关于高等数学等价无穷小替换_极限的计算()

合集下载

浅谈等价无穷小替换在求极限中的应用

浅谈等价无穷小替换在求极限中的应用

浅谈等价无穷小替换在求极限中的应用
于荣娟;陈红红;梁显丽
【期刊名称】《黑龙江科技信息》
【年(卷),期】2012(000)028
【摘要】在高等数学中,极限的计算是一个很重要的问题。

本文主要针对一种求
极限的方法——应用等价无穷小及无穷小替换定理求极限。

在无穷小及等价无穷
小替换定理的基础上,研究了和它有关的几个性质、结论,并以某些类型题为例,对其性质进行了举例和应用;同时本文对等价无穷小替换求极限问题进行了总结归纳,扩大了等价无穷小替换在极限计算中的范围,使一些复杂的求极限问题简单化。

【总页数】1页(P198-198)
【作者】于荣娟;陈红红;梁显丽
【作者单位】内蒙古农业大学职业技术学院,内蒙古包头014109;内蒙古农业大学
职业技术学院,内蒙古包头014109;内蒙古农业大学职业技术学院,内蒙古包头014109
【正文语种】中文
【中图分类】O13
【相关文献】
1.浅谈用等价无穷小替换法求极限 [J], 赵文菊;张秀全
2.泰勒公式在用等价无穷小量替换求极限中的应用 [J], 郑瑞根
3.等价无穷小替换在求极限中的应用及推广 [J], 马艳丽;聂东明
4.浅析"等价无穷小替换"在求函数极限中的应用 [J], 杨录胜
5.等价无穷小替换求极限的推广及应用 [J], 苏燕玲;
因版权原因,仅展示原文概要,查看原文内容请购买。

谈等价无穷小的替换求函数的极限

谈等价无穷小的替换求函数的极限

谈等价无穷小的替换求函数的极限孟庆人【摘要】本文讨论了等价无穷小在求函数极限中的应用及适用条件,及求函数极限的罗比达法则、泰勒公式与等价无穷小应用之比较.【期刊名称】《产业与科技论坛》【年(卷),期】2012(011)023【总页数】2页(P145-146)【关键词】等价无穷小;罗比达法则;泰勒公式;函数的极限【作者】孟庆人【作者单位】无锡科技职业学院理科教学部【正文语种】中文极限的概念是高等数学的重要概念之一,高等数学的许多概念是通过极限的方式加以定义的,因此学好极限的概念对学好高等数学具有重要的意义,而极限的计算又是学好极限的基础,因此在教学中重视极限的计算教学显得尤为重要,运用等价无穷小的替换求型函数的极限,往往能起到简化计算的作用。

一、等价无穷小的概念设α、β是同一变化过程的无穷小,且α≠0,而也是在这个变化过程中的极限。

如果),就说α、β是同阶无穷小,如果,就说β与α是同阶无穷小,记作β~α。

二、定理1(等价无穷小的替换定理)在自变量的同一变化过程中,α、β、α'、β'都是无穷小量,且α ~α',β ~β',如果极限存在,那么证明,在求两个无穷小之比的极限时,分子分母都可以用各自的等价无穷小来替换,也可分子或分母单独替换,常用的几个等价无穷小为:在x→0时,x~arcsinx~arctanx~1~αx,定理表明在求商式的极限过程中,分子或分母中积的因子(在这个变化过程中的无穷小)可用其等价的无穷小替换,只要无穷小的替换恰当,某些型的极限计算将变得简单易解,省去了比较复杂的计算。

三、实际应用例1求的极限解:原式=分子和分母都是x→0+时的无穷小,因此可用等价无穷小的替换定理求解,此题若直接用罗必达法则求解则显得很麻烦。

例2求的极限解:原式分子有理化后,可利用等价无穷小的替换定理做简单些,这题直接用罗必达法则求解也显得更加麻烦。

例3求的极限解:原式=,此题的分子分母中的因子洽为x→0+时的无穷小,因此可直接用等价无穷小的替换定理解,若直接用罗比达法则更为麻烦,可见用等价无穷小的替换求某些函数的极限还是很有优势的,但也不能绝对化,有时偏好用等价无穷小的替换还会导致错误,我们看下面的例题例4求的极限解:原式=,这种解法是错误的。

等价无穷小函数求极限

等价无穷小函数求极限

等价无穷小求函数极限1绪论1.1研究背景和意义极限的概念是微积分学重要概念之一,是微积分学的基础。

现有的极限问题的求解方法主要有以下几种: 定义法、利用两个重要极限、利用等价无穷小、函数极限四则运算和洛必达法则。

函数极限是描述函数变化趋势的重要概念,是从近似认识精确、从有限认识无限、从量变认识质变的一种数学方法。

其中,运用等价无穷小来替换函数中的无穷小因子是求函数极限中一种非常普遍、非常快捷的方法,由于这一方法运用起来比较方便,并且能在很大程度上简化计算。

虽说无穷小量分离、约零因子、利用重要极限、罗比达法则等常用求极限的方法都有其自身的价值,但等价无穷小代换求极限以其快捷、简便、适用性强等优点成为一类代表算法,用它可以求解某些用其他方法难以求解的极限问题,使之化繁为简,化难为易。

等价无穷小是高等数学中最基本的概念之一,同时又是高等数学的重要组成部分,因此它的应用的深入发展对于数学的发展具有及其深远的意义。

研究等价无穷小量在求极限中的应用,有助于人们更系统,更全面的认识等价无穷小量在数学计算中的作用。

等价无穷小量做代换是计算极限的一种常用、方便、有效的方法,用它可以求到某些用其它方法难以求到的极限问题,达到化繁为简目的。

生产和实验的很多计算过程中的变量都可以用等价无穷小来替换,从而简化计算。

等价无穷小可以把繁琐的实际问题化为一种简单的形式,从而引导人们用更简便的方法解决实际问题。

用等价无穷小求极限是高等数学中的一个重要工具,它在生活中的应用是理论和实际相联系的强有力的纽带。

因此,等价无穷小在函数求极限的问题中具有十分重要的应用,本文中将对等价无穷小函数求极限的方法进行研究,并通过实例对方法进行介绍。

等价无穷小量代换是指在极限运算过程中,将一些无穷小量用与其等价的无穷小量来替代,从而达到简化计算的目的。

利用等价无穷小量求极限,只对所求极限式中相乘或相除的因式才能用等价无穷小量来代替,而对极限式中的相加或相减部分则说明不能随意替代。

考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。

通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。

求函数极限的方法有很多种,以下是几种常见的方法。

对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。

例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。

当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。

例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。

洛必达法则是求未定式极限的重要方法。

如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。

例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。

对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。

通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。

例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。

夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。

如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。

例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。

用等价无穷小代换求幂指函数的极限

用等价无穷小代换求幂指函数的极限

Science &Technology Vision 科技视界1问题提出在大学高等数学中,对于幂指函数求极限的问题,共有两处提到,包括重要极限和洛必达法则。

但是,关于等价无穷小代换求幂指函数极限的问题大多都没有特别讲解。

一般得,只针对于分式型的函数如何用等价无穷小代换求极限做了讲解。

在教学过程中,有学生在一开始的学习中就遇到较为复杂的幂指函数求极限的问题,就不知道如何计算了。

课本中有一道极限求解题目,具体如下:lim x →0(1+tan x 1+sin x)1x这是一个典型的1∞型的幂指函数求极限问题。

大多数学生在这里第一反应就是用重要极限来求解,但此题用重要极限不太容易看出来。

如果了解等价无穷小的相关定理,那么这道题就迎刃而解了。

鉴于此种情况,本文在前人研究的基础上,总结了幂指函数的求极限的方法,着重提出了等价无穷小求解幂指函数极限的看法。

2幂指函数求极限的其他方法幂指函数的极限类型很多,有确定型和不定式之分。

对于确定型的幂指函数可以直接底数与指数求极限。

而对于不定式型的幂指函数,通常采用重要极限和洛必达法则两种方法。

2.1重要极限对1∞型的幂指函数极限问题,考虑利用重要极限lim x →∞(1+1x )x =e及其变形公式lim x →0(1+x )1x=e 求极限。

例1求极限lim x →0(cos x )csc 2x .解:lim x →0(cos x )csc 2x =lim x →0[1+(cos x -1)]1sin 2x=lim x →0[1+(cos x -1)]1cos x -1·cos x -1sin x=elim-12x x=e-122.2洛必达法则另外,对00型,∞0型,1∞型幂指函数的极限,可以通过将幂指函数化为对数恒等式y=e ln y 的形式,转换为00型或∞∞型不定式,然后再利用洛必达法则进行求解。

例2求极限lim x →∞(1+a x)x .解:lim x →∞(1+a x )x =lim x →∞ex ln(1+a x)=elimln(1+a x )1x因为lim x →∞(1+a x)=0,lim x →∞1x =0由洛必达法则,得:lim x →∞(1+a x)x=e lim[ln(1+a x )]′(1x)′=elim axx+a=ea3用等价无穷小代换求幂指函数的极限幂指函数00型,∞0型,1∞型这三种类型不定式的求极限问题,除了运用前两种方法外,还可以使用等价无穷小的代换。

极限计算方法总结

极限计算方法总结

极限计算方法总结《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。

求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。

下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。

一、极限定义、运算法则和一些结果1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。

说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim≠=∞→a b a an bn 为常数且;5)13(lim 2=-→x x ;⎩⎨⎧≥<=∞→时当不存在,时当,1||1||0lim q q q nn ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。

2.极限运算法则定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[(2)B A x g x f ⋅=⋅)()(lim(3))0(,)()(lim成立此时需≠=B BAx g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

3.两个重要极限 (1)1sin lim0=→xxx(2)e x xx =+→1)1(lim ; e x xx =+∞→)11(lim说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,作者简介:靳一东,男,(1964—),副教授。

例如:133sin lim 0=→xx x ,e x xx =--→210)21(lim ,e x xx =+∞→3)31(lim ;等等。

4.等价无穷小定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。

高等数学等价交换分式

高等数学等价交换分式

高等数学等价交换分式
等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

求极限时,使用等价无穷小的条件
1、被代换的量,在取极限的时候极限值为0;
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。

等价无穷小也是同阶无穷小。

从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。

常用等价无穷小公式是什么
常用等价无穷小公式=1-cosx。

等价无穷小是无穷小之间的一种关系,指的是在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。

无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

当x趋近于0时:
e^x-1~x;
ln(x+1)~x;
1-cosx~(x^2)/2;
(1+bx)^a-1~abx。

高等数学中几种求极限的方法

高等数学中几种求极限的方法
高等数学中 几种求极限的方法
豆俊梅 河南工业大学 450008
摘 要 文章对贯穿于整个高等数学教材中的极限、 求极限的方法做了一定的概括与总结。 关键词 极限;极限方法
极限的概念是高等数学中最重要、 最基本的概念之一,它是研究分析方法的 重要理论基础,许多重要的概念如连续、 导数、定积分、无穷级数的和及广义积分 等都是用极限来定义的。 掌握好求极限的 方法对学好高等数学是十分重要的。但 极限定义并未直接提供如何去求极限。 求极限的方法因题而异,变化多端,有 时甚至感到变幻莫测无从下手,本文总 结几种常用的求极限的方法以供参考。
c o s x ~ ,(1 + x )a - 1 ~α x 等等。
例1求 解
-227-
科技教育创新 中国科技信息 2006 年第 15 期 CHINA SCIENCE AND TECHNOLOGY INFORMATION Aug.2006
错在对加减中的某一项进行了等价无 穷小代换。
五、利用两个重要极限

等七种未
定式均可用洛必达法则求解。
九、利用定积分求极限
由于定积分是一个有特殊结构和式的 极限,这样又可利用定积分的值求出某一 和数的极限.若要利用定积分求极限,其关 键在于将和数化成某一特殊结构的和式。
参考文献 [1]裘卓明编.研究生入学考试指导.山东科 学技术出版社 [2]初等数学论丛.上海教育出版社出版 [3]高等数学.同济大学数学教研室主编.高 等教育出版社 [4]数学分析.华东师范大学数学系编.高等 教育出版社
即利用①
= 1 ,②
=e 和
=e,其中的 x
都可以看作整体来对待。其中第一个重要
极限是“ ”型;第二个重要极限是
“ ”型,在“ ”型中满足“外大内 小,内外互倒”。在利用重要极限求函数极 限时,关键在于把要求的函数极限化成重 要极限的标准型或它们的变形,这就要抓 住它们的特征,并且能够根据它们的特征, 辨认它们的变形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

讲义无穷小 极限的简单计算【教学目的】1、理解无穷小与无穷大的概念;2、掌握无穷小的性质与比较 会用等价无穷小求极限;3、不同类型的未定式的不同解法。

【教学内容】1、无穷小与无穷大;2、无穷小的比较;3、几个常用的等价无穷小 等价无穷小替换;4、求极限的方法。

【重点难点】重点是掌握无穷小的性质与比较 用等价无穷小求极限。

难点是未定式的极限的求法。

【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。

最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。

【授课内容】一、无穷小与无穷大1.定义前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、-→0x x )函数()f x 的极限这七种趋近方式。

下面我们用→x *表示上述七种的某一种趋近方式,即*{}-+→→→-∞→+∞→∞→∞→∈00x x x x x x x x x n定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x *。

例如, ,0sin lim 0=→x x .0sin 时的无穷小是当函数→∴x x【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。

定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即()∞=→x f x *li m 。

显然,∞→n 时, 、、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。

无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞→x x e , +∞=+∞→x x e lim ,所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。

2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则()x f 1为无穷大。

小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。

3.无穷小与函数极限的关系: 定理 1 0lim ()()(),x x xf x A f x A x α®=?+其中)(x α是自变量在同一变化过程0x x →(或∞→x )中的无穷小.证:(必要性)设0lim (),x x f x A ®=令()(),x f x A α=-则有0lim ()0,x x x α®=(充分性)设()(),f x A x α=+其中()x α是当0x x ®时的无穷小,则【意义】(1)将一般极限问题转化为特殊极限问题(无穷小);(2)0()(),().f x x f x A x α»给出了函数在附近的近似表达式误差为 3.无穷小的运算性质定理2 在同一过程中,有限个无穷小的代数和仍是无穷小. 【注意】无穷多个无穷小的代数和未必是无穷小.定理3 有界函数与无穷小的乘积是无穷小.如:01)1(lim =-∞→n n n ,01sin lim 0=→xx x ,0sin 1lim =∞→x x x 推论1 在同一过程中,有极限的变量与无穷小的乘积是无穷小.推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小.二、无穷小的比较例如,2210,,,sin ,sinx x x x x x®当时都是无穷小,观察各极限: 2201sinlimx x x x →x x 1sin lim 0→=.不存在不可比. 极限不同, 反映了趋向于零的“快慢”程度不同.1.定义: 设,αβ是自变量在同一变化过程中的两个无穷小,且0.α¹ 例1 .tan 4,0:3的四阶无穷小为时当证明x x x x →证:430tan 4lim x x x x →30)tan (lim 4xx x →=,4=.tan 4,03的四阶无穷小为时故当x x x x → 例2 .sin tan ,0的阶数关于求时当x x x x -→解30sin tan limx x x x -→ )cos 1tan (lim 20x x x x x -⋅=→,21=.sin tan 的三阶无穷小为x x x -∴ 2.常用等价无穷小:,0时当→x(1)x sin ~x ; (2)x arcsin ~x ; (3)x tan ~x ; (4)x arctan ~x ; (5))1ln(x +~x ; (6)1-x e ~x(7)x cos 1-~22x (8)1)1(-+μx ~x μ (9)1x a -~ln a x *用等价无穷小可给出函数的近似表达式:例如),(sin x o x x +=).(211cos 22x o x x +-=3.等价无穷小替换 定理:.lim lim ,lim ~,~αβαβαβββαα''=''''则存在且设 证:αβlim)lim(αααβββ'⋅''⋅'=αααβββ'⋅''⋅'=lim lim lim .lim αβ''=例3 (1).cos 12tan lim 20xx x -→求; (2)1cos 1lim 20--→x e x x 解: (1).2~2tan ,21~cos 1,02x x x x x -→时当 故原极限202(2)lim 12x x x ®== 8(2)原极限=2lim220x x x -→=21-例4 .2sin sin tan lim30xxx x -→求错解: .~sin ,~tan ,0x x x x x 时当→30)2(limx xx x -=→原式=0正解: ,0时当→x ,2~2sin x x )cos 1(tan sin tan x x x x -=-,21~3x 故原极限33012lim(2)x xx ®=.161= 【注意】和、差形式一般不能进行等价无穷小替换,只有因子乘积形式才可以进行等价无穷小替换。

例5 .3sin 1cos 5tan lim 0xx x x +-→求解: ),(5tan x o x x += ),(33sin x o x x +=).(21cos 122x o x x +=-原式22015()()2lim 3()x x o x x o x x o x ®+++=+xx o x x o x x x o x )(3)(21)(5lim20++++=→.35= 三、极限的简单计算1. 代入法:直接将0x x →的0x 代入所求极限的函数中去,若()0x f 存在,即为其极限,例如924231232lim 3451=++++-→x x x x x x ;若()0x f 不存在,我们也能知道属于哪种未定式,便于我们选择不同的方法。

例如,39lim 23--→x x x 就代不进去了,但我们看出了这是一个00型未定式,我们可以用以下的方法来求解。

2. 分解因式,消去零因子法例如,()63lim 39lim323=+=--→→x x x x x 。

3. 分子(分母)有理化法 例如,()()()()()()355125125123535lim51235lim222222++++-+++++-+=-+-+→→x x x x xx x x x x又如,()011lim1lim22=++=-++∞→+∞→xx x x x x4. 化无穷大为无穷小法例如,2222173373lim lim 142422x x x x x x x x xx +-+-==-+-+,实际上就是分子分母同时除以2x 这个无穷大量。

由此不难得出又如,12111lim21lim=++=+++∞→+∞→xxx x x x ,(分子分母同除x )。

再如,1153152lim 5352lim -=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-∞→∞→n nn n n nn n ,(分子分母同除n 5)。

5. 利用无穷小量性质、等价无穷小量替换求极限例如,()0131arctan lim 2=+++∞→x x x x x ,(无穷小量乘以有界量)。

又如,.3214lim21-+-→x x x x 求解:)32(lim 21-+→x x x ,0=商的法则不能用由无穷小与无穷大的关系,得.3214lim21∞=-+-→x x x x再如,等价无穷小量替换求极限的例子见本节例3—例5。

6. 利用两个重要极限求极限(例题参见§1.4例3—例5)7. 分段函数、复合函数求极限例如,).(lim ,0,10,1)(02x f x x x x x f x →⎩⎨⎧≥+<-=求设解: 两个单侧极限为是函数的分段点,0=x 左右极限存在且相等, .1)(lim 0=→x f x 故【启发与讨论】 思考题1:110,sin x yx x ?当时是无界变量吗?是无穷大吗?解:),3,2,1,0(221)1(0 =+=k k x ππ取,22)(0ππ+=k x y .)(,0M x y k >充分大时当无界,,,δ<k x k 充分大时当 ππk k x y k 2sin 2)(=但 .0M <=不是无穷大.结论:无穷大是一种特殊的无界变量,但是无界变量未必是无穷大.思考题2:若0)(>x f ,且A x f x =+∞→)(lim ,问:能否保证有0>A 的结论?试举例说明.解:不能保证. 例x x f 1)(=,0>∀x 01)(>=xx f =+∞→)(lim x f x .01lim ==+∞→A x x思考题3:任何两个无穷小量都可以比较吗?解:不能.例如当+∞→x 时,1)(x x f =xxx g sin )(=都是无穷小量但=+∞→)()(limx f x g x x x sin lim +∞→不存在且不为无穷大,故当+∞→x 时)(x f 和)(x g 不能比较. 【课堂练习】求下列函数的极限(1)xxe x x cos lim 0-→;解:原极限=1cos 1lim 1lim cos lim000=-+-=-→→→xxx e x x e x x x x x(2)求)1ln()cos 1(1cossin 3lim20x x x x x x +++→ 【分析】 “0”型,拆项。

相关文档
最新文档