江苏省扬州市2011年中考数学试卷 及参考答案

合集下载

2011年江苏省扬州市中考数学试卷

2011年江苏省扬州市中考数学试卷

2011年江苏省扬州市中考数学试卷
一、选择题(本大题共有8小题,毎小题3分,共24分。

在毎小题所给出的四个选項中,恰有一项是符合题目要求的,请将正确选项前的字母代号垓涂在答题卡相应位置上)
1.(3分)﹣的相反数是()
A.2B .C.﹣2D .﹣
2.(3分)下列计算正确的是()
A.a2•a3=a6B.(a+b)(a﹣2b)=a2﹣2b2
C.(ab3)2=a2b6D.5a﹣2a=3
3.(3分)下列调査,适合用普査方式的是()
A.了解一批炮弹的杀伤半径
B.了解扬州电视台《关注》栏目的收视率
C.了解长江中鱼的种类
D.了解某班学生对“扬州精神”的知晓率
4.(3分)已知相交两圆的半径分別为4和7,则它们的圆心距可能是()
A.2B.3C.6D.11
5.(3分)如图是由几个小立方块所搭成的几何体的俯视图,小正方形体的数字表示该位置小立方块的个数,则该几何体的主视图是()
A .
B .
C .
D .
6.(3分)某反比例函数象经过点(﹣1,6),则下列各点中此函数图象也经过的是()
A.(﹣3,2)B.(3,2)C.(2,3)D.(6,1)
7.(3分)已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有()
A.1个B.2个C.3个D.4个
8.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得。

扬州市中考数学试题及答案

扬州市中考数学试题及答案

13 2(第5题)A .B .C .D .扬州市2011年初中毕业、升学统一考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置.......上) 1.12-的相反数是( ) A .2 B .12 C .2- D .12-2.下列计算正确的是( )A .236a a a =· B .()()2222ab a b a b +-=-C .()2326aba b = D .523a a -=3.下列调查,适合用普查方式的是( )A .了解一批炮弹的杀伤半径B .了解扬州电视台《关注》栏目的收视率C .了解长江中鱼的种类D .了解某班学生对“扬州精神”的知晓率 4.已知相交两圆的半径分别为4和7,则它们的圆心距可能是( ) A .2 B .3 C .6 D .115.如图是由几个小立方块所塔成的几何的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的主视图是( )6.某反比例函数图象经过点()16-,,则下列各点中此函数图象也经过的点是( ) A .()32-, B .()32, C .()23, D .()61,7.已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( ) A .1个 B .2个C .3个 D .4个 8.如图,在Rt ABC △中,90ACB ∠=°,30A ∠=°,2BC =.将ABC △绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ) A .302, B .602, C.60 D.60E C(第8题)二、填空题(本大题共有10小题,每小3分,共30分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 9.“十一五”期间,我市农民收入稳步提高,2010年农民人均纯收入达到9462元,将数据9462用科学记数法表示为______________. 10=_______________. 11.因式分解:3244x x x -+=_______.12.数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是___________题.答对题数 7 8 9 10人数44816713.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A B 、两岛的视角ACB ∠=__________°.14.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是___________.15.如图,O ⊙的弦CD 与直线径AB 相交,若50BAD ∠=°,则ACD ∠=___________°.16.如图,DE 是ABC △的中位数,M N 、分别是BD CE 、的中点,6MN =,则BC =_____________.17.如图,已知函数3y x=-与()200y ax bx a b =+>>,的图象交于点P ,点P 的纵坐标为1,则关于x 的方程230ax bx x++=的解为18.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为_____________.三、解答题(本大题共有10个小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的北(第13题) (第15题) A D E NC BM (第16题)(第17题)4 75 (第18题)文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)()()0332011422---+÷- (2)2111x x x -⎛⎫+÷ ⎪⎝⎭20.(本题满分8分)解不等式组313112123x x x x +<-⎧⎪++⎨+⎪⎩≤,并写出它的所有整数解.21.(本题满分8分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图. (1)本次抽测的男生有________人,抽测成绩的众数是_________; (2)请你将图2中的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?22.(本题满分8分)扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项. (1)每位考生有__________种选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种主案用A B C 、、、…或①、②、③、…等符号来代表可简化解答过程)23.(本题满分10分)已知:如图,锐角ABC △的两条高BD CE 、相交于点O ,且OB OC =. (1)求证:ABC △是等腰三角形;(2)判断点O 是否在BAC ∠的角平分线上,并说明理由.4次20% 3次7次12% 5次 6次 图1抽测成绩/次 图2 AEDOB C24.(本题满分10分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A B 、两工程队先后接力....完成.A 工作队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲: 128x y x y +=⎧⎨+=⎩ 乙:128x y x y +=⎧⎪⎨+=⎪⎩根据甲、乙两名同学所列的方程组,请你分别指出未知数x y 、表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示________________,y 表示_______________; 乙:x 表示________________,y 表示_______________.(2)求A B 、两工程队分别整治河道多少米.(写出完整..的解答过程)25.(本题满分10分)如图是某品牌太阳能热火器的实物图和横断面示意图,已知真空集热管AB 与支架CD 所在直线相交于水箱横断面O ⊙的圆心O ,支架CD 与水平面AE 垂直,150AB =厘米,30BAC ∠=°,另一根辅助支架76DE =厘米,60CED ∠=°. (1)求垂直支架CD 的长度;(结果保留根号)(2)求水箱半径OD 的长度.(结果保留三个有效数字,参考数据:2 1.413 1.73≈,≈)26.(本题满分10分)已知:如图,在Rt ABC △中,90C BAC ∠=∠°,的角平分线AD 交BC 边于D .(1)以AB 边上一点O 为圆心,过A D 、两点作O ⊙(不写作法,保留作图痕迹),再判断直线BC 与O ⊙的位置关系,并说明理由;(2)若(1)中的O ⊙与AB 边的另一个交点为E ,623AB BD ==,,求线段BD BE 、与劣弧DE 所围成的图形面积.(结果保留根号和π)O D B A CEACDB27.(本题满分12分)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题: (1)图2中折线ABC 表示________槽中水的深度与注水时间的关系,线段DE 表示_______槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是________________________________;(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)28.(本题满分12分)在ABC △中,90BAC AB AC M ∠=<°,,是BC 边的中点,MN BC ⊥交AC 于点N .动点P 从点B 出发沿射线BA同时,动点Q 从点N 出发沿射线NC 运动,且始终保持MQ MP ⊥.设运动时间为t 秒(0t >). (1)PBM △与QNM △相似吗?以图1为例说明理由;(2)若60ABC AB ∠==°, ①求动点Q 的运动速度;②设APQ △的面积为S (平方厘米),求S 与t 的函数关系式;(3)探求22BP PQ CQ 2、、三者之间的数量关系,以图1为例说明理由.甲槽 乙槽图1 ABP NQC M ABCNM 图1图2(备用图)扬州市2011年初中毕业、升学统一考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8个小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 选项 B C D C A A B C二、填空题(本大题共有10小题,每小题3分,共30分)9.39.46210⨯ 1011.()22x x - 12.9 13.10514.25% 15.40 16.8 17.3- 18.39三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤)19.解:(1)原式=31122--=0. (2)原式=211x xx x +-· =()()111x x x x x ++-· =11x -. 20.解:解不等式(1),得2x <-, 解不等式(2),得5x -≥,∴原不等式组的解集为52x -<-≤. ∴它的所有整数解为:543---、、. 21.(1)50,5次. (2)(3)1614635025250++⨯=(人).答:该校350名九年级男生约有252人体能达标. 22.解:(1)4.(2)用A B C D 、、、代表四种选择方案.(其他表示方法也可) 解法一:用树状图分析如下:抽测成绩/次20 18018020解法二:用列表法分析如下: 小刚小明A BC D A (A ,A ) (A ,B ) (A ,C ) (A ,D ) B (B ,A ) (B ,B ) (B ,C ) (B ,D ) C (C ,A ) (C ,B ) (C ,C )(C ,D )D(D ,A )(D ,B )(D ,C ) (D ,D )∴P (小明与小刚选择同种方案)=41164=. 23.(1)证明:BD CE 、是ABC △的高,90BEC CDB ∴∠=∠=°.OB OC OBC OCB =∴∠=∠,.又BC 是公共边,()BEC CDB AAS ∴△≌△.ABC ACB ∴∠=∠.AB AC ∴=,即ABC △是等腰三角形. (2)解:点O 在BAC ∠的角平分线上. 理由如下:BEC CDB BD CE ∴=△≌△,. OB OC OD OE =∴=,.又OD AC OE AB ⊥,⊥,∴点O 在BAC ∠的角平分线上.24.(1)甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数; 乙:x 表示A 工程队整治河道的米数,y 表示B 工程队整治河道的米数.甲: 128x y x y +=⎧⎨+=⎩ 乙:128x y x y +=⎧⎪⎨+=⎪⎩(2)解:设A B 、两工程队分别整治河道x 米和y 米,由题意得:18020128x y x y+=⎧⎪⎨+=⎪⎩ A B C D A A B C DBA B C DC A B C DD 开始小明小刚解方程组得:60120x y =⎧⎨=⎩答:A B 、两工程队分别整治了60米和120米.25.解:(1)在Rt CDE △中,6076cm CED DE ∠==°,,sin 60CD DE ∴==·°.(2)设cm OD OB x ==, 在Rt AOC △中,30A ∠=°,2OA OC ∴=,即(1502x x +=+.解得150x =- 18.5≈∴水箱半径OD 的长度为18.5cm .26.解:(1)作图正确(需保留线段AD 中垂线的痕迹). 直线BC 与O ⊙相切. 理由如下: 连结OD ,OA OD =,OAD ODA ∴∠=∠.AD 平分BAC ∠,OAD DAC ∴∠=∠. ODA DAC ∴∠=∠.OD AC ∴∥. 9090C ODB ∠=∴∠=°,°,即OD BC ⊥.又直线BC 过半径OD 的外端,BC ∴为O ⊙的切线.(2)设OA OD r ==,在Rt BDO △中,222OD BD OB +=,(()226r r ∴+=-2,解得2r =.tan 60BDBOD BOD OD∠==∴∠=°.260π22π3603ODE S ∴=扇形·=.∴所求图形面积为2π3BOD ODE S S -△扇形=.27.解:(1)乙,甲,铁块的高度为14cm (或乙槽中水的深度达到14cm 时刚好淹没铁块,说出大意即可)(2)设线段DE 的函数关系式为11y k x b =+,则D B1116012k b b ⎧+=⎪⎨=⎪⎩,,∴11212k b ⎧=-⎪⎨=⎪⎩,.DE ∴的函数关系式为212y x =-+. 设线段AB 的函数关系式为22y k x b =+,则22241412k b b ⎧+=⎪⎨=⎪⎩,,∴2232k b ⎧=⎪⎨=⎪⎩,. ∴AB 的函数关系式为32y x =+.由题意得21232y x y x =-+⎧⎨=+⎩,解得28x y =⎧⎨=⎩.∴注水2分钟时,甲、乙两水槽中水的深度相同.(3水由甲槽匀速注入乙槽,∴乙槽前4分钟注入水的体积是后2分钟的2倍. 设乙槽底面积与铁块底面积之差为S ,则()()1422361914S -=⨯⨯-,解得230cm S =. ∴铁块底面积为236306cm -=. ∴铁块的体积为361484cm ⨯=.(4)甲槽底面积为260cm .铁块的体积为3112cm ,∴铁块底面积为2112148cm ÷=. 设甲槽底面积为2cm s ,则注水的速度为3122c ‎m /min 6ss =‍.由题意得()2642481914142s s ⨯-⨯-=--,解得60s =.∴甲槽底面积为260cm .28.解:(1)PBM QNM △≌△. 理由如下: 如图1,MQ MP MN BC ⊥⊥,,∴9090PMB PMN QMN PMN ∠+∠=∠+∠=°,°, ∴PMB QMN ∠=.9090PBM C QNM C ∠+∠=∠+∠=°,°,∴PBM QNM ∠=∠.∴PBM QNM △∽△.(2)9060283BAC ABC BC AB ∠=∠=∴==°,°,cm . 又MN 垂直平分BC ,43BM CM ∴==cm .3303C MN CM ∠=∴=°,=4cm . ①设Q 点的运动速度为v cm/s .如图1,当04t <<时,由(1)知PBM QNM △≌△.NQ MNBP MB ∴=,即4133vt v t =∴=,. 如图2,易知当4t ≥时,1v =. 综上所述,Q 点运动速度为1 cm/s . ②1284cm AN AC NC =-=-=,∴如图1,当04t <<时,4334AP t AQ t =-=+,. ∴12S AP =()()21343348322AQ t t t =-+=-+·. 如图2,当t ≥4时,343AP t =-,4AQ t =+,∴12S AP =()()21334348322AQ t t t =-+=-·. 综上所述,()()2238304238342t t S t t ⎧-+<<⎪⎪=⎨⎪-⎪⎩≥(3)222PQ BP CQ =+. 理由如下:如图1,延长QM 至D ,使MD MQ =,连结BD 、PD .BC 、DQ 互相平分,∴四边形BDCQ 是平行四边形,∴BD CQ ∥. 90BAC ∠=°,∴90PBD ∠=°,∴22222PD BP BD BP CQ =+=+.PM 垂直平分DQ ,∴PQ PD =.∴222PQ BP CQ =+.。

扬州市2011年初中毕业升学统一考试数学试卷

扬州市2011年初中毕业升学统一考试数学试卷

扬州市2011年初中毕业升学统一考试数学试卷一、 选择题(每小题3分,共24分)1.-21的相反数是( ) A.2 B.21 C.-2 D.-21 2.下列计算正确的是( )A. 2a 3a =6aB.(a +b )(a -2b )=2a -22bC. ()6223b a ab = D.5a -2a =33.下列调查,适合用普查方式的是( )A.了解一批炮弹的杀伤半径B.了解扬州电视台《关注》栏目的收视率C.了解长江中鱼的种类D.了解某班学生对“扬州精神”的知晓率4.已知相交两圆的半径分别为4和7,则它们的圆心距可能是( ) A.2 B.3 C.6 D.115.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的主视图是( )6.某反比例函数图象经过点(-1,6),则下列各点中此函数图象也经过的点是( ) A.(―3,2)B.(3,2)C.(2,3)D.(6,1) 7.已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( ) A.1个 B.2个 C.3个 D.4个 8.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC 绕点C 按顺时针方向旋转n 度后得到△EDC ,此时点D 在边AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ) A.30,2 B.60,2 C. 60,23D.60,3 二、填空题(每小题3分,共30分)9.“十一五”期间,我市农民收入稳步提高,2010年农民人均纯收 入达到9462元.将数据9462用科学技术法表示为 . 10计算:28-= .11.因式分解:x x x 4423+- = .12.数学老师布置10道选择题作业,批阅后得到如下统计表.名同学答对题数组成的样本的中位数是 题. 321EBA 第5题图C D 第13题图13.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB=°.14.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是 . 15.如图,⊙O 的弦CD 与直径AB 相交,若∠BAD=50°,则∠ACD= °.16.如图,DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,MN=6,则BC= .17.如图,已知函数xy 3-=与bx ax y +=2(a >0,b >0)的图像交于点P ,点P 的纵坐标为1,则关于x的方程032=++xbx ax 的解为 . 18.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为 .三、解答题(本大题共有10个小题,共96分)19.(本题满分8分) 计算:(1)()()3024201123-÷+---;(2)x x x 1112-÷⎪⎭⎫ ⎝⎛+.20.(本题满分8分)13+x <x -3解不等式组 并写出它的所有整数解.21x +≤1321++x21.(本题满分8分)DB A N M E DC B A547第15题图 第16题图 第17题图 第18题图为了解某校九年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图①和图②两幅尚不完整的统计图.(1)本次抽测的男生有 人,抽测成绩的众数是 ; (2)请你将图②的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人能达标?22.(本题满分8分)扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项. (1)每位考生有 种选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率(友情提醒:各种方案用A 、B 、C 、…或①、②、③、…等符号代表可简化解答过程)23.(本题满分10分)已知:如图,锐角△ABC 的两条高BD 、CE 相交于点O ,且OB=OC. (1) 求证:△ABC 是等腰三角形; (2) 判断点O 是否在∠BAC 的角平分线上,并说明理由.24.(本题满分10分)5次4次20%3次7次12%6次/次016O E D C B A 第21题图图①图②第23题图古运河是扬州的母亲河.为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两工程队先后接力完成.A 工程队每天整治12米,B 工程队每天整治8米,共用时20天. (1) 根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:x+y =x +y = 甲: 乙: 12x +8y =812yx +根据甲、乙两名同学所列的方程组,请你分别指出未知数x 、y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示 ,y 表示 ; 乙:x 表示 ,y 表示(2)求A 、B 两工程队分别整治河道多少米.(写出完整的解答过程)25.(本题满分10分)如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB 与支架CD 所在直线相交于水箱横断面⊙O 的圆心O ,支架CD 与水平面AE 垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°. (1)求垂直支架CD 的长度;(结果保留根号) (2)求水箱半径OD 的长度.(结果保留三个有效数字,参考数据:2≈1.41,3≈1.73)26.(本题满分10分)已知:如图,在Rt △ABC 中,∠C=90°,∠BAC 的平分线AD 交BC 边于点D. (1) 以AB 边上一点O 为圆心,过A 、D 两点作⊙O (不写作法,保留作图痕迹),再判断直线BC 与⊙O 的位置关系,并说明理由; (2)若(1)中的⊙O 与AB 边的另一个交点为E ,AB=6,BD= 32,求线段BD 、BE 与劣弧DE 所围成的图形面积.(结果保留根号和π)E ODC B A 第25题图DC BA27.(本题满分12分) 如图①是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图②所示.根据图像提供的信息,解答下列问题: (1)图②中折线ABC 表示 槽中水的深度与注水时间之间的关系,线段DE 表示 槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是 ; (2)注水多长时间时,甲、乙两个水槽中水的深度相同? (3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)28.(本题满分12分) 在△ABC 中,∠BAC=90°,AB <AC,M 是BC 边的中点,MN ⊥BC 交AC 于点N.动点P 从点B 出发沿射线BA 以每秒3 厘米的速度运动.同时,动点Q 从点N 出发沿射线NC 运动,且始终保持MQ ⊥MP.设运动时间为t 秒(t >0).(1) △PBM 与△QNM 相似吗?以图①为例说明理由; (2) 若∠ABC=60°,AB=34厘米.① 求动点Q 的运动速度; ② 设△APQ 的面积为S (平方厘米),求S 与t 的函数关系式; (3)探求BP 2、PQ 2、CQ 2三者之间的数量关系,以图①为例说明理由.Q P N M C B A NM C B A乙槽甲槽第26题图图①图① 图②(备用图)第28题图。

2011年江苏省扬州市中考数学试题答案

2011年江苏省扬州市中考数学试题答案

精品文档扬州市2011年初中毕业、升学统一考试数学试题参考答案及评分建议说明:本评分标推每聴给出了一种或凡种解法供參考,如果考生的解法与本僻答不同,套照本评分标嚨的精抻削情绐分.题号12345&78选顼B C •D CGi■ ■• A A B C二、壇空题(本大踴共有10小題,毎小風3分,共30分)9. 9.462X10’10. 曇 1L 工《工一2尸12, 9 13. 10514. 25% 15. 40 16. 8 17, —3 18. 39三、解答题(本大题共有10小题,共©6分.解答时应写出必要的文字说明、证明过程或演算步麗)' 'F:_.19.解丄1)原式="|—1—宀.... .. ... +……件…’......................... 3分=0. ........ ...................... .. ................. ... .................... .. ...... .. ....... .................. 4分(幻琅式土爭.片J ........................................................................................................ 2分....... . .......................................3分JT ................. 1)工〜】僅二轩,,詳二标. 土.*宀.2G解:解不等式—幻........................................................解不等式(2).得工2-5* ............................. ..............................................................二原不等式组的解集为一5〈工<一2, .. ....... ..........................................................丄它的所有整牧解为:一5、一4,-3. ...... ..................................................................21* (1)50,5 次.(毎空2 分)... .. . *+….1山一+ .................... .⑵X350-252(Ak答'诙校350名九年级男生中妁有252人体能达标.数学答案第1页(共5页〉-分分分分分A24k 53 4t精品文档小刚 小明、\A E C D A (A,A) (A r B) (A f C) (A.D)B (B.A) <B,B) <BX> CR,D>C VGA) <C,B> (CX) (C,D> D(D,A)S,B) <DX)CD,D).,v *■:"■ ... ........... .6"5、明与小刖选择同种片案)=盘=土 ................................$分 23, (1)证明:7BDXE 是△ABC 的高,f.ZB£C=ZCDB"90D . ................. ............................................................................ 1 分、OKOC, £QBC= /OCR .................................... ..................................................... 2 分 X7BC 是公共边A BECS3 A CDB( A AS) ... .............................................................................. 3 分二"BC=/ACB. .......................... ... ........................................................ .. ............... 4 分 :.AB=AC,即ZkABC 是等胰三角形. ................................. 5分(幻舞:点0在NEAC 的角平分錯上 .......................................... 6分理由如下:’ .■*:*BEC^CDB,,,.m )=CE.... ................................................................... 7 分VOZJ-OC :.OD=QE. ............................................................. ..................... .. ......... , 8分 X VOD1AC, Q£±AB.二点0在£ BAC 的伟平分线上,数学答案第2页(共5页)££□解;(154 ....... ......... ..... ........................ .............. ................ . ....... g 分⑵用A.B,C.D 代衷四种选择方案.(其他表示方法也可).勰法一 1用甜状图分析如下:小明小刖解法二:用列表法分析如下:10分精品文档24.(1)甲&表示A 工程队工作的天败表示月工程队工作頤关数..............乙ti表时工寇队霆治河道的米数,*表示B逢乱義治河道的次数一产+,= 201.x+y^r^60 ]1庇+电=厂面^ •呈+专.厂瓦一|《每个方程组填写正确给1分)...............(2)解:设A、B两工程队分别整治河道工米和y米.上+了=1明世专=釦答,A、B两工程队分别整治了60米和]20米. ............................... 】0分说明;第題若选择甲占程组,股、列得1分‘解方程組正确得t分,得到A工程队和8工程队分别盤治的衆数得L分,作答1分.25.解:(1)在RtMDE中,ZCED= 60?, DE=76cm,t\CD^DE- sinfiO*=3BV3em. .............................................................................. 3 分⑵设OD=OB=Hem, ....................................... * ..................... * ............. * ................... 4 分在RtAAOc 中,£A・acr,.♦.QA = ZOC.即眺0+H=家H+38有L ..................................................................... 7 分解得工=15。

江苏扬州中考数学试题解析版.doc

江苏扬州中考数学试题解析版.doc

江苏省扬州市2011年初中毕业、升学统一考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分.)1.12-的相反数是( ) A .2 B .12 C .2- D .12-【答案】B .【考点】相反数。

【分析】利用绝对值的定义,直接得出结果。

2.下列计算正确的是( )A .236a a a =· B .()()2222ab a b a b +-=-C .()2326aba b = D .523a a -=【答案】C .【考点】积的乘方和幂的乘方运算法则。

【分析】利用积的乘方和幂的乘方运算法则,直接得出结果。

3.下列调查,适合用普查方式的是( )A .了解一批炮弹的杀伤半径B .了解扬州电视台《关注》栏目的收视率C .了解长江中鱼的种类D .了解某班学生对“扬州精神”的知晓率 【答案】D .【考点】普查方式的适用。

【分析】根据普查方式的适用范围,直接得出结果。

4.已知相交两圆的半径分别为4和7,则它们的圆心距可能是( ) A .2 B .3 C .6 D .11 【答案】C .【考点】两圆的位置与圆心距的关系。

【分析】根据两圆的位置与圆心距的关系知,相交两圆的圆心距在两圆的半径的差跟和之间,从而所求圆心距在3和11 之间,因此得出结果。

5.如图是由几个小立方块所塔成的几何的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的主视图是( ) 错误!未指定书签。

【答案】A .【考点】三视图。

【分析】根据三视图的原理,从俯视图看,主视图的左部分是两个小立方块,右部分是三个小立方块,从而得出结果。

6.某反比例函数图象经过点()16-,,则下列各点中此函数图象也经过的点是( ) A .()32-, B .()32, C .()23, D .()61, 【答案】A .【考点】待定系数法,反比例函数。

【分析】根据反比例函数的表达式,设为=ky x,把()16-,代入可得=6k -,从而得出6=-y x,因此知()32-,在6=-y x上。

扬州市中考试题目及word答案word版制图

扬州市中考试题目及word答案word版制图

扬州市中考试题目及word答案word版制图13 2 2011年扬州市中考数学试题一、选择题1.12-的相反数是( ) A .2B .12C .2-D .12-2.下列计算正确的是( ) A .236a a a = B .22()(2)2a b a b a b +-=-C .3226()ab a b =D .523a a -=3.下列调查,适合用普查方式的是( )A .了解一批炮弹的杀伤半径 B .了解扬州电视台《关注》栏目的收视率C .了解长江中鱼的种类D .了解某班学生对“扬州精神”的知晓率4.已知相交两圆的半径分别为4和7,则它们的圆心距可能是( ) A .2 B .3 C .6D .115.如图是由几个小立方块所塔成的几何的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的主视图是( )(第5A .B .C .D .AD(第8F6.某反比例函数图象经过点(-1,6),则下列各点中此函数图象也经过的点是( )A .(-3,2) B .(3,2) C .(2,3)D .(6,1)7.已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( )A .1个B .2个C .3个D .4个8.如图,在Rt △ABC 中,∠ACB =90︒,∠A =30︒,BC =2.将△ABC 绕点C按顺时针方向旋转n 度后得到△EDC ,此时点D 在AB边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ) A .302, B .602,C .360,D .603,二、填空题9.“十一五”期间,我市农民收入稳步提高,2010年农民人均纯收入达到9462元,将数据9462用科学记数法表示为__________.10.计算82=__________.11.因式分解:3244x x x -+=__________.12.数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是__________题. 答对题数 7 8 9 10 人数 44816713.如图,C 岛在A 岛的北偏东60︒方向,在B 岛的北偏西45︒方向,则从C岛看A、B 两岛的视角∠ACB =__________°.14.某公司4月份的利润为160万元,要使6月份的利润达到250万BC北 北(第1360° 45°CBA O(第15(第16ABCD E M N元,则平均每月增长的百分率是__________.15.如图,O ⊙的弦CD 与直径AB 相交,若∠BAD =50︒,则∠ACD=_______°.16.如图,DE 是△ABC 的中位数,M 、N 分别是BD、CE 的中点,MN =6,则BC =__________.17.如图,已知函数3y x=-与2(00)y ax bx a b =+>>,的图象交于点P ,点P 的纵坐标为1,则关于x 的方程230ax bx x++=的解为__________.18.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为__________. 三、解答题19.计算:(1)()()0332011422---+÷- (2)2111x x x -⎛⎫+÷⎪⎝⎭O Pxy 1(第17(第1845720.解不等式组313112123x xx x+-⎧⎪++⎨+⎪⎩<≤,并写出它的所有整数解.21.为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有________人,抽测成绩的众数是_________;(2)请你将图2中的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?22.扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项. (1)每位考生有__________种选择方案; (2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种主案用A B C 、、、…或①、②、③、…等符号来代表可简化解答过程)4次20%37次56图1 图2人数26 10 14 164 10 146抽测成435672023.已知:如图,锐角△ABC 的两条高BD、CE 相交于点O,且OB OC .(1)求证:△ABC 是等腰三角形;(2)判断点O是否在∠BAC 的角平分线上,并说明理由.OEDCB A24.古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两工程队先后接力....完成.A 工作队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:128x y x y +=⎧+=:128x y x y+=⎧⎪⎨+=⎪⎩根据甲、乙两名同学所列的方程组,请你分别指出未知数x 、y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示____________________,y 表示____________________;乙:x 表示____________________,y 表示____________________.(2)求A 、B 两工程队分别整治河道多少米.(写出完整..的解答过程)25.如图是某品牌太阳能热火器横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面O ⊙的圆心O ,支架CD 与水平线AE 垂直,AB =150厘米,∠BAC =30︒,另一根辅助支架DE=76厘米,CED=60︒.(1)求垂直支架CD 的长度;(结果保留根号)O DB(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据2≈1.4131.73)26.已知:如图,在Rt△ABC中,∠C=90 ,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作O⊙(不写作法,保留作图痕迹),再判断直线BCA与O⊙的位置关系,并说明理由;C D B(2)若(1)中的O⊙与AB边的另一个交点为E,AB =6,23BD求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)27.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示__________槽中水的深度与注水时间的关系,线段DE表示__________槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B的纵坐标表示的实际意义是______________________________;甲乙图x (分y (厘ABC ED11124 6 图(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)28.在△ABC中,∠BAC=90 ,AB<AC,M是BC边的中点,MNAN QP⊥BC 交AC于点N .动点P 从点B 出发沿射线BA以3.同时,动点Q 从点N 出发沿射线N 运动,且始终保持MQ⊥MP 运动时间为t秒(t >0).(1)△PBM 与△QNM 相似吗?以图1为例说明理由;(2)若∠ABC =60 ,AB =43厘米.①求动点Q 的运动速度;②设△APQ 的面积为S (平方厘米),求S 与t的函数关系式;ABCMN图2(备(3)探求22BP PQ CQ 2、、三者之间的数量关系,以图1为例说明理由.2011年扬州市初中毕业、升学统一考试数学试题参考答案一、选择题题号 1 2 3 4 5 6 7 8 选项 BC D C A A B C二、填空题9.39.46210⨯10211.()22x x -12.913.10514.25%15.4016.817.3-18.39三、解答题19.解:(1)原式=31122--=0. (2)原式=211x xx x +- =1(1)(1)x xx x x ++- =11x -. 20.解:解不等式(1),得x <-2,解不等式(2),得5x -≥, ∴原不等式组的解集为52x --≤<. ∴它的所有整数解为:-5、-4、-3.21.(1)50,5次. (2)(3)1614635025250++⨯=(人).图2人数26 10 14 16 410146抽测成4356720 16答:该校350名九年级男生约有252人体能达标.22.解:(1)4.(2)用A 、B 、C 、D 代表四种选择方案.(其他表示方法也可)解法一:用树状图分析如下:解法二:用列表法分析如下: 小刚 小明ABCDA(A ,A) (A ,B) (A ,C) (A ,D) B(B ,A) (B ,B) (B ,C) (B ,D) C(C ,A)(C ,B)(C ,C)(C ,D)D(D ,(D ,(D ,(D ,小小B C DA B C DA B C DA B C DA B C D 开A) B) C) D)∴P(小明与小刚选择同种方案)=41=.16423.(1)证明:BD、CE是△ABC的高,∴∠BEC=∠CDB=90︒.∵OB=OC,∴∠OBC=∠OC B.又∵BC是公共边,∴△BEC≌△CDB(AAS).∴∠ABC=∠AC B.∴AB=AC,即△ABC是等腰三角形.(2)解:点O在∠BAC的角平分线上.理由如下:∵△BEC≌△CDB,BD=CE.∵OB=OC,∴OD=OE.又∵OD⊥AC,OE⊥AB∴点O在∠BAC的角平分线上.24.(1)甲:x表示A工程队工作的天数,y表示B工程队工作的天数;乙:x表示A工程队整治河道的米数,y 表示B工程队整治河道的米数.甲:20180128x y x y +=⎧⎨+=⎩ 乙:12180208x y x y+=⎧⎪⎨+=⎪⎩(2)解:设A 、B 两工程队分别整治河道x米和y 米,由题意得:18020128x y x y+=⎧⎪⎨+=⎪⎩解方程组得:60120x y =⎧⎨=⎩答:A 、B 两工程队分别整治了60米和120米.25.解:(1)在Rt △CDE 中,∠CED =60︒,DE =76cm ,sin 60383cm CD DE ==∴°.(2)设OD =OB =x cm ,在Rt △AOC 中,∠A =90︒, ∴OA =2OC ,即1502(383)x x +=+.解得x =150-3≈18.5∴水箱半径OD 的长度为18.5cm .26.解:(1)作图正确(需保留线段AD 中垂线的痕迹).直线BC 与O ⊙相切. 理由如下: 连结OD ,∵OA =OD ,∴∠OAD =ODA ∠. ∵AD 平分∠BAC , OAD DAC ∠=∠∴. ODA DAC ∠=∠∴.OD AC∴∥∵∠C =90︒,∴∠ODB =90︒, 即OD ⊥BC .又∵直线BC 过半径OD 的外端,∴BC为O ⊙的切线.(2)设OA =OD =r ,在Rt △BDO中,222ODBD OB +=,(()22236r r +=-2∴,解得r =2.tan 360BDBOD BOD OD∠==∠=∴,°.260π22π3603ODE S =扇形∴=.A O E∴所求图形面积为223π3BOD ODE S S -△扇形=. 27.解:(1)乙,甲,铁块的高度为14cm (或乙槽中水的深度达到14cm 时刚好淹没铁块,说出大意即可)(2)设线段DE 的函数关系式为11y k x b =+,则1116012k b b ⎧+=⎪⎨=⎪⎩,,∴11212k b ⎧=-⎪⎨=⎪⎩,.∴DE 的函数关系式为y =-2x +12. 设线段AB 的函数关系式为22y k x b =+,则22241412k b b ⎧+=⎪⎨=⎪⎩,,∴2232kb ⎧=⎪⎨=⎪⎩,.∴AB 的函数关系式为32y x =+.由题意得21232y x y x =-+⎧⎨=+⎩,解得28x y =⎧⎨=⎩. ∴注水2分钟时,甲、乙两水槽中水的深度相同.(3)∵水由甲槽匀速注入乙槽,∴乙槽前4分钟注入水的体积是后2分钟的2倍.设乙槽底面积与铁块底面积之差为S ,则(14-2)S =2×36×(19-14),解得S=30cm 2∴铁块底面积为36-30=6cm 2. ∴铁块的体积为6×14=84cm 3 (4)甲槽底面积为60cm 2∵铁块的体积为112cm 3,∴铁块底面积为112÷14=8cm 2.设甲槽底面积为s cm 2,则注水的速度为3122c ‎m/min 6ss =‍.由题意得2(64)2481914142s s ⨯-⨯-=--,解得s =60.∴甲槽底面积为60cm 2.28.解:(1)△PBM ≌△QNM .理由如下:如图1,∵MQ ⊥MP ,MN ⊥BC , ∴∠PMB +∠PMN =90︒,∠QMN +∠PMN=90︒,∴∠PMB =∠QMN .∴∠PBM +∠PMN =90︒,∠QNM +∠PMN=90︒,∴∠PBM =∠QNM .∴△PBM ≌△QNM .(2)∵∠BAC =90︒,∠ABC =90︒,∴BC =2AB=83.又∵MN 垂直平分BC ,∴BM =CM =3.∵∠C =30°,∴MN 3=4cm .①设Q 点的运动速度为v cm /s . 如图1,当0<t <4时,由(1)知△PBM ≌△QNM .NQ MNBP MB=∴,133v t ==∴.如图2,易知当4t ≥时,v =1. 综上所述,Q 点运动速度为1cm /s.②AN=AC -NC =12-8=4cm ,∴如图1,当0<t <4时,AP =33t,AQ =4+t .∴2113(433)(4)8322S AP AQ t t t ==-+=-+.如图2,当t ≥4时,AP =343t -,AQ =4+t ,∴2113(343)(4)8322S AP AQ t t t ==-+=-.综上所述,22383043834t t S t t ⎧-+⎪⎪=⎨⎪-⎪<<≥()()(3)222PQBP CQ =+理由如下:如图,延长QM 至D ,使MD =MQ ,连结BD 、PD∵BC 、DQ 互相平分,∴四边形BDCQ是平行四边形,∴BD CQ ∥.∵∠BAC =90︒,∴∠PBD =90︒,∴22222PD BP BD BP CQ =+=+.ABCMN图2(备P QABCMN 图QP D∵PM垂直平分DQ,∴PQ=P D.∴222=+.PQ BP CQ。

江苏扬州中考数学试题解析版.doc

江苏扬州中考数学试题解析版.doc

江苏省扬州市2011年初中毕业、升学统一考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分.)1.12-的相反数是( ) A .2 B .12 C .2- D .12-【答案】B .【考点】相反数。

【分析】利用绝对值的定义,直接得出结果。

2.下列计算正确的是( )A .236a a a =· B .()()2222ab a b a b +-=-C .()2326aba b = D .523a a -=【答案】C .【考点】积的乘方和幂的乘方运算法则。

【分析】利用积的乘方和幂的乘方运算法则,直接得出结果。

3.下列调查,适合用普查方式的是( )A .了解一批炮弹的杀伤半径B .了解扬州电视台《关注》栏目的收视率C .了解长江中鱼的种类D .了解某班学生对“扬州精神”的知晓率 【答案】D .【考点】普查方式的适用。

【分析】根据普查方式的适用范围,直接得出结果。

4.已知相交两圆的半径分别为4和7,则它们的圆心距可能是( ) A .2 B .3 C .6 D .11 【答案】C .【考点】两圆的位置与圆心距的关系。

【分析】根据两圆的位置与圆心距的关系知,相交两圆的圆心距在两圆的半径的差跟和之间,从而所求圆心距在3和11 之间,因此得出结果。

5.如图是由几个小立方块所塔成的几何的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的主视图是( ) 错误!未指定书签。

【答案】A .【考点】三视图。

【分析】根据三视图的原理,从俯视图看,主视图的左部分是两个小立方块,右部分是三个小立方块,从而得出结果。

6.某反比例函数图象经过点()16-,,则下列各点中此函数图象也经过的点是( ) A .()32-, B .()32, C .()23, D .()61, 【答案】A .【考点】待定系数法,反比例函数。

【分析】根据反比例函数的表达式,设为=ky x,把()16-,代入可得=6k -,从而得出6=-y x,因此知()32-,在6=-y x上。

江苏扬州中考数学试题解析版.doc

江苏扬州中考数学试题解析版.doc

【答案】( 1)证明: BD、CE 是 △ ABC 的高,
BEC CDB 90°.
OB OC, OBC OCB.
又 BC 是公共边,
△ BEC ≌△ CDB AAS .
A B C A C.B
AB AC,即 △ ABC 是等腰三角形.
( 2)解:点 O 在 BAC 的角平分线上.理由如下:
△BEC ≌△ CDB, BD CE. O B O ,C O D .O E 又 OD ⊥ AC,OE ⊥ AB, 点 O 在 BAC 的角平分线上.
x
P ,点 P 的
【考点】 点在函数图象上坐标满足方程,函数与方程的关系。
【分析】 先把 1 代入 y
3
求出点
P 的横坐标为
-3。而关于
x 的方程
ax 2
bx
3
0 的解就是函数
x
x
y
3 与y
ax2
bx a
0, b
0 的图象交点的横坐标
-3。
x
18.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,
4
18
16
7
【答案】 9。 【考点】 中位数。 【分析】 利用中位数的定义,直接得出结果 .需要注意的是中位数是将一组数据按从小到大(或从大到小) 的顺序依次排列,处在中间位置的一个数或最中间两个数据的平均数。
这 45名学生答对题数组成的样本的中位数对应第 23人答对的题数 9。 7, 7, 7, 7 , 8 ,8 ,…, 8 , 9 , 9,…, 9, 10 , 10 ,…, 10
积分别为(

A . 30, 2
B. 60, 2
C. 60, 3 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考答案 1.
2.
3.
4.
5.
6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
19.
20.
21. 22.
23. 24. 25.
26.
27.
(1) 图2中折线ABC表示槽中水的深度与注水时间之间的关系,线段DE表示槽中水的深度与注水时间之间的关系( 以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是;
(2) 注水多长时间时,甲、乙两个水槽中水的深度相同; (3) 若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积; (4) 若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果)
(2)

19. 解不等式组
,并写出它的所有整数解.
20. 为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成 图1和图2两幅尚不完整的统计图.
(1) 本次抽测的男生有人,抽测成绩的众数是; (2) 请你将图2的统计图补充完整; (3) 若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标? 21. 扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分
16. 如图,已知函数y= =0的解为________.
与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+
17. 如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等.则这六个数的和为________.
三、解答题
18. 计算: (1) |﹣ |﹣(﹣2011)0+4÷(﹣2)3
钟跳绳(二选一)中选择两项.
(1) 毎位考生有种选择方案; (2) 用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提酲:各种方案用A、B、C、…或①、② 、③、…等符号来代表可简化解答过程) 22. 已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.
(1) 求证:△ABC是等腰三角形; (2) 判断点O是否在∠BAC的角平分线上,并说明理由. 23. 古运河是扬州的母亲河.为打造古运河风光带,现有一段长为180米的河道整治任务由A、B两工程队先后接力完 成.A工程队每天整治12米,B工程队每天整治8米,共用时20天. (1) 根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:
7. 如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时 点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为( )
A . 30,2 B . 60,2 C . 60, D . 60,
二、填空题
8. “十一五”期间,我市农民收入稳步提高,2010年农民人均纯收人达到9462元.将数据9462用科学记数法表示为___ _____.
并说明理由;
(2) 若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2 ,求线段BD、BE与劣弧DE所围成的图形面积. (结果保留根号和π)
26. 如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在 乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如 图2所示.根据图象提供的信息,解答下列问题:
27. 在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N.动点P从点B出发沿射线BA以每 秒 厘米的速度运动.同时,动点Q从点N出发沿射线NC运动,且始终保持MQ丄MP.设运动时间为t秒(t>0).
(1) △PBM与△QNM相似吗?以图1为例说明理由; (2) 若∠ABC=60°,AB=4 厘米. ①求动点Q的运动速度; ②设△APQ的面积为S(平方厘米),求S与t的函数关系式.

5. 某反比例函数象经过点(﹣1,6),则下列各点中此函数图象也经过的是( ) A . (﹣3,2) B . (3,2) C . (2,3) D . (6,1) 6. 已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形
是菱形;④内错角相等.其中假命题有( ) A . 1个 B . 2个 C . 3个 D . 4个
甲:
;乙:
根据甲、乙两名问学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全甲、乙两名同学所列的
方程组:
甲:x表示,y表示;
乙:x表示,y表示.
(2) 求A、B两工程队分别整治河道多少米.(写出完整的解答过程) 24. 如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管与支架CD所在直线相交于水箱横断面⊙O 的圆心O,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.
13. 某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是________. 14. 如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=________
15. 如图,DE是△ABC的中位线,M、N分别是BD、CE的中点,MN=6,则BC=________.
9. 化简: ﹣ =________. 10. 因式分解:x3﹣4x2+4x=________. 11. 数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的 中位数是________题.
答对题数
7
8
9
10
人数
4
18
16
7
12. 如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则从C点看A、B两岛的视角∠ACB=________°.
江苏省扬州市2011年中考数学试卷
一、选择题
1. ﹣ 的相反数是( ) A . 2 B . C . ﹣2 D . ﹣ 2. 下列调査,适合用普査方式的是( ) A . 了解一批炮弹的杀伤半径 B . 了解扬州电视台《关注》栏目的收视率 C . 了解长江中鱼的种类 D . 了解某班学生对“扬州精神 ”的知晓率 3. 已知相交两圆的半径分別为4和7,则它们的圆心距可能是( ) A . 2 B . 3 C . 6 D . 11 4. 如图是由几个小立方块所搭成的几何体的俯视图,小正方形体的数字表示该位置小立方块的个数,则该几何体的主
(1) 求垂直支架CD的长度;(结果保留根号) (2) 求水箱半径OD的长度.(结果保留三个有效数字,参考数据: ≈1.414, 25. 已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
≈1.73)
(1) 以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,
相关文档
最新文档