可信度。
3. 历史存储:数据仓库会长期保留历史数据,以支持用户对过去事务和趋势的分析和判断。
4. 复杂分析:数据仓库提供了复杂的分析功能,如数据切片、切块、钻取等,为决策提供更全面和深入的支持。
三、数据库与数据仓库的区别1. 定义和目的:数据库是为了满足用户的日常业务操作需求而设计的,而数据仓库则是为了支持决策分析和业务智能而构建的。
2. 数据类型和时效性:数据库主要存储操作性数据,如订单、库存等,具有实时性要求;数据仓库存储分析型数据,如销售趋势、市场调研等,具有较长的历史时效性。
数据库的图数据库与关系数据库的性能对比分析

数据库的图数据库与关系数据库的性能对比分析在当代数字化时代,数据发展呈现出前所未有的爆发式增长。
处理这些庞大而复杂的数据集合成为了一项艰巨的任务。
为了满足对数据的高效管理和查询需求,各种类型的数据库系统应运而生。
数据库系统可以大致分为两大类:关系数据库和图形数据库。
关系数据库是最常见和广泛使用的数据库模型之一,以表格形式组织数据,并通过关系(即表与表之间的连接)来建立数据之间的联系。
而图形数据库则更加专注于数据之间的复杂关联和网络结构,使用图的形式存储和表示数据。
关系数据库和图数据库在性能方面各有优劣,下面将对二者进行对比分析。
1. 数据查询性能关系数据库在处理结构化数据时表现出色。
通过使用SQL (Structured Query Language)进行查询,可以灵活地从多个表中检索和过滤数据。
相比之下,图数据库在处理复杂关系和非结构化数据时优于关系数据库。
图形数据库使用图的数据模型和查询语言(如Cypher),可以更快地在图形结构中导航和搜索相关节点和关系。
2. 数据修改性能关系数据库通过事务和ACID(原子性、一致性、隔离性和持久性)属性来确保数据的一致性和完整性。
这些特性使得关系数据库非常适合处理事务性操作,如数据的插入、更新和删除。
相反,图数据库更适用于大规模数据集合中的复杂路径和关联查询,但在大规模数据的修改操作上可能会存在一些性能问题。
3. 数据模型适配性关系数据库采用表格和列的形式组织数据,适用于事先知道数据模型和表结构的应用场景。
如果数据的模式难以预定义或者频繁发生变化,关系数据库的设计困难会增加。
图数据库则易于通过创建节点和关系动态扩展模型,并支持灵活的数据模式。
这使得图数据库特别适用于半结构化和非结构化数据。
4. 数据规模和复杂性关系数据库在处理百万级以上的数据时,通常需要进行复杂的查询优化和索引调整。
相比之下,图形数据库在处理大规模数据和数据之间复杂关系时表现更佳,因为它们是基于图和节点之间的连接来组织数据的。
实时数据库与组态软件的区别

实时数据库与组态软件的区别实时数据库与组态软件的区别2010年12月11日星期六09:10实时数据库与组态软件的区别1:市场定位的区别设备一级和车间一级的监控系统应该选用组态软件,厂一级的监控系统或生产管理系统可以选用实时数据库,而管理信息系统或ERP(企业资源计划)就应该使用关系数据库。
实时数据库定位为生产控制系统和企业经营管理之间的中间层。
我们似乎可以按照这个模式去区分实时数据库、组态软件和关系数据库的市场定位,但事实上,这三者的界线是非常模糊的,不一定非此即彼,在一些特定行业,没有明显地三层区别,在项目中到底选择哪一种产品,需要很好的分析和判断。
实时数据库的定位可以向上延伸至生产信息管理层,即管理软件范畴,也可以向下延伸至生产监控层,即监控软件范畴。
本文章不讨论实时数据库与关系数据库的市场定位之差别(那是另一个话题),只讨论实时数据库与组态软件的市场定位之差别。
在工业监控项目中,到底是该选用组态还是该选用实时数据库,虽然是具体问题具体分析,但是,还是存在一些普遍意义的准则。
1.工程总点数我们可以将用户工程按总点数分为三个级别:2000点以下组态软件的市场2000点至5000点组态软件和实时数据库都可能被选择5000点以上实时数据库的市场可以说,在2000点以下的工程,除非特殊情况,用户一般只会选择组态软件,而在5000点以上,是实时数据库的重点市场,在这两个级别,用户可以很容易地想到该使用何种产品。
选择的难点在于第二级:2000点至5000点。
这就需要同时考虑以下几个准则。
2.工程需保存的总点数我们可以将用户工程按需保存的点数分为三个级别:1000点以下组态软件的不二选择1000点至3000点组态软件和实时数据库都可能被选择3000点以上重点选择实时数据库以下的准则,主要是在工程总点数在2000点至5000点、以及工程需保存的总点数1000点至3000点时的判断准则。
3.数据的变化频率5秒以上选择组态软件1-5秒组态软件和实时数据库都可能被选择1重点选择实时数据库举个例子,在杭州湾跨海大桥的桥梁监控系统中,虽然工程总点数只有3000个,但数据的变化频率为10MS(这需要通过特定的接口方式批次采集数据),因此,客户选择了实时数据库而不是组态软件。
003-力控企业级实时历史数据库pSpace产品介绍

企业级实时历史数据库
pSpace应用组件
u关系库转储 SQLRouter用于pSpace Server和关系数据库建的数据交互,转储方式灵活, 支持多种表结构,同时提供数据统计转储、在线配置、二次开发接口等高级功能。 u关系库扩展 psSQL为关系库扩展组件,基于标准关系库进行了二次开发,与pSpaceServer 高效交互,提供基于SQL92标准的JDBC和ODBC接口,通过第三方抽取工具即可 实现数据集成。 uOPC数据转发 OPCServer是一个符合OPC 2.0的标准OPC数据服务器,为用户提供完整的工 业访问接口。
曲线、报表、菜单 可视化插件 图形库 参考行业软件设计标 多媒体技术 准 GDI、GDpace可视化界面
企业级实时历史数据库
pSpace可视化界面
upsView 后台脚本支持 面向对象设计的脚本编译环境, “所见即所得”,方便引用方法 和变量; 类“Basic”的语言环境,提供面 向对象编程方式; 脚本类型和触发方式多样,支持 条件动作、数据变化动作、窗口 动作、循环动作等; 脚本支持多种结构,支持数组运 算和FOR循环结构。
企业级实时历史数据库
pSpace可视化界面
upsView 组态开发 提供方便友好的开发环境及面向对象的设计,工程人员可根据这些工 具来搭建自己的监控系统。 数据源级联 工程导入与导出 查找与替换 窗口复制、文件夹管理 文件管理 贝塞尔曲线 多种图元绘图 对象克隆、镜像 标准Windows控件 日期框、下拉框、复选框 鼠标动作、垂直水平填充等 动画连接 智能对象封装 this&parent嵌套 自定义属性方法 画面分层 255图层选择
企业级实时历史数据库
pSpace核心服务器软件
企业级实时历史数据库
实时数据库和传统数据库的区别与应用场景分析

实时数据库和传统数据库的区别与应用场景分析随着信息技术的不断发展,数据库在各行各业中的应用越来越广泛。
在数据库的应用领域中,实时数据库和传统数据库是两种常见的类型。
本文将对实时数据库和传统数据库的区别进行分析,并探讨它们在不同应用场景中的应用情况。
一、实时数据库和传统数据库的区别实时数据库是一种专门用于处理实时数据的数据库系统。
实时数据是指那些要求在严格的时间要求下进行处理和响应的数据。
相比之下,传统数据库则更适用于处理非实时数据,如批处理和离线数据处理。
1. 数据处理方式不同实时数据库采用了一系列优化策略来保证数据的实时性和响应性能。
它使用了高效的数据存储和索引结构,能够在较短的时间内对数据进行读写操作。
而传统数据库则更注重数据的一致性和持久性,对于实时性要求不高的应用场景更为适用。
2. 数据处理速度不同实时数据库能够以毫秒级的速度对数据进行读写操作,能够满足对数据实时性要求较高的应用场景。
而传统数据库则需要更长的时间来处理数据,适用于对实时性要求不高的场景。
3. 数据规模不同实时数据库通常用于处理大规模的实时数据,如传感器数据、监控数据等。
它能够高效地处理大量的数据并保证数据的实时性。
传统数据库则更适用于处理较小规模的数据,如企业的业务数据、客户数据等。
二、实时数据库的应用场景1. 物联网领域随着物联网技术的不断发展,各种传感器设备产生的实时数据需要被高效地处理和分析。
实时数据库能够满足对实时性要求较高的物联网应用场景,如智能家居、智能交通等。
2. 金融领域在金融交易中,实时性是非常重要的。
实时数据库能够高效地处理金融交易数据,保证交易的实时性和准确性。
例如,证券交易系统、支付系统等都需要使用实时数据库来处理交易数据。
3. 游戏领域实时数据库在游戏领域中也有广泛的应用。
游戏中需要实时地处理玩家的操作和交互,实时数据库能够满足对游戏数据实时性和响应性能的要求。
三、传统数据库的应用场景1. 企业应用传统数据库在企业应用中有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实时/历史数据库和关系型数据库的区别
一、实时数据库
实时数据库是数据库系统发展的一个分支,它适用于处理不断更新的快速变化的数据及具有时间限制的事务处理。
实时数据库技术是实时系统和数据库技术相结合的产物。
实时数据库最起初是基于先进控制和优化控制而出现的,对数据的实时性要求比较高,因而实时、高效、稳定是实时数据库最关键的指标。
早期实时数据库的概念即我们所说的内存数据库,其相当于数据中枢的作用,将厂级相互孤立的DCS数据有效整合起来,在厂级应用中某个DCS的数据可为其他DCS的工艺算法提供数据支持,其有效解决了数据孤岛问题,拓展了DCS 的功能,因而,实时数据库在先进控制和优化控制中起到了尤为重要的作用。
但早期的内存数据库并不能有效的解决实时数据的细时间粒度压缩存储,工业模型对象数值属性高度分类抽象,大容量数据的高效实时检索及处理等关键问题。
而实时数据库在数据通信、数据组织、数据存储、数据检索、数据访问、数据处理、数据展现等方面的专业化及产品化,为构建基于大容量实时历史数据之上的分析应用提供了便捷稳定的数据支撑,使应用系统可以从更高更深层次充分利用宝贵的生产实时历史数据。
目前,实时数据库已广泛应用于电力、石油石化、交通、冶金、军工、环保等行业,是构建工业生产调度监控系统、指挥系统,生产实时历史数据中心的不可缺少的基础软件。
二、关系数据库
关系数据库,是指采用了关系模型来组织数据的数据库。
关系模型是在1970年由IBM首先提出,在之后的几十年中,关系模型的概念得到了充分的发展并逐渐成为数据库架构的主流模型。
简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系组成的一个数据组织。
关系型数据库有着以下特点:
容易理解:二维表结构是非常贴近逻辑世界的一个概念,关系模型相对网状、层次等其他模型来说更容易理解。
使用方便:通用的SQL语言使得操作关系型数据库非常方便,程序员甚至于数据管理员可以方便地在逻辑层面操作数据库,而完全不必理解其底层实现。
易于维护:丰富的完整性(实体完整性、参照完整性和用户定义的完整性)大大降低了数据冗余和数据不一致的概率。
目前,关系数据库广泛应用于各个行业,用于构筑管理信息系统,如ERP,MIS,EAM等重要系统,是构建管理信息系统,存储及处理关系数据的不可缺少基础软件。
三、两种数据库之间的一些差别
1)数据的组织方式
实时数据库可以简单地理解为它是这样的数据库:由测点信息库、实时数据库、历史数据库三个数据库组成。
测点信息库含有一个测点基本信息字段的一张表,这个表以测点标签作为关键字,对应一条测点基本信息的记录包含一条测点的基本配置信息,如压缩偏差,例外偏差,测点描述等。
用户可从此数据库中查询测点的基本信息。
实时数据库是内存快照数据库,反映了生产实时数据的时间戳、数值、质量等秒级变化。
用户可从此数据库中查询生产实时数据的实时数据值(值,时间戳,质量)。
历史数据库是含有一个以测点名称字段和时间字段为关键字的一张表,这张表的另外的一个重要的字段就是数值字段,用来存储测点的采集值,除了这些字段,还可以包含数据的状态,数据质量字段等。
随着时间的变化,不断地将实时数据库中的实时数据进行压缩过滤,并更新磁盘历史数据文件中的表里的数据。
用户可从此数据库中查询生产实时数据的历史样本值或历史插值数据。
而对于关系数据库则是根据各个实体之间的关系来设计数据表的。
2)系统稳定性
由于实时数据库记录的是和生产相关的数据,并且和时间相关,所以要求其必须能够长时间稳定运行,否则就会导致数据的丢失。
目前一些实时数据库已经具有缓存数据的功能,当数据采集机器和实时数据库服务器之间通信出现故障时,可以把采集到的数据缓存到本地,当通信恢复正常后,把缓存的数据写入到实时数据库服务器中,极大地保证了数据的完整性。
而对于关系数据库来说,如果不是应用在关键业务,比如金融证券等,对稳定要求一般来说不是很高。
3)数据来源
针对不同的类型的企业,实时数据库的数据的来源也不尽相同。
主要来源有DCS控制系统,数据采集系统(SCADA),手工录入,关系数据库等。
这些数据的主要特点就是都和生产直接相关,并且大多数的数据都是数值型数据,比如设备或介质的压力、温度、流量、位置、电压、电流、功率等。
关系数据库的来源更加多样。
除了记录数值数据外,也记录描述性的数据,如姓名家庭住址等信息。
一般来说,实时数据库的数据来源一般是设备。
而关系数据库的数据来源一般是来自于人。
4)数据压缩
实时数据库因为存储的数据量非常大,比如要采集10000点的数据,每5秒采集一个数据,假设采集的都是32位浮点数,那么一天的数据量(仅数值属性不含时间属性)就是10000*(60/5)*60*24*4/1024=675000K,大约675M的数据。
由此可见数据量的庞大,而且占用磁盘的空间大,对数据的访问速度也会降低。
因此各个数据库厂家大都开发出自己的数据压缩算法,对数据进行压缩。
常用的压缩算法可以分为三类:无损压缩,有损压缩,二级压缩。
其中,无损压缩一般以通用压缩理论为基础,采取huffman等经典的压缩算法;而有损压缩则更多地考虑了工业实时数据的特征,而采取的一些特殊舍点算法;二级压缩技术,则是同时利用了这两种数据压缩技术。
实时数据库的无损压缩以通用压缩理论为基础。
目前比较著名的有损压缩算法,有常用的旋转门压缩算法,以及一些变通压缩算法(如在旋转门算法基础上改用二次均方差作为偏差比较,以提高数据还原精度),这些算法原理都比较简单。
关系型数据库则不会对数据进行压缩。
5)数据的访问方式
实时数据库一般有以下3种方式访问数据
a)使用自己的API,这种方式效率最高也最简单。
b)使用ODBC或者OLEDB,这种方式不大常用,主要是给那些刚刚接触实时数据库或者以前对关系型数据库了解的用户使用的。
c)使用Opc方式访问数据。
Opc是一种广泛使用的工业标准,虽然效率不高,但是目前很多的厂家都支持。
关系数据库访问数据的方式是通过结构化查询语言(SQL)来访问的。
6)应用领域
过程控制系统是实时数据库系统最重要的应用领域之一.在生产装置运行过程中,实时数据库实时记录采集装置的运行数据,随时掌握装置的运行状况,并通过对生产过程的关键数据的监控和分析,对出现的问题及时处理,使生产的运行状态保持安全平稳,当生产状况发生变化时可以及时作出反映;通过对影响原材料用量的过程监视以及对水电汽的用量的监测分析,可以及时发现问题,
特别对生产调度人员来说,可以及时地平衡物料供应,减少单耗,提高经济效益。
而关系数据库的应用则广泛的多,在各行各业基本都可以见到。
大多数应用在管理方面,比如管理信息系统(MIS),客户关系管理(CRM)等。
7)客户端工具
实时数据库由于目前并没有统一的标准,各个实时数据库客户端工具基本上都是由厂商自己提供的,主要是数据展示工具,组态工具,管理工具等。
因为主要是面向流程工业,所以实时数据库都带有组态和发布工具。
关系数据库因为应用范围广泛,客户工具相当丰富。
除了厂商提供的工具外,第三方软件厂商也可以为关系数据库厂商开发客户端工具。
四、两种数据库之间的集成趋势
虽然实时数据库和关系数据库有着很多的不同,但是目前实时数据库和关系数据库集成的趋势越来越明显。
将生产管理信息系统中使用的关系数据库和实时数据库集成到一起,可以同时满足控制和管理的要求,真正成为管理控制一体化的平台。
例如,目前大多行业均利用实时数据库与关系数据库作为基础数据库软件构建监控中心及数据中心的基础数据库。
其中实时数据库处理并存储生产实时数据,关系数据库处理并存储业务关系数据。