H(三章2讲)算符本征函数系【优质PPT】
最新H(三章2讲)算符本征函数系

四、厄米算符的本征值与本征函数的相关定理:
1. 厄米算符的本征值为实数。
2. 在任何状态下平均值均为实数的算符必为厄米 算符。
3. 厄米算符属于不同本征值的本征函数正交。
4. 厄米算符的简并的本征函数可以经过重新组合 后使它正交归一化。
5. 厄米算符的本征函数系具有完备性。 6. 厄米算符的本征函数系具有封闭性。
取:1 1eia , 2 2eib,代入上式,有
ei(ba)[(ψ1,Aˆ ψ2 )-(Aˆ ψ1,ψ2 )]=ei(ba)[(ψ2,Aˆ ψ1)-(Aˆ ψ2,ψ1)]
a,
b
是任意实数,
(ψ1,Aˆ ψ2 (ψ2,Aˆ ψ1
)=(Aˆ ψ1,ψ2 )=(Aˆ ψ2,ψ1
) )
,
证毕
定理3 厄密算符的任意两属于不同本征值的本征函数正交.
定理1 厄密算符的本征值是实数
定理2 在任何状态下平均值均为实数的算符必为厄米算符
A的平均值是实数
A A*
(ψ,Aˆ ψ)=(Aˆ ψ,ψ)
令: 1 2 ((1 2 ),Aˆ (1 2 ))=(Aˆ (1 2 ),(1 2 ))
(ψ1,Aˆ ψ2 )+(ψ2,Aˆ ψ1)=(Aˆ ψ1,ψ2)+(Aˆ ψ2,ψ1)
em en mn
{e1, e2 , e3} 是一组完备的正交归一系(基组),
所以,空间上任意矢量都可以用这个基组展开,不再 需要添加其他任何基矢。坐标基组是完备的!
继续… cnn ckk ...
n
k
我们来看态函数的展开系数:
cn cmnm cm (n ,m ) (n , cmm )
2s
2px 2py 2pz
§3.1算符运算(讲稿)

第三章 力学量用算符表达§ 3.1 算符的运算规则 一、 运算规则二、 算符的对易关系三、 坐标、动量的对易关系 四、 角动量的对易关系 五、 算符的函数 § 3.2 厄米算符一、 本征值为实数 二、 本征函数正交三、 本征函数系构成完备集合 四、 简并五、 量子力学的基本假定 § 3.3 共同本征函数系 一、 不确定关系二、 两个力学量有共同本征函数系的条件 三、 力学量完全集四、 {zL L ˆ,ˆ2}的共同本征函数系第三章作业教材P132 ~ 133:3、7、11、12、16§ 3.1 算符的运算规则 一、运算规则ψ、Φ − 任意态矢量,1C 、2C − 任意复常数。
1、 线性算符ΦψΦψA C A C C C A ˆˆ)(ˆ2121+=+ 2、 算符相等B A B Aˆˆˆˆ=→=ψψ 3、 单位算符ψψ=Iˆ4、 算符之和ψψψB AB A ˆˆ)ˆˆ(+=+ 满足交换律A B B Aˆˆˆˆ+=+ 满足结合律C B A C B Aˆ)ˆˆ()ˆˆ(ˆ++=++ 5、 算符之积)ˆ(ˆ)ˆˆ(ψψB AB A = 依次作用于波函数。
满足结合律)ˆˆ(ˆˆ)ˆˆ(C B A C B A= 一般不满足交换律A B B Aˆˆˆˆ≠ 例如x x p x x pˆˆ≠ 因为)()]([)()ˆ()()()()ˆˆ(x dx d i x x p x x x dxd i x x p xxψψψψ -=≠-=幂运算n m n m n A A AA A A A+==ˆˆˆˆˆˆˆ[例题1] 证明任意算符与单位算符交换,即 A I I Aˆˆˆˆ=. 对于任意态ψψψψA I A I Aˆ)ˆ(ˆ ˆˆ== ψψψA A I A Iˆ)ˆ(ˆˆˆ== 所以A I I Aˆˆˆˆ=6、 逆算符若由 Φψ=A ˆ 能唯一地解出ψ,则可定义A ˆ 的逆算符 1ˆ-AΦψ1ˆ-=A. 性质:I A A A Aˆˆˆˆˆ11==-- 111ˆˆ)ˆˆ(---=A B B A因为I B B B I B B A A BI B A B Aˆˆˆˆˆˆˆˆˆˆ,ˆ)ˆˆ()ˆˆ(11111====-----7、 算符的复共轭Aˆ的复共轭*ˆA :将A ˆ的表达式中所有量换成其复共轭。
氢原子与类氢原子的波函数与能级省名师优质课赛课获奖课件市赛课一等奖课件

一.角动量算符
1.经典角动量旳定义:
Lrp
2.量子力学中旳角动量算符:
Lˆ
r
pˆ
ir
3.直角坐标系中角动量算符旳表达:
Lˆ
r
pˆ
i x
j y
k z
pˆ x pˆ y pˆ z
L=iLˆx
jLˆy
kLˆz
Lˆx
ypˆ z
zpˆ
y
i(
y
z
z
) y
Lˆy
zpˆ x
r
2drd
cos
0 1
p
2i 2a0
3/ 2
(e
i
pr
i
e
pr
r
)e a0
rdr
0
2a0 3/ 2 a02 p2 2
2
c
p
2
2
8a03 5 a02 p2 2
4
当氢原子处于基态时,电子动量旳大小在p→p+dp区间旳几
率为:
w( p)dp
c
p
2 4p2dp
且有:
32a035 p2dp
Y
( ,
)
1
sin 2
2Y ( ,) 2
Y ( ,)
②
二﹑方程旳解:
1﹑方程②就是角动量平方算符旳本征值方程。
Lˆ2
2
sin
sin
sin
2 2
2
2
Lˆ2Yl,m( ,) l(l 1)2Yl,m( ,)
l(l 1) l 0,1,2,3
2﹑方程①旳解: 把λ=l( l +1 )代入方程①可得:
第一讲算符及其本征值与本征函数

若 Aˆ ,Bˆ 0, 则 Aˆ ,Bˆ 不对易。
补充说明
• 算符相加满足交换律、结合律:
Aˆ Bˆ Bˆ Aˆ, Aˆ Bˆ Cˆ Aˆ Bˆ Cˆ
• 算符相乘不满足交换律:Aˆ Bˆ BˆAˆ
• 算符相乘满足结合律: AˆBˆ Cˆ Aˆ BˆCˆ
dydz
*1 (i
) 2 dx
x
dydz(i
) *1 2
2
*1
x
dx
dydz 0 2 (i
)
x
*1
dx
dydz 2 (i
) x
*
*1
dx
dydz 2Pˆx * *1 dx (Pˆx1) * 2d
• 即: 1 *Pˆx 2d (Pˆx1)* 2d
• 所以,Pˆx 的确是厄米算符。式中利用了:
在量子力学中出现的力学量,都有 与该力学量运算效果上等效的算符。
因此通过对比,我们可以归纳出下 列的几个等效关系:
Eˆ i
t
Tˆ
Uˆ
2
2 2m
U
(r
)
Hˆ ,T
2
2,Uˆ (r ) 2m
U (r )
Pˆ i i ( i j k ), Pˆ 2 22 x y z
Pˆx i
• 当解 Aˆ 的本征方程时,可能得出 Aˆ 的某一本征
值对应的不止一个是一个本征函数,而是f个线性 无关的本征函数,则称该本征值有f度简并,并且 属于该本征值的本征函数也有f个。 • 这时,当粒子处于该f个态中的任何一个,力学量 的值都是一样的。即:
Aˆm Ami i 1, 2,......, f
积分,并利用本征函数的正交性,得:
m* d
第3章概念1-算符、对易关系、不确定关系 ppt课件

1.坐标和动量
[,] 0 [pˆ, pˆ]0 [,p ˆ]i (,x,y,z)
2.角动量和坐标
[Lˆx , x] 0 [Lˆx, y]i z
[Lˆx,z]i y
即
[Lˆ,]i 或 [,Lˆ]i
3.角动量和动量
[Lˆx, pˆx] 0
[Lˆx, pˆy]i pˆz
即
[L ˆ,p ˆ]i p ˆ
22 r12rr2r2Lˆ2r2
pˆ
2 r
2
Lˆ2
2r2
径向动能算符 横向动能算符
其中径向动量算符 这是因为
pˆr
i r
1 r
p ˆr22r1 r r r2 2 r 2 r21 r r1 r r r2
2
2
r2
2 r
r
2
r2
r
r2
r
2
1 r
2 r2
(r
)
几个重要算符在球坐标系中的表示
1.算符的共轭
数: caib
cc*aib
矩阵: F ij
Fij Fj*i (即转置后取复共轭)
算符: 对任意的波函数 和1 ,2 的Aˆ 共轭 满足Aˆ
1 *A ˆ 2 d 2(A ˆ1 )*d
如 Aˆ c(复数),则
1 * c 2 d ( c1 ) *2 d1 * c *2 d
sinsin cossin
cosi sinj
e sin cos
0 k
3. 的Lˆ 本z 征解
Lˆz
i
d d
m
Aeim
由周期性条件
()(2) eim2 1 m 0 , 1 , 2 ,
本征值
m ( m 0 , 1 , 2 , )
力学量和算符

第三章 力学量和算符内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数 。
用波函数描述粒子的运动状态。
本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。
然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。
我们将证实算符的运动方程中含有对易子,出现 。
§ 3.1 力学量算符的引入 § 3.2 算符的运算规则§ 3.3 厄米算符的本征值和本征函数 § 3.4 连续谱本征函数§ 3.5 量子力学中力学量的测量 § 3.6 不确定关系 § 3.7 守恒与对称在量子力学中。
微观粒子的运动状态用波函数描述。
一旦给出了波函数,就确定了微观粒子的运动状态。
在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。
一般说来。
当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。
当给定描述这一运动状态的波函数 后,力学量出现各种可能值的相应的概率就完全确定。
利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。
既然一切力学量的平均值原则上可由 给出,而且这些平均值就是在 所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。
力学量的平均值对以波函数(,)r t ψ 描述的状态,按照波函数的统计解释,2(,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是:()2*(,)(,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞∞-∞-∞==⎰⎰坐标r 的函数()f r的平均值是:()()()*(,)(,) 3.1.2f r r t f r r t dr ψψ∞-∞=⎰现在讨论动量的平均值。
量子力学中 算符及其本征函数

论文题目:ˆL算符及其本征函数量子力学中2(理工类)ˆL算符及其本征函数1量子力学中2摘要角动量算符是量子力学中一个很重要的力学量,本论文分别对2ˆL的定义、意义、性质以及作用做了阐述,给出了2ˆL算符在球坐标系中的表示式,并用经典坐标变换以及对易关系进行了推导,2ˆL是描述旋转运动及原子分子状态的一个重要的物理量,因此对2ˆL 的研究将有助于理解量子力学中的诸多问题。
本论文将采取理论分析,并结合数学推导的方法,在掌握大量材料的基础上,作出自己的见解,把理论模型建立在合理的体系上,立足实际情况对它们进行深入的分析和研究。
关键词角动量算符;空间转子;角量子数;自旋The 2ˆL in the Quantum Mechanics and Its EigenfunctionAbstractAngular momentum operator is a very important mechanics in quantum mechanics ,this paper definite the definition, significance, as well as the nature of the2ˆL operator , and gives the expression of 2ˆL operator in spherical coordinates .And according with classic and easy to transform the relationship between the derivation. The 2ˆL operator is a very important mechanics which describe rotary movement and the state of Atomic and Molecular, so it will help to understand lots of questions of quantum mechanics. This paper will take theoretical analysis, and mathematical derivation of the method, the availability of large on the basis of material to make their own opinion, the theoretical model based on a reasonable system, based on the actual situation on their conduct in-depth analysis and research.Keywordsangular momentum operator;Spatial rotor;Azimuthal quantum number;Spinning1作者简介:王慧1986年10月出生,女汉族河南兰考人,郑州大学物理工程学院凝聚态物理专业硕士研究生一年级,主要研究方向为陶瓷功能材料。
(完整)曾谨言量子力学第3章ppt

例,若 Aˆ d dx
则
Aˆ n dn dx n
显然算符的乘幂满足: Aˆ mn Aˆ m Aˆ n
[Aˆ m, Aˆ n ] 0
两个任意量子态的标积: (ψ ,φ ) dτψ φ
对一维粒子
dτ
dx
对三维粒子 dτ dxdydz r2 sinθdrdθdφ
(ψ ,φ ) dτψ φ
φ arctan(y / x)
lˆx
isin φ
θ
cotθ cosφ
φ
lˆy
i cosφ
θ
cotθ
sin φ
φ
lˆz
i
φ
lˆ 2
2
1
sin θ
θ
sin θ
θ
1
sin 2 θ
2
φ
2
角动量的对易关系
Levi-Civita 符号
[lˆα , xβ ] εαβγ ixγ
εαβγ ε βαγ εαγβ
即 (Aˆ A)ψ 0
或写成 Aˆn Ann
( 3)
An称为算符A的本征值,ψn为相应的本征态, 方程(3)称为算符A的本征方程。
量子力学的测量公设:在任意态下测量力学量A时所有可能出现 的值,都相应于线性厄米算符A的本征值;当体系处于算符A的 本征态时,则每次测量所得的结果都是完全确定的,即An
~ 0 x x
练习 证明: (1) pˆ x pˆ x , (2) (Aˆ Bˆ)T BˆAˆ
(g)复共轭算符和厄米共轭算符 算符A 的复共轭算符A*定义为
Aˆψ (Aˆψ) (40)
通常算符A的复共轭算符A* 按如下方法求解: 把算符A中的 所有量都换成其复共轭。 如 pˆ (i) i pˆ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理4 属于同一本征值的多个简并本征函数 可经重组后变得正交归一化:
如果对于同一本征值有多个独立的本征函数
Aˆ ai a ai , (i 1, 2,3,..., f )
则称本征值a是f重简并的,称这种态叫简并态
例如:原子的px,py,pz三个轨道都有相同的本征能量,但是波函数 却是不同的,因此它们就是3重简并的。
xnen
坐标基矢正交归一:
em en mn
{e1, e2 , e3} 是一组完备的正交归一系(基组),
所以,空间上任意矢量都可以用这个基组展开,不再 需要添加其他任何基矢。坐标基组是完备的!
继续… cnn ckk ...
n
k
我们来看态函数的展开系数:
cn cmnm cm (n ,m ) (n , cmm )
m
m
m
(n , )
它是态矢量在相应本征函数上的投影!
cnn n
P xnen
数学理解:态函数就象矢量,本征函数就象基矢;态函数的展 开系数就是在相应基矢上的投影;所有的投影构成了态函数在 这组本征函数基组上的坐标;坐标构成的数集可以用来表示这 个态矢量
(c1, c2 , )
2s
2px 2py 2pz
这f个函数不一定彼此正交归一,但它们可以重新组合 成f个独立而且彼此正交归一的新函数,这些新函数依然 是本征值a的本征函数。
例
解:先找正交归一化函数
再来看它们是否简并
综合定理3和4
定理3 厄密算符的任意两个属于不同本征值的本征函数正交。 定理4 属于同一本征值的多个简并本征函数可经重组后正交。
我们可以认定厄密算符的本征函数是彼此正交归一的
即: 对于厄密算符A,本征方程如下,
Aˆ n an n ,
则:
m * nd mn
( m , n ) mn
定理5 厄密算符的本征函数系具有完备性,构成完备系.
完备性:任一态函数都可用任一力学量的本征函数系展开,不 再需要使用其他任何函数。
取:1 1eia , 2 2eib,代入上式,有
ei(ba)[(ψ1,Aˆ ψ2 )-(Aˆ ψ1,ψ2 )]=ei(ba)[(ψ2,Aˆ ψ1)-(Aˆ ψ2,ψ1)]
a,
b
是任意实数,
((ψψ12,,AAˆˆ ψψ21
)=(Aˆ ψ1,ψ2 )=(Aˆ ψ2,ψ1
四、厄米算符的本征值与本征函数的相关定理:
1. 厄米算符的本征值为实数。
2. 在任何状态下平均值均为实数的算符必为厄米 算符。
3. 厄米算符属于不同本征值的本征函数正交。
4. 厄米算符的简并的本征函数可以经过重新组合 后使它正交归一化。
5. 厄米算符的本征函数系具有完备性。 6. 厄米算符的本征函数系具有封闭性。
(, Aˆ ) (Aˆ , )
二、(厄密)算符对易式
0, 称 为 不 对 易
三、厄密算符的本征方程
定义:
Aˆ a
如上式,若厄密算符作用于一波函数,结果等于一个常数乘以 这个波函数,则称这个方程为厄密算符的本征方程。
并称a 是Aˆ 的本征值, 为属于a 的本征函数,
测量公设:在任意态下对力学量A进行测量,其测量值必是 相应于算符Aˆ 的本征值{an}之一 ;当体系处于算符A的某一本 征态 n 时,则每次测量值是完全确定的,即为an
本征连续谱:
* d 1
* 'd 0
定义: ( ') =1, ' 0, '
有:
* 'd
(
')
( , ') ( ')
正交归一系:
满足以上条件的一组本征函数 {ψn }或{ψλ } 构成正交归一系。
P (x1, x2 , x3 )
统计理解:展任开一,波展函开数系都数可| c在n |本2就征是函数处系于(本基征组态{nn}的)概上率
(n , )n cnn
n
cnn n
ckk k
...
(r,t) cn (t)n (r) n
(r,t) ck (t)k (r) k
...
如何理解这种完备性?
如何理解这种完备性?
比较空间矢量与态矢量: 三维空间任一矢量:
P xi yj zk
x1e1 x 2 e 2 x3e3
定理1 厄密算符的本征值是实数
定理2 在任何状态下平均值均为实数的算符必为厄米算符
A的平均值是实数
A A*
(ψ,Aˆ ψ)=(Aˆ ψ,ψ)
令: 1 2 ((1 2 ),Aˆ (1 2 ))=(Aˆ (1 2 ),(1 2 ))
(ψ1,Aˆ ψ2 )+(ψ2,Aˆ ψ1)=(Aˆ ψ1,ψ2)+(Aˆ ψ2,ψ1)
正因为如此,我们常称波函数为态矢量!
tips:若本征函数本来是归一的,可以把正交与归一合并
本征分立谱:
n * nd 1 m * nd 0
定义:mn=1, m n
0, m n
即:
m
* nd
mn
( m , n ) mn
) )
,
证毕
定理3 厄密算符的任意两属于不同本征值的本征函数正交.
我们先理解正交的含义,再证明这个定理
看两个空间矢量内积:如果 (r1, r2 ) r1 r2 0
我们就称两矢量正交(也称线性无关),即一个矢量在 另一个矢量方向的投影为零。内积的实质就是求投影!
如果两个函数的内积 (1, 2 ) 0,我们称他们正交!
量子力学与统计物理
Quantummechanicsa ndstatisticalphysics
第三章:量子力学中的力学量
第二讲:算符本征函数系
一、所有力学量算符都是线性厄密算符
Aˆ
(c11
c2 2 )
c(1 Aˆ 1) c(2 Aˆ
)
2
Ψ*Aˆ dτ= (Aˆ Ψ)* dτ