组态王课程设计锅炉温度控制系统
基于组态王和MATLAB的温度监控系统设计

目录第1章绪论 (3)1.1 研究课题的背景和意义 (3)1.2 过程控制的发展历史和现状 (4)1.3 设计的内容 (4)第2章锅炉过热蒸汽系统的介绍 (6)2.1 过热蒸汽系统设备简介 (6)2.2 锅炉的三种能量转换过程 (7)2.3 影响过热蒸汽温度的因素 (7)2.4 对过热蒸汽温度的控制 (8)2.5 本章小结 (8)第3章课题设计方案的选择 (9)3.1 过热蒸汽温度控制系统功能概述 (9)3.2 生产过程控制模块的选择 (10)3.3 控制方案选择 (11)3.3.1 过程控制概述 (11)3.3.2 过程控制方案的选择 (11)3.3.3 串级调节系统概述 (12)3.3.4 串级调节调节器的选型和整定方法 (12)3.4 本章小结 (13)第4章组态王的设计过程 (14)4.1 组态画面的设计 (15)4.1.1 过热蒸汽温度监控画面的设计 (15)4.1.2 动画连接 (17)4.1.3 画面命令语言的编写 (17)4.1.4 系统调试 (18)4.1.5 VIEW调试 (18)4.2本章小结 (18)第5章 MATLAB的设计过程 (19)5.1 MATLAB的设计过程 (19)5.2 本章小结 (23)第6章结论与展望 (24)6.1 结论 (24)6.2 展望 (24)参考文献 (25)致谢 ................................................... 错误!未定义书签。
附录 ................................................... 错误!未定义书签。
附录A 外文翻译...................................... 错误!未定义书签。
A.1 英文文献 ...................................... 错误!未定义书签。
A.2 中文文献 ...................................... 错误!未定义书签。
自动控制系统课程设计基于组态王的炉温控制系统设计大学论文

基于组态王的炉温控制系统设计作者姓名:作者学号:指导教师:学院名称:专业名称:摘要温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。
温度控制是控制系统中最为常见的控制类型之一。
最为常见的就是工业上使用电阻炉处理和生产工业产品,最基本的要求是要保持炉内温度的恒定,并且在一定的扰动下,炉内的温度经过一定的调节时间能自动恢复正常值,从而保证所生产的产品质量。
本设计基于单回路控制系统和PID控制器,使用计算机、铂电阻Pt100、控制箱、加热炉体和组态王设计电烤箱的炉温控制系统,使炉内温度基本保持在155℃不变,还建立了闭环和开环控制系统的数学模型,完成了系统所用到的设备的选型和组装接线,利用“组态王”软件编制上位机监控软件对炉内温度的采集和显示。
文中首先介绍了设计的背景和要求,接着对单回路控制系统做了简单的介绍,大致描述了通过组态王编制采集并绘制温度与时间曲线的步骤,并且完成了系统模型的建立,介绍了整定PID控制器参数的步骤和结果,最终完成了利用单回路控制系统中的一阶时延环节设计电烤箱的炉温控制系统,使其炉内温度经过一定的过渡过程始终维持在132℃。
关键词:PID、电烤箱、炉温控制、单回路控制系统、凑试法目录摘要 (I)目录 (1)第一章引言 (3)1.1设计目的 (3)1.2 设计背景及意义 (3)1.3 设计任务及要求 (4)第二章单回路控制系统 (5)2.1 单回路控制系统简介 (5)2.2 单回路控制系统的设计 (5)2.2.1 被控变量的选择 (6)2.2.2 操纵变量(控制参数)的选择 (6)2.2.3测量变送问题和执行器的选择 (7)第三章硬件电路设计及原理 (8)3.1 系统设计 (8)3.1.1 方案论述 (8)3.1.2 系统原理图及工作原理 (9)3.2 智能控制仪表设计 (10)3.2.1 规格型号说明 (10)3.2.2 技术数据说明 (11)3.2.3 工作原理 (11)3.3温度测量电路设计 (12)3.3.1 测温原理 (12)3.3.2 特点 (13)3.3.3 接线方法 (13)3.3.4 非线性补偿方法 (14)3.4 通讯部分硬件设计 (15)3.5 交流固态继电器硬件设计 (16)3.5.1 交流固态继电器的原理 (17)3.5.2 交流固态继电器的分类 (18)3.5.3 交流固态继电器的特点 (18)3.5.4 交流固态继电器的应用场合 (19)3.5.5 交流固态继电器的使用注意事项 (19)第四章软件设计 (21)4.1 软件设计目标 (21)4.2 人机界面设计 (21)4.2.1 “组态王”软件简介 (21)4.2.2 人机界面基本设计步骤 (22)4.3PID控制算法 (26)4.3.1 PID算法简介 (26)4.3.2 PID各参数对控制系统稳定性的影响 (27)第五章参数整定 (28)5.1常用的参数整定方法 (28)5.1.1临界比例度法 (28)5.1.2经验凑试法 (29)5.2 实际参数调试 (29)第六章结论 (32)心得体会 (33)参考文献 (34)第一章引言1.1设计目的通过过程控制系统课程设计这一教学实践环节,使学生能在学完自动检测技术及仪表、过程控制仪表、过程控制系统等课程以后,能够灵活运用相关基本知识和基本理论模拟设计一个过程控制系统,以期培养学生解决实际问题的能力。
基于组态王的温度控制系统

1.绪论
1.1课题研究背景
随着科学技术的飞速发展,带动社会生产的发展,人类对能源的需求不断增加,世界上发达国家为了解决能源紧张而带给各行业的冲击,都努力在开发能源的同时,致力于节能新方案的研究。
本课题利用智能仪表控制系统,结合组态王监控软件设计人机对话界面,实现锅炉过热蒸汽控制系统设计。通过对现场系统数据的采集处理,在组态王中实现动画显示、报警处理、流程控制、实时曲线和报表输出等功能。同时利用智能仪表控制系统,在所设计的组态王监控界面中,进行相关仪表调校和控制器参数整定。最后向用户提供锅炉过热蒸汽控制系统的动态运行结果。
关键词:过热蒸汽温度;智能仪表;组态王
Abstract:Superheated steam temperature is a variety of important industrial boiler equipment parameters, in the production process, the entire path of soft drink is the highest temperature of superheated steam temperature, superheater temperature normal working hours, there are generally closer to the material to allow the maximum temperature, if overheating steam temperature too high, easy to damage superheater and steam turbine will cause excessive internal seriously affected the production of thermal expansion of the safety of operation; superheated steam temperature is low, it will reduce the efficiency of equipment, while the adoption of the final class of steam turbine steam humidity increased, the wear and tear caused by the leaves. Therefore, we must control the export steam superheater temperature. Overheated steam boiler control is tantamount to the task, that is, in order to maintain the export steam superheater temperature in the permit, and to protect the superheater tube wall temperature does not exceed allowable operating temperature.
免积分——基于PLC与组态王的模拟锅炉温度控制系统

初次设定值为55℃。系统经过一次振荡趋与稳定(保持在± 1℃)。系统第一次过冲与PID参数的设置有直接的关系。当第二 次随机设定时,没有过冲现象,调节时间也很短,证明PID已经 稳定。如图5,图中的采样时间为500ms,比例系数为10000,积 分时间为1500ms,微分时间为60s,微分增益为20。
玲-I/o矬
岔棚黼出指示 I/嚷塑
国电磁薅输出指示 z/o寓教
甾i袤位开关下
i,01l教 9坩“控婚¨坻墙竹殂趁∞孔嚣盯勰∞孔弛∞M舞盯嚣韩∞n舒“蜡培
论断毫..
眦1
}tCl
PtCl
吡l
r【c1
111 nSl0 D513 D5¨ 筠le
加热炉水位报■
rlCl叠5lS
nCl 12
砣破∞啪豫嫩∞嫩w
肚m哪眦瞰m眦比哪眦眦 H兹
参考文献(5条) 1.覃贵礼.吴尚庆 组态软件控制技术 2007 2.宋伯生.陈东旭 PLC应用及实验教程 2006 3.金以息.方崇智 过程控制 2000
4.徐亚飞.刘官敏.高国章.鲁凯生 温箱温度PID与预测控制[期刊论文]-武汉理工大学学报(交通科学与工程版)
2004(4) 5.袁秀英 组态控制技术 2003
控制过程中的温度以及控制参数进行实时记录并存储,通过历
史数据管理模块对数据信息进行分析,以更好地掌握加热炉的
控制特性。
画面参考语言如下: (监控画面每隔600
执行一次)
ifN本站点\液位开关下==1)
万方数据
<工业控制计算机}2008年21卷第12期
圈3组态画面 u本站点\加热炉水位=30; ifN本站点\水泵==1) \\本站点\加热炉水位=u本站点\加热炉水位+8; if队本站点\电磁阀输出指示==1) \\本站点\加热炉水位=\\本站点\加热炉水位一2; ifN本站点\水泵==1) \\本站点\水库水位=\\本站点\水库水位一2; if6\本站点\电磁阀输出指示==1) \\本站点\水库水位=讯本站点\水库水位+2; ifN本站点\液位开关上==1) \\本站点\加热炉水位=100; 312数据变量定义 实时数据库是组态工程的数据交换和数据处理中心。数据 变量是构成实时数据库的基本单元,建立实时数据库的过程也 就是定义数据变量的过程。定义数据变量的内容主要包括:指定
基于组态王和MATLAB的温度控制系统

基于组态王和MATLAB 的温度控制系统姓名:班级:学号:一、系统简介组态王是运行在Windows98/NT/2000上的一种工业组态软件,提供了多种I/0驱动程序,可以直接使用变量名读写I/O设备⋯,把下位机的信息实时地传送到上位机中。
但是,在许多工业监控系统中,上位机不仅要实现人机交互的功能,还需要执行控制算法,实现对下位机的实时控制。
组态王的命令语言是一段类似C语言的程序,其编程环境较弱,很难实现复杂的控制算法,因此有必要借助其他软件环境实现系统的控制算法。
MATLAB语言是目前工程界流行最广的一种科学计算语言。
利用MATLAB可以设计先进、复杂的控制算法,将人们从繁琐、复杂的底层编程中解放出来,从而提高编程效率。
本研究在锅炉水温监控系统中采用组态王构成系统的软件平台,完成数据的实时采集和处理,实现人机对话和以动画的方式显示控制设备的运行状态等监控功能。
同时,采用MATLAB语言作为后台程序扩充组态王的编程功能,实现系统的模糊控制算法。
二、监控系统的组成2.1监控系统的硬件组成锅炉水温监控系统结构如图1所示,其系统的工作过程如下:(1)温度传感器PTl00检测出锅炉水的温度信号,经温度变送器将温度信号转换为相应1—5V的模拟量信号,该量经A/D板卡PCL812PG 转换成对应的数字量信号送上位机显示和处理。
(2)在上位机中将检测的温度信号与上位机中设定的温度值进行比较,产生控制器的输人变量(如温度偏差和温度偏差变化率),由控制器计算后输出控制量信号u。
(3)控制量U经过数字量输出板卡PCL726转换为对应的4~20mA 的模拟量信号,送控制装置中SCR可控硅模块执行,SCR模块通过控制可控硅来调节电阻丝两端的电压,对系统的温度进行控制,最终使锅炉温度达到设定值。
图1锅炉水温控制系统结构框图2.2监控系统的软件组成监控系统的软件结构由两个模块组成:前台运行的监控界面模块由组态王开发,以模拟控制系统动态运行为主,生动直观地显示各个变量的各种信息,并实现数据实时采集、人机对话和数据记录等功能;后台运行的数据处理模块以MATLAB语言为开发环境,实现系统的控制算法,产生系统执行机构的控制变量。
组态王锅炉温度控制系统控制规律

组态王锅炉温度控制系统控制规律引言组态王锅炉温度控制系统是一种用于控制锅炉温度的自动化系统。
它采用先进的组态软件和硬件设备,通过监测和调节锅炉的温度,实现对锅炉运行过程的精确控制。
本文将详细介绍组态王锅炉温度控制系统的控制规律。
1. 组态王锅炉温度控制系统简介组态王锅炉温度控制系统是一套基于PLC(可编程逻辑控制器)和人机界面(HMI)的数字化控制系统。
它具有以下几个特点:•高度自动化:组态王锅炉温度控制系统可以自动监测锅炉的温度变化,并根据设定的控制规律自动调节锅炉的工作参数,实现精确控制。
•可视化界面:通过人机界面,用户可以直观地了解锅炉的工作状态和温度变化情况,并可以对系统进行操作和调整。
•高效稳定:组态王锅炉温度控制系统采用先进的控制算法和优化策略,能够快速、准确地响应温度变化,保持锅炉的稳定运行。
2. 组态王锅炉温度控制系统的控制规律组态王锅炉温度控制系统的控制规律是根据锅炉运行过程中的温度变化情况来确定的。
其主要包括以下几个方面:2.1 温度监测组态王锅炉温度控制系统通过传感器对锅炉的温度进行实时监测。
传感器将锅炉的温度信号转换为电信号,并传输给PLC进行处理。
2.2 温度设定组态王锅炉温度控制系统需要设置合适的温度设定值。
根据锅炉的工作要求和环境条件,用户可以通过人机界面来设定锅炉的目标温度。
2.3 温度控制组态王锅炉温度控制系统根据实际温度和设定温度之间的差异,通过对锅炉的工作参数进行调节,来控制锅炉的温度。
2.4 控制算法组态王锅炉温度控制系统采用了一种先进的控制算法,通常使用PID控制算法。
PID控制算法通过不断对锅炉的工作参数进行调整,来使实际温度逐渐接近设定温度。
•比例控制(P):根据实际温度与设定温度之间的差异,调节锅炉的输出功率。
•积分控制(I):根据温度误差的累积值,调节锅炉的输出功率,以减小稳态误差。
•微分控制(D):根据温度变化的速率,调节锅炉的输出功率,以减小温度波动。
组态王课程设计--锅炉温度控制系统

锅炉温度控制系统上位机设计1.设计背景锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。
它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。
随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。
为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。
随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。
2.任务要求(1) 按照题目设计监控画面及动态模拟;(2) 在数据字典中定义需要的内存变量和I/O变量;(3) 实现监控系统的实时、历史曲线及报警界面显示;(4) 实现保存数据和参数报表打印功能;(5) 实现登陆界面和帮助界面。
3. 界面功能3.1 系统说明本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。
此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。
实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。
实时报警界面可以随时进行提醒,防止发生意外情况。
帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。
登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。
该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。
3.2主监控界面主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对温度进行控制,使得温度在要求范围内。
基于组态王的温度控制系统

关键词:过热蒸汽温度;智能仪表;组态王
Abstract:Superheated steam temperature is a variety of important industrial boiler equipment parameters, in the production process, the entire path of soft drink is the highest temperature of superheated steam temperature, superheater temperature normal working hours, there are generally closer to the material to allow the maximum temperature, if overheating steam temperature too high, easy to damage superheater and steam turbine will cause excessive internal seriously affected the production of thermal expansion of the safety of operation; superheated steam temperature is low, it will reduce the efficiency of equipment, while the adoption of the final class of steam turbine steam humidity increased, the wear and tear caused by the leaves. Therefore, we must control the export steam superheater temperature. Overheated steam boiler control is tantamount to the task, that is, in order to maintain the export steam superheater temperature in the permit, and to protect the superheater tube wall temperature does not exceed allowable operating temperature.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锅炉温度控制系统上位机设计
1. 设计背景
锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。
它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。
随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。
为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。
随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。
2. 任务要求
(1) 按照题目设计监控画面及动态模拟;
(2) 在数据字典中定义需要的内存变量和I/O 变量;
(3) 实现监控系统的实时、历史曲线及报警界面显示;
(4) 实现保存数据和参数报表打印功能;
(5) 实现登陆界面和帮助界面。
3. 界面功能
3.1 系统说明
本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。
此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。
实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。
实时报警界面可以随时进行提醒,防止发生意外情况。
帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。
登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。
该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。
3.2 主监控界面主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对
温度进行控制,使得温度在要求范围内。
这样,就实现了锅炉温度的控制。
在该界面加
入菜单项,可以查看历史系统报警。
加入实时曲线、历史曲线和帮助界面按钮,可以使
操作者更加快捷、准确的实现对系统的控制。
如图 1 所示:
图1 锅炉温度控制系统主监控界面
3.3 实时曲线界面实时趋势曲线的功能是随着系统的运行,动态的显示出锅炉内液体的温度和液位的变化情况,让用户清楚的看出温度和液位的变化趋势,为下一步控制做出精确地决策。
如图 2 所示:
3.4 历史曲线界面历史趋势曲线记录了锅炉内液体温度和液位的历史变化,用户可方便查看历史曲线的变化情况。
该界面加入了打印按钮,可方便的实现对历史曲线的打印。
如图 3 所示:
图3 历史趋势曲线
3.5 实时报警界面实时报警界面会在锅炉液体温度低于10 度时报警,并弹出报警界面,提醒操作者对该情况迅速做出反应,以免发生意外。
如图 4 所示:
图4 实时报警界面
3.6 登陆界面登陆界面设置了用户登陆部分,可以写入密码,使得有相应权限的用户才可以进入系统进行操作。
如图 5 所示:
图5 登陆界面
3.7 帮助界面帮助界面可以帮助用户更快的掌握如何控制系统,使系统工作在要求状态。
如图 6 所示:
图6 帮助界面
4. 数据字典设计
数据字典用来定义控制过程中用到的相关变量,在动画连接时需要将变量连接到各个
部件,通过编写命令语言即可实现对相关变量的控制。
在该系统中主要的变量有锅炉液位、温度、液位开关、加热显示和降温显示等。
如图7 所示:
图7 变量表
5. 软件运行演示
图8 锅炉温度控制系统运行仿真
6. 心得体会
这次课程设计让我对使用专业知识、专业技能来分析和解决实际问题有了比较全面系统的锻炼。
相信以后在使用组态软件设计能够更全面,设计出更方便的实现监控和控制的功能,同时让我在使用编程技巧的熟悉度向前迈了一大步。
在课程设计的期间,我学到了很多课本上学不到的知识,拓展了自己的视野和拓宽了自己的知识面。
参考文献
[ 1] 何离庆等,过程控制系统与装置[M]. 重庆大学出版社,2003.
[ 2] 曹立学,令朝霞. 基于组态软件的计算机液位串级控制系统设计与研究[J]. 工业控制计算机,2008.
附录1
1. 启动时应用程序命令语言
本站点水库液位=40;
本站点液位开关2==1)u本站点加热炉水位=40;
本站点液位开关2==1)
本站点加热炉水位=u 本站点加热炉水位+5;
本站点水库液位本站点水库液位-5;}
本站点液位开关3==1)
本站点加热炉水位本站点加热炉水位-5;
本站点水库液位本站点水库液位+5;} 本站点温度=20;
本站点加热==1)
本站点温度=u本站点温度+0;
本站点降温==1)
本站点温度=u本站点温度-0;
2. 运行时应用程序命令语言
本站点液位开关2==0)
本站点加热炉水位本站点加热炉水位+0;
本站点水库液位本站点水库液位-0;}
本站点加热==0)
本站点温度本站点温度+10;
本站点降温==0)
本站点温度本站点温度-10;
本站点加热==1)
本站点温度=u本站点温度+0;
本站点降温==1)
本站点温度=u本站点温度-0;
本站点液位开关3==0)
本站点加热炉水位本站点加热炉水位-0;
本站点水库液位本站点水库液位+0;}
本站点液位开关2==1)
本站点加热炉水位=u 本站点加热炉水位+5;
本站点水库液位本站点水库液位-5;}
本站点液位开关3==1)
本站点加热炉水位本站点加热炉水位-5;
本站点水库液位本站点水库液位+5;}。