整式的乘除(大量计算题、能力提高题)
整式的乘除练习题

整式的乘除练习题整式的乘除在代数中,我们经常需要进行整式的乘除运算。
下面分别介绍幂的运算、幂的乘方、积的乘方和同底数幂的除法。
幂的运算幂的运算包括同底数幂的乘法和幂的乘方。
同底数幂的乘法可以通过将底数相同的幂的指数相加来计算。
幂的乘方则是将幂的指数相乘的运算。
同底数幂的乘法填空题:1.计算:10×10=100.2.计算:(a-b)·(a-b)=a^2-2ab+b^2.3.计算:a·a·a=a^3.4.计算:a^2·a^5=a^7.选择题:1.x^2的计算结果是(B)x^2.2.下列各式正确的是(A)3a·5a=15a。
3.正确的式子的个数是(A)1个。
4.若2x+1=16,则x等于(B)4.解答题:1.计算:2x+3y)·(2x+3y)=4x^2+12xy+9y^2.a-b)·(b-a)=-(a-b)^2=-(a^2-2ab+b^2)。
m·m+m·m+m·m)=(m^2+m^2+m^2)=3m^2.2.已知am/an=8/32,求am+n的值。
am/an=(a^m)/(a^n)=8/32=1/4,所以m-n=-2,即m=2n-2.am+n=a^(m-n)=a^(-2)=1/(a^2)。
幂的乘方幂的乘方是将幂的指数相乘的运算。
例如,(a^2)^3=a^6.选择题:1.计算(x^2)^4的结果是(D)x^8.2.下列计算错误的是(D)-a+2a=a。
3.计算(xy)^2的结果是(A)x^2y^2.4.计算(-3a)^2的结果是(C)9a^2. 填空题:1.-(a)=-a。
2.若x^3m=2,则x^9m=8.3.若a^2=3,则(2a)^3=54a^3.积的乘方积的乘方是将多个同样的因数相乘的运算。
例如,(ab)^3=a^3b^3.计算题:1.计算:x·x+3=(x^2)·x=(x^3)。
整式的乘除综合练习题

整式的乘除综合练习题数学作为一门基础学科,对于学习其他领域的知识和解决实际问题具有重要的作用。
而在数学的学习中,整式的乘除是一个重要的内容。
下面我们就通过一些练习题,来深入理解整式的乘除。
练习题一:将下列两个整式相乘。
(3x + 2)(x + 4)解析:我们可以使用分配律将两个整式相乘。
首先将第一个整式中的每一项与第二个整式中的每一项相乘,然后将它们相加得到最终结果。
(3x + 2)(x + 4) = 3x * x + 3x * 4 + 2 * x + 2 * 4= 3x^2 + 12x + 2x + 8= 3x^2 + 14x + 8所以,(3x + 2)(x + 4) = 3x^2 + 14x + 8。
练习题二:将下列两个整式相除。
8mn^2 / 4n解析:我们可以使用整式的除法法则,即将除数中的每一项与被除数中的每一项进行相除,然后将它们的结果相加得到商。
8mn^2 / 4n = (8mn^2) / (4n)= 8mn^2 * (1/(4n))= (8mn^2) * (1/4) * (1/n)= 2mn所以,8mn^2 / 4n = 2mn。
通过以上两道练习题,我们可以看到整式的乘除运算并不复杂,只需要根据相应的法则进行运算即可。
在进行整式的乘法时,我们需要遵循分配律,将每一项相乘,并将结果相加得到最终的乘积。
而在进行整式的除法时,我们需要将除数中的每一项与被除数中的每一项相除,并将结果相加得到商。
当然,我们在练习整式的乘除运算时,还需要注意一些特殊的情况。
比如,当整式中的某些项具有相同的指数时,可以进行合并,得到更简洁的结果。
此外,我们还需要熟练掌握各种整式的乘除法则,灵活运用,加深对整式的理解。
通过大量的习题训练,我们可以提高整式的乘除运算的能力,在解决实际问题时更加得心应手。
不仅如此,深入理解整式的乘除也有助于我们在学习其他数学内容时更加灵活运用,提高整体的数学水平。
这就是整式的乘除综合练习题的内容,通过这些练习题的训练,我们对整式的乘除运算有了更深入的理解。
整式的乘除法专题训练(含答案)

整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;5. 负整数指数幂;6. 零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4. 正确联系运算性质和法则一、计算3?x5 x ?x3?x41.x2342.2x 1 2? 2x 1 32x 1 4? 1 2 x3. x 5 ?x 3n 1 x 3n x 44. a b 2 ? b a 3 a b 4 ? b a2 33 2 2 2 27. 2x 2 3x 3 x 2 ? x 25. 2x 4 42x 10 2x 2344 2x 4 ?5 x 4 6. 2 3 3 x ? x 3 ? 2y23 2xy ? x ? y63 9. - x - x32 211. x 3x 23 xx22 -x ?-x1312. 2x-y 13322x - y23 y- 2x类型二:幂的运算性质的灵活运用13.已知2a 4,2b 7, 求2a b的值。
14.已知3x a10. 2x3x 2 3x6a,用含 a 的代数式表示3x.15.已知3m6,3n13.5,求m+n 的值m n m n 2a m3,a n2, 求a m n 2的值16.已知17.已知10a5,10b6, 求102a 3b的值。
18.若3x 5y 3 0, 求8x?32y的值。
19.已知32x 232x 1486,求x 的值20.已知a5? a m 3a11,求m的值21.已知3m 2,3n 4,求9m 1-2n的值1212222.若 10m 20,10n 1,求9m 32n 的值。
5 23.已知 25a ?52b 56,4b 4c 4,则代数式 a+2b-c 的值类型三:运用幂的运算性质进行有理数的混合运算24. 48 0.2582019 201825. 5 2019 0.220182118 211726. 8 0.125 2019 27. -1 1 0.2520209 2019 2019-4 202110121222 2018 28.3 1.52018 - 1 30 29.-23 π-3.14 0 -1-20191 -1-330.-22π-3 0-1-2类型四:科学记数法31. 用小数表示下列各数(1) 3 106(2)8.7 10-3(3) 6.12 10-332. 滴水穿石的故事大家都听说过吧,现在测量出:水珠不断地滴在一块石头上,经过40 年,石头上形成一个深为 4 10-2m的小洞,问每年小洞的深度增加多少米?(用科学记数法表示)33. _________________________ 成人每天维生素 D 的摄入量约为0.000 004 6克。
整式的乘除法专题训练(含答案)

整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;5. 负整数指数幂;6. 零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4. 正确联系运算性质和法则一、计算3?x5 x ?x3?x41.x2342.2x 1 2? 2x 1 32x 1 4? 1 2 x3. x 5 ?x 3n 1 x 3n x 44. a b 2 ? b a 3 a b 4 ? b a2 33 2 2 2 27. 2x 2 3x 3 x 2 ? x 25. 2x 4 42x 10 2x 2344 2x 4 ?5 x 4 6. 2 3 3 x ? x 3 ? 2y23 2xy ? x ? y63 9. - x - x32 211. x 3x 23 xx22 -x ?-x1312. 2x-y 13322x - y23 y- 2x类型二:幂的运算性质的灵活运用13.已知2a 4,2b 7, 求2a b的值。
14.已知3x a10. 2x3x 2 3x6a,用含 a 的代数式表示3x.15.已知3m6,3n13.5,求m+n 的值m n m n 2a m3,a n2, 求a m n 2的值16.已知17.已知10a5,10b6, 求102a 3b的值。
18.若3x 5y 3 0, 求8x?32y的值。
19.已知32x 232x 1486,求x 的值20.已知a5? a m 3a11,求m的值21.已知3m 2,3n 4,求9m 1-2n的值1212222.若 10m 20,10n 1,求9m 32n 的值。
5 23.已知 25a ?52b 56,4b 4c 4,则代数式 a+2b-c 的值类型三:运用幂的运算性质进行有理数的混合运算24. 48 0.2582019 201825. 5 2019 0.220182118 211726. 8 0.125 2019 27. -1 1 0.2520209 2019 2019-4 202110121222 2018 28.3 1.52018 - 1 30 29.-23 π-3.14 0 -1-20191 -1-330.-22π-3 0-1-2类型四:科学记数法31. 用小数表示下列各数(1) 3 106(2)8.7 10-3(3) 6.12 10-332. 滴水穿石的故事大家都听说过吧,现在测量出:水珠不断地滴在一块石头上,经过40 年,石头上形成一个深为 4 10-2m的小洞,问每年小洞的深度增加多少米?(用科学记数法表示)33. _________________________ 成人每天维生素 D 的摄入量约为0.000 004 6克。
整式乘除计算题专练500题

整式乘除计算题专练1.、22()x x -? 3、2323()()a a a -? 5、3231()4x y z -6、32()()()x y x y y x ---7、53143()()n n a a a a --?-?8、2333211()()23xy x y -+ 9、(-8)2005×0.1252004 10、(-0.25)11×222 11、263373()()(2)x x x - 12、433111()()()a a a ?- 13、232(2)(2)n ?- 15、3312()()n x y xy+-- 16、5524226()()()()()x x x x x x ----- 17、232323(3)()x y x y --- 20、122()()m m m a a a +-- 21、3233633(4)(3)2(2)x x x x x -+---23、4354832263()2()5()x y xy x y x y x y -+25、已知23,24n m ==,求2312m n ++值 26、已知36,92m n==,求2413m n -+值 27、(3x+10)(x+2)28、(4y -1)(y -5)29、(2x -521)()252y x y +30、()()()x y z y z x z x y ---+- 32、若m 为正整数,且x 2m =3,求:(3x 3m )2-13(x 2)2m 的值33、532()()a a a -?? 35、2(x -8)(x -5)-(2x -1)(x+2) 36、2322(43)3(46)m m m m m m +--+- 37、()04331113()()()333----+-?- 39、2()x y --40、(35)(106)x y y x -- 41、20092008(2)(2)-+- 44、化简求值:其中14,22x y =-= 2(2)()(2)2(3)()x y x y x y x y x y -+-----45、2(1)x y -- 46、(32)(23)x y y x --47、2211(3)(3)22x y x y -+ 48、30131241()()()()3352----?+-? 49、23021771()()(1.92)()(3)993----?---?51、22222()()()a b a b a b -++ 53、222()()()a b a b a b -+?54、2222()()()()x y x y x y y x +-----+- 55、22(23)(23)(23)(23)a b a b a b a b --+-++56、化简求值:其中1x =-(21)(1)2(3)(4)x x x x +----57、(32)(32)m n m n -+ 58、(3)(3)a b b a -++ 59、4422()()()x y xy x y -?? 61、1212()()m n m n a b a b -+-++- 63、(26)(3)y y +- 64、(0.5)(0.5)xy xy -+--65、3(2)(1)2(5)(3)x x x x -+--- 66、22222(3)(3)(9)x y x y x y +-+68、42(1)(1)(1)(1)x x x x +--++ 69、已知()211x x +-=,求x 的值。
整式的乘除(人教版)(含答案)

整式的乘除(人教版)一、单选题(共15道,每道6分)1.计算的结果是( )A. B.C. D.答案:A解题思路:单项式×单项式遵循的运算法则:系数乘以系数,字母乘以字母.,故选A.试题难度:三颗星知识点:单项式乘单项式2.下列运算正确的是( )A. B.C. D.答案:C解题思路:A选项应为,故A选项错误;B选项应为,故B选项错误;C选项,故C选项正确;D选项应为,故D选项错误.故选C.试题难度:三颗星知识点:幂的乘方3.下列运算错误的是( )A. B.C. D.答案:B解题思路:单项式×单项式遵循的运算法则:系数乘以系数,字母乘以字母.B选项应为,故选B.试题难度:三颗星知识点:单项式乘单项式4.计算的结果是( )A. B.C. D.答案:D解题思路:单项式×多项式:根据乘法分配律,转化为单×单,然后按照单项式×单项式的运算法则进行计算.,故选D.试题难度:三颗星知识点:单项式乘多项式5.若,则的值是( )A.-15B.15C.-3D.3答案:C解题思路:单项式×多项式:根据乘法分配律,转化为单×单,然后按照单项式×单项式的运算法则进行计算.故选C.试题难度:三颗星知识点:解一元一次方程6.计算的结果是( )A. B.C. D.答案:A解题思路:单项式×多项式:根据乘法分配律,转化为单×单.然后按照单项式×单项式的运算法则进行计算.故选A.试题难度:三颗星知识点:合并同类项7.计算的结果是( )A. B.C.1D.答案:B解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.,故选B.试题难度:三颗星知识点:整式的除法8.计算的结果是( )A. B.C. D.答案:C解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.,故选C.试题难度:三颗星知识点:整式的除法9.,括号里所填的代数式为( )A. B.C. D.答案:C解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.设括号里的代数式为M,∴即括号里面的代数式为.故选C.试题难度:三颗星知识点:整式的除法10.计算的结果是( )A. B.C. D.答案:D解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.故选D.试题难度:三颗星知识点:多项式乘多项式11.下列各式计算结果为的是( )A. B.C. D.答案:C解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.A选项,故A选项错误;B选项,故B选项错误;C选项,故C选项正确;D选项,故D选项错误.故选C.试题难度:三颗星知识点:多项式乘多项式12.若的结果中不含的一次项,则的值是( )A.-2B.2C.-1D.任意数答案:A解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.∵的结果中不含x的一次项∴∴故选A.试题难度:三颗星知识点:多项式乘多项式13.下列式子:①;②;③;④.其中计算不正确的有( )A.3个B.2个C.1个D.0个答案:A解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.①,①不正确;②,②不正确;③,③不正确;④,④正确.故不正确的有①②③,共3个.试题难度:三颗星知识点:积的乘方14.计算的结果是( )A. B.C. D.答案:B解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.故选B.试题难度:三颗星知识点:整式的除法15.计算的结果是( )A. B.C. D.答案:D解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.故选D.试题难度:三颗星知识点:整式的除法。
完整word版整式的乘除提高练习

《整式的乘除》拔高题专项练习【题型1】1、若2x 5y 3 ____________________ 0,则4x 32y的值为m 3 m 1 4m 72、如果9 27 3 81,那么m= ________ .【变式练习】1、若5X—3y—2=0,则105x 103y= _________ .2、若32 92a 127a 181,求a 的值.3、如果2 8X 16x222,贝V x的值为_______________ .【题型2】1、___________________________________________________ 若10m 3, 10n 2,则102m 3n的值为 ________________________2、若a2n3,则a3n 4的值为________________ .3、 已知 x n 5, y n 4,贝V xy 2n = _________________ .4、 若 3m =6, 9n =2,求 32fm 4n +1 的值。
【变式练习】1、已知2m 3,2n 4,则23m 2n 的值为 ____________________2、若2x 3,4x 5,则2x 2y 的值为 _______________3、己知 2n =a , 3n =b,则 6n = ______________,t . —m . n亠 E —3m 2n 14、若 2 3,4 8,则 2 = _____ .【题型3】1、 若 x 2m+102=x 5,则 m 的值为()A.OB.1C.2 3 2、 已知 2|x29,则 x = __________ .【变式练习】 1、求下列各式中的x :①a x 3 a 2x1(a 0,a 1) •,②p x p 6 D.3p 2x (p 0,p 1).2、已知2 X 2329,则x的值是 ______________ .【题型4】1、在ax 3y与x y的积中,不想含有xy项,则a必须为____________________ .【变式练习】2 2 11. 当k= ________ 时,多项式x 3kxy 3y xy 8中不含xy项.32、若a2 pa 8 a2 3a q中不含有a3和a2项,贝U p _______________ ,q ______【题型5】1、若x26, x y 3,则x y =2 22、已知a b 11, a b 7,则ab的值是__________________________3、已知a b 5, ab 3,贝V a2 b2的值为 _____________________21 14、已知x —3,贝y x - 的值为_________________x x5、(3x 2y)2 ___________ =(3x 2y)2.6、若ab 2, a b 3,贝V a b 2的值为【变式练习】2 2 4、若 x y 8, xy 10 ,则 x y =4 42 5、若1 4 -2 0,则2的值为 ____________x x x1 1 16 .已知 a 1,贝U a 2= ___________________ ; a 4= _________________ a a a【题型6】 1、计算 a 2 ab b 2 a 2 ab b 2 的结果是 _____________________________________1、已知x 9, x y 2 5,则xy 的值为2 22 .若 m n 10, mn 24,则 m n3、若 x y 0, xy 11,则x 2 xy y 2的值为【变式练习】1、计算3x 2y 1 3x 2y 1的结果为________________________________【题型7】21、若4x mx 9是一个完全平方式,则m的值为____________________ .2、若代数式x2 y214x 2y 50的值为0,则x ____________ ,y ________【变式练习】2 21、已知4x 12x m 是一个完全平方式,则m的值为________________________ .2、若x22(m 3) 16是关于x的完全平方式,则m __________ .2 23、若m n 3,则2m 4mn 2n 6的值为 ____________________________24、若 m 2 n 8n 16 0,贝U m _____ ,n _________15•已知 a2 b 2 2a 6b 1。
整式的乘除培优提高练习题

整式的乘除提高练习(一)填空题(每小题2分,共计24分)1.a 6·a 2÷(-a 2)3=________.2.( )2=a 6b 4n -2.3. ______·x m -1=x m +n +1.4.(2x 2-4x -10xy )÷( )=21x -1-25y . 5.x 2n -x n +________=( )2.6.若3m ·3n =1,则m +n =_________.7.已知x m ·x n ·x 3=(x 2)7,则当n =6时m =_______.8.若x +y =8,x 2y 2=4,则x 2+y 2=_________.9.若3x =a ,3y =b ,则3x -y =_________.10.[3(a +b )2-a -b ]÷(a +b )=_________.11.若2×3×9m =2×311,则m =___________.12.代数式4x 2+3mx +9是完全平方式则m =___________.(二)选择题(每小题2分,共计16分)13.计算(-a )3·(a 2)3·(-a )2的结果正确的是……………………………( )(A )a 11 (B )a 11 (C )-a 10 (D )a 1314.下列计算正确的是………………………………………………………………( )(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2(C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =115.4m ·4n 的结果是……………………………………………………………………( )(A )22(m +n ) (B )16mn (C )4mn (D )16m +n16.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为………………………( )(A )5 (B )25 (C )25 (D )10 17.下列算式中,正确的是………………………………………………………………( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )(31)-2=231=91 (C )(0.00001)0=(9999)0 (D )3.24×10-4=0.000032418.(-a +1)(a +1)(a 2+1)等于………………………………………………( )(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 419.若(x +m )(x -8)中不含x 的一次项,则m 的值为………………………( )(A )8 (B )-8 (C )0 (D )8或-820.已知a +b =10,ab =24,则a 2+b 2的值是 …………………………………( )(A )148 (B )76 (C )58 (D )52(三)计算(19题每小题4分,共计24分)21.(1)(32a 2b )3÷(31ab 2)2×43a 3b 2; (2)(4x +3y )2-(4x -3y )2;(3)(2a -3b +1)2; (4)(x 2-2x -1)(x 2+2x -1);(5)(a -61b )(2a +31b )(3a 2+121b 2);(6)[(a -b )(a +b )]2÷(a 2-2ab +b 2)-2ab .22.化简求值(本题6分)[(x +21y )2+(x -21y )2](2x 2-21y 2),其中x =-3,y =4.(四)计算(每小题5分,共10分)23.9972-1001×999.22.(1-221)(1-231)(1-241)…(1-291)(1-2011)的值.(五)解答题(每小题5分,共20分)23.已知x +x 1=2,求x 2+21x ,x 4+41x的值.24.已知(a -1)(b -2)-a (b -3)=3,求代数式222b a +-ab 的值.25.已知x 2+x -1=0,求x 3+2x 2+3的值.26.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.附加题:1.化简: x -2x+3x -4x+5x -…+2001x -2002x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) (2)
(3) (4)
口算:1._____________. 2.=_____________.
3.=_____________. 4.=_____________.
5.=_____________.
6.=_____________.
7.=_____________.
8.=_____________.
9.=_____________.
(1)5(-x3)4·(-3x4)3÷(-18x5); (2)[5ab3-2b2(3a2+2ab)]÷(-ab2);
(3)(a-2)·(-3an)2-(9an+1+5a)·an;(4)[6(2x-y)3-4y(y-2x)2]÷2(y-2x)2。
(1)[(a-b)2+ab]·(a+b); (2)(x-3y)(x+3y)(x4+9x2y2+81y4);
(3)(x+)2(x2-x+)2; (4)(x-4y+2z)(x+4y-2z)。
(1)(-5.5)1997×()1997; (2) ;
(3)1998×1996-19972; (4) 。
先化简再求值
(x-y)2+(3x-2y)(2x+y)-x(6x-y),其中x=,y=1。
①(2a2 - a - 9)·(-9a) ②(x-y)( x2+xy+y2)
③(2x-y)(2x+y)+y(y-6x) ④
⑤
三.化简与求值:(a+b)(a-b)+(a+b)2-a(2a+b),其中a=,b=-
1。
(10分)
21.
22.
23..24.
.
25..26.
.
27.应用乘法公式进行计算:.
28.先化简,再求值:,其中.31.已知:,,求的值.9. 10..
11..12.
13.14.
4、5、
6、7、
8、简便运算:9、
10、 11、
12、 13、
15、化简求值其中
(6)(-3a3)2·a3+(-4a)2·a7-(5a3)3 (7)3x(3x2-2x-1)-2x2(x-2)
(8) (9)(2a-3b)(a+5b)
(9);(10)
(11) (12);
(13)(p-3)(p+3)-(p-2)(p+3) (14)(mn-1)2-(mn+1)2
(1)(2)
(3)(4)
(5)(6)
计算:
1、若,则。
2.若,,则 .
3.已知,,求的值.
4、化简得()
A、B、C、
D、
5.已知x+y=10,xy=24,则的值为=_________.
6.已知是一个多项式的平方,则m=__________.
7.已知,则的值为__________.
8.已知,则=____________.=______________.
1.
2.已知:x2-x-2=0, 求(2x+3)(2x-5)+2的值
3.观察下列式子:
12+(1×2)2+22=(1×2+1)2
22+(2×3)2+32=(2×3+1)2
32+(3×4)2+42=(3×4+1)2
……
(1) 写出第2010行的式子_________________________.
(2) 写出第n行的式子_____________________________.
4.已知x2+y2+4x-6y+13=0,求x、y的值.
5.已知x2+3x+5的值为7,那么3x2+9x-2的值是____
6.已知a是方程x2-5x+1= 0的解,则的值为_________.
7.已知x-y=4;y-z=5,求的值。
8.已知a-b=b-c=,a2+b2+c2=1则ab+bc+ca的值等于 .
9.若=
10.已知,求x,y的值.
12.若代数式的值是8,则代数式的值是。
13.下图是某同学在沙滩上用石于摆成的小房子:
观察图形的变化规律,写出第n个小房子用了块石子.
14.已知a是方程x2-5x+1= 0的解,则的值为_________.
1.;
2.;
3.。
4.若,,,求证:。
5.现规定:,其中a、b为有理数,求的值。
6.已知:,,
试求:的值。
7.已知:,求证:
8.已知:,,,求:。
9.当展开后,如果不含和的项,求的值。
10.试证明代数式的值与的值无关。
11.已知除某一多项式所得的商式是-,余式是,则这个多项式的值是()。
(A);(B);
(C);(D)。
12.已知:求的值。
13.观察下列各式:;
;
;
(1)、根据前面各式的规律可得:。
(其中n 是正整数);
(2)、运用(1)中的结论计算:的值。