行星齿轮传动机构

合集下载

自动变速器行星齿轮机构---第三章

自动变速器行星齿轮机构---第三章

2. 功率流分析 规则: (1)一端所受转矩方向与其转速方向相同 (M、n或-M、-n),功 率为正,输入端 (2)一端所受转矩方 向与其转速方向相反 (M、-n或-M、n), 功率为负,输出端 转速(+,-)
三、传动效率 相对功率法: 根据行星排各构件的相对转速、转矩和传递 功率计算。 两点假设: 1. 只计算和相对运动有关的齿轮啮合损失, 其它不计; 2. 相对运动的齿轮啮合损失与定轴传动相同, 外啮合效率0.97,内啮合效率0.98。
2. 档位情况
选档杆 位置 换档执行元件 C1 1 D 2 3 2 L R 1 2 1 倒档 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ C2 B1 B2 B3 F1 F2 ○ 发动机 制动
档位
P
N
驻车档
空档

3. 各档动力传动路线:
1) D1档:C1、F2
主动太阳轮
从动行星架
行星小齿轮
主动齿圈
• 8) 如果所有元件无约束,则动力无法传动 • 空档
太阳轮
行星架
行星小齿轮
主动齿圈
二、车辆传动用行星齿轮机构 1. 单星行星排:一个行星轮同时内外啮合 普通式行星排 复式双联行星排
2. 双星行星排: 两个行星轮 普通式 长短行星轮式 3. 圆锥行星齿轮 行星排 行星架输入动 力,太阳轮输出 对称结构 非对称结构
z
w 3 1 2
实现一个档要结合2-1个
操纵件
如有2个操纵件
可得
C 2
1 z
个档
2. 行星机构速度关系式(数学分析法) 给整个行星机构加反向转速nj,对绝对座标: 行星架转速= nj- nj=0 太阳轮转速= nt- nj 齿圈转速= nq-nj,按定轴传动处理

行星齿轮机构的三个基本元件

行星齿轮机构的三个基本元件

行星齿轮机构的三个基本元件
行星齿轮机构是一种常见的传动机构,由三个基本元件组成,分别是行星轮、太阳轮和内齿圈。

1. 行星轮:行星轮是行星齿轮机构中的一个轮子,通常固定在一个轴上并绕着太阳轮旋转。

行星轮通常有多个齿,与太阳轮和内齿圈相配合,实现传动。

2. 太阳轮:太阳轮是行星齿轮机构中的另一个轮子,通常位于中间,不旋转而是固定在机构的中心轴上。

太阳轮与行星轮和内齿圈相配合,实现传动。

3. 内齿圈:内齿圈是行星齿轮机构中的第三个轮子,通常是一个环形结构,内部有齿。

内齿圈不旋转而是固定在机构中,与太阳轮和行星轮相配合,实现传动。

这三个基本元件相互配合,构成了行星齿轮机构,可以实现高效的传动和变速。

行星齿轮机构广泛应用于各种机械和设备中,如汽车变速器、机床传动装置等。

行星齿轮传动机构

行星齿轮传动机构

5)行星架固定,太阳轮主动,齿圈被动。
此种组合为降 速传动,传动 比一般为1.5~4, 转向相反。
6)行星架固定,齿圈主动,太阳轮被动。
此种组合为升速 传动,传动比一 般为0.25~0.67, 转向相反。
注意以下情况:
1)把三元件中任意两元件结合为一体的情况: 当把行星架和齿圈结合为一体作为主动件,太阳
当发动机曲轴带动泵轮旋转时,泵轮带动自动变速器油一
起旋转,在离心力的作用下,自动变速器油从叶片的内缘向外 缘流动。
冲击涡轮的叶片,自动变速油沿着涡轮叶片由外向内流动, 冲击到导轮叶片,然后沿着导轮叶片流动,回到泵轮进入下一 个循环。
我们把从泵轮、涡轮、导轮又 到泵轮的液体流动叫涡流。
自动变速器油在进行涡流的同时,又绕曲轴中心线 旋转,我们把液体绕轴线旋转的流动,称为环流。
(三)典型液力变矩器 它包含锁止离合器和单向离合器
1、单向离合器
1) 单向离合器的组成: 由外座圈,内座圈、保持架、
楔块等组成。
2) 工作原理: 当内座圈固定时,外座圈顺时针方向转动楔块不锁止,外座
圈可自由转动;当外座圈逆时针转动时,楔块锁止,外座圈不能 转动。保持架的作用是使楔块总是朝着锁止外座圈的方向略微倾 斜,以加强楔块的锁止功能。
液力变矩器的工作原理
液力变矩器的工作原理
用空气传递动力会有能量损失,且电风扇B的转速永远小 于A的转速。如果我们将电风扇A与B用一个轴连接在一起, 此时电风扇A可直接带动B同速转动,就没有能量损失。
此时的电风扇A相当于液力变矩器的泵轮,电风扇B相当
于涡轮,导管相当于导环,空气相当于自动变速器油,连接 轴相当于锁止离合器。
行星齿轮传动机构
三、行星齿轮传动机构换档控制元件 1、单向自由轮 2、离合器(液压执行元件) 3、制动器(液压执行元件)

行星齿轮机构的结构与传动原理

行星齿轮机构的结构与传动原理

四、直接传动★
n1
n2 刚性联接3
直接传动:传动比=1 条件:任何两元件被刚性联接。 n1+αn2-(1+α) n3 = 0 n3= n1或n3= n2或n1= n2 传动比=1
五、增速传动
制动n1
输出n2 输入n3
一)、 ★增速传动:传动比=α/(1+α ) 条件:主动件-行星架,被动件-齿圈,固定件-太阳轮。 n1+αn2-(1+α) n3 = 0 n1=0 传动比=n3/n2=α/ (1+α )
三、带式制动器
带式制动器结构:
1-变速器壳体 2-制动带 3-制动鼓 4-活塞 5-液压缸施压腔 6-液压 缸端盖 7-液压缸释放腔 8-推杆 9-调整螺钉 10-回位弹簧
带式制动器工作过程:
间隙如何测量、调整?
1.2.3、单向离合器
常见类型有:棘轮式、滚柱斜槽式 和 楔块式单向(超越)离合器 作用:连锁作用,固定作用,改善换档的平稳性。
1、滚柱斜槽式单向(超越)离合器
1-外环 2-内环 3-滚柱 4-弹簧。
二、楔块式单向(超越)离合器
1-外环 2-内环 3-楔块。
三、棘轮式单向(超越)离合器
1-外轮 2-棘爪 3-棘轮 4-叶片弹簧。
四、单向离合器作用
(1) 连锁作用 ---将二元件直接连接使之一起运动。
(2) 固定作用—将行星齿轮机构中某一元件与壳体相连,使该元件被固定。
制动n2
输出n1
输入n3
二)、增速传动:传动比=1/ (1+α ) 条件:主动件-行星架,被动件-太阳轮,固定件-齿圈。 n1+αn2-(1+α) n3 = 0 n2=0 传动比=n3/n1=1/ (1+α )

双排行星齿轮工作原理

双排行星齿轮工作原理

双排行星齿轮工作原理
双排行星齿轮是一种常见的齿轮传动机构,它由两个行星齿轮和一个太阳齿轮组成。

它的工作原理主要包括以下几个方面:
1. 太阳齿轮:太阳齿轮位于两个行星齿轮之间,它与传动输入轴相连。

当太阳齿轮转动时,会产生动力输入。

2. 行星齿轮:行星齿轮是两个,并且它们的齿轮数相同。

行星齿轮上有多颗齿与太阳齿轮咬合,行星齿轮可以绕自身轴线旋转,并且可以绕太阳齿轮转动。

3. 轴:行星齿轮的轴即为输出轴,通过与齿轮连接,实现输出扭矩和转速。

工作原理如下:
1. 开始时,太阳齿轮和行星齿轮静止不动。

2. 动力输入:当太阳齿轮开始转动时,由于行星齿轮与太阳齿轮的咬合,行星齿轮也会开始绕太阳齿轮旋转。

3. 输出:行星齿轮的旋转会带动输出轴一起旋转,从而实现输出扭矩和转速。

4. 变速:通过改变太阳齿轮的转速和行星齿轮的咬合方式,可以实现不同的变速比。

需要注意的是,双排行星齿轮传动具有高效、扭矩稳定、结构紧凑等优点,广泛应用于各种机械传动系统中。

三齿轮传动机构

三齿轮传动机构

◆ O/D档→输入轴→C1→后圈→后星
后架→
└太阳轮→前星→前圈→→ 输出轴
└前架F2逆止
◆ D1传动比;1.00×2.804
47
AT
AT
丰田A340E-D2档(后两排传动)
◆ O/D档→输入轴→C1→后圈→后星→后架→→→→→输出轴 └太阳轮被B2.F1锁住
◆ D2档传动比:1.00×1.531
一个外齿轮与一个内齿轮啮合时,转动 方向相同。
太阳轮、齿圈、行星架、三者齿数的关 系是:行星架>齿圈>太阳轮
7
AT
AT
§3.2 行星齿轮机构的变速原理
◇ 行星齿轮机构参数α:
z2 >1
z1
Z1-太阳轮齿数 Z2-齿圈齿数
◇ 单排行星齿轮机构运动特性方程式:
n1 n2 1 n3 0
外圈转速)、前排滑转。
37
AT
AT
4T65E-D3档
D3档 动力传动路线 ;
┌→ C3→F2←前太← ┐
链轮┴→ C2→→→前架 →┴→前圈→主减速器
D3档 传动比; 1.00

传动;C2+C3 锁止;F2

38
AT
AT
D3 档 动 力 传 递 说 明
输入 输入
输出
C2和C3分别传递动力前架后圈和前太阳轮。 F2逆向锁止(内圈转速>外圈转速),故C3
50
AT
AT
丰田A340E-R档
◆ O/D档→输入轴→C2→太阳轮→前星→前圈→输出轴 └前架被B3锁住
◆ R档传动比:1.00×2.220
51
AT
AT
大众01M自动变速器
B2 C2 C1
C3

自动变速器电子教案10单排行星齿轮机构原理

自动变速器电子教案10单排行星齿轮机构原理
若太阳轮作为主动部件按顺时针方向旋转,行星架为输 出时,小齿轮按反时针方向围绕小齿轮轴旋转,使行星架有 顺时针,内齿圈有逆时针旋转的趋势。
但由于行星架为输出且与车身相连,阻力较大不能转 动,因此,全部转矩加在齿圈上,使齿圈逆时针空转,不可 能有转矩从齿轮架输出。
行星齿轮机构在此状态下处于空档状态 。
4)行星齿轮传递的动力被分配到数 量众多的啮合齿上。与手控变速器 相比结构更为小型、紧凑。
4、传动比计算:
1)行星架等效齿数: Z圈——内齿圈齿数 Z太——太阳轮齿数 Z行架——行星架架齿数
行星小齿轮在传动过程始终用作中间齿轮,它们的齿数与 行星齿轮机构的传动比无关,行星齿轮机构的传动比只取决 于齿轮架、内齿圈和太阳轮的齿数,齿轮架并非齿轮因此没 有实际齿,在计算传动比时对行星齿轮架指定一个想像的齿
4)同向、增速(前进档的超速档状态):
①同向增速状态a 固定——内齿圈 主动——行星架 从动——太阳轮
内齿圈被固定后,当齿轮架顺时针方向旋转输入时,迫使 小齿轮在内齿圈内按顺时针方向公转,同时又绕小齿轮轴反时 针方向自转,使太阳轮必定按顺时针方向旋转输出。
传动比 i=从动齿齿数/主动齿齿数 = Z太/ Z行架
单排行星齿轮传动机构
影像
1、三基本元件:
太阳轮



齿圈
个 行

行星轮和行星轮架

2、各部件相互关系:
太阳轮:
是一个具有外部齿的齿轮,可以绕自身轴线旋转,同行星齿 轮外啮合。
齿圈:
是一个具有内齿的齿圈,可以绕自身轴线旋转,同行星齿轮 内啮合。
行星轮和行星轮架:
行星轮通过轴安装在行星轮架上,在轴上能绕固定轴转动, 即自转,还可以同行星轮架一起绕太阳轮转动,即,公转; 行星轮的内端同太阳轮外啮合,外端同齿圈内啮合。

2K—H型行星齿轮机构传动的啮合效率分析

2K—H型行星齿轮机构传动的啮合效率分析

2K—H型行星齿轮机构传动的啮合效率分析H型行星齿轮机构是一种新型的传动机构,具有许多优点,例如传动效率高、结构紧凑等。

啮合效率是评价传动机构性能的重要指标之一,本文将对2K—H型行星齿轮机构的啮合效率进行详细分析。

首先,我们需要了解2K—H型行星齿轮机构的结构。

2K—H型行星齿轮机构由一个太阳轮、两个行星轮和一个内啮合的外齿圈组成,其中每个行星轮上分别有两个齿轮。

当输入轴驱动太阳轮转动时,通过行星轮上的齿轮和外齿圈的啮合,实现输出轴的转动。

为了分析啮合效率,我们首先需要确定啮合损失。

啮合损失主要包括啮合瞬时速度失配损失、摩擦损失和轴向力损失。

啮合瞬时速度失配损失是由于齿轮啮合时速度不同导致的能量损失,摩擦损失是由于齿轮啮合摩擦产生的能量损失,轴向力损失是由于齿轮啮合时的轴向力引起的能量损失。

其次,我们需要计算2K—H型行星齿轮机构的传动效率。

传动效率可以通过下式计算得出:其中,\(P_{out}\)为输出轴功率,\(P_{in}\)为输入轴功率。

传动效率与啮合效率直接相关,啮合效率越高,传动效率也就越高。

最后,我们可以通过仿真软件对2K—H型行星齿轮机构的啮合效率进行分析。

通过建立相应模型,设定合适的工作参数,进行仿真计算得出啮合效率,进而评估传动效率。

通过不断调整参数,优化设计,可以提高传动效率,使其更加稳定可靠。

总之,对2K—H型行星齿轮机构的啮合效率进行分析是非常重要的。

通过深入研究,我们可以更好地了解其工作原理,找出影响啮合效率的关键因素,进一步提高传动效率,实现更好的性能表现。

希望本文的分析能够为相关领域的研究和工程实践提供参考和帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档