高中数学教学设计模版及案例-参考模板
优秀高中数学教案模板(优秀11篇)

优秀高中数学教案模板(优秀11篇)优秀高中数学教案模板篇一教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。
(2)进一步理解曲线的方程和方程的曲线。
(3)初步掌握求曲线方程的方法。
(4)通过本节内容的教学,培养学生分析问题和转化的能力。
教学重点、难点:求曲线的方程。
教学用具:计算机。
教学方法:启发引导法,讨论法。
教学过程:【引入】1.提问:什么是曲线的方程和方程的曲线。
学生思考并回答。
教师强调。
2.坐标法和解析几何的意义、基本问题。
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。
解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程。
(2)通过方程,研究平面曲线的性质。
事实上,在前边所学的直线方程的理论中也有这样两个基本问题。
而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。
本节课就初步研究曲线方程的求法。
【问题】如何根据已知条件,求出曲线的方程。
【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。
首先由学生分析:根据直线方程的知识,运用点斜式即可解决。
解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决。
可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解。
设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解。
(2)以这个方程的解为坐标的点都是曲线上的点。
设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上。
综合(1)、(2),①是所求直线的方程。
高中数学教学设计案例(优秀4篇)

高中数学教学设计案例(优秀4篇)高中数学教学设计案例篇一一、指导思想:贯彻教育部的有关教育教学计划,在学校、年级组的直接领导下,认真执行学校的各项教育教学制度和要求,认真完成各项任务。
教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。
二。
学情分析:上学期期末考学生的数学成绩相对于高一期末考有进步,但还不是很理想,理科生数学学习的难度本学期将增大,加上学业水平考试,所以本学期学生面临的压力将更大,任务艰巨。
三。
教学目的任务要求分析:本学期教学的主要任务是数学选修2-2,2-3和学考复习。
(1)认真把握“标准”的教学要求。
(2)通过建立相关知识的联系,渗透“数形结合”等思想方法。
(3)关注现代信息技术的运用。
(4)把握学考大纲复习标准四、主要措施1、明确一个观念:高考好才是真的好。
平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。
这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。
2、以老师的精心备课与充满激情的教学,换取学生学习高效率。
3.将学校和教研组安排的有关工作落到实处。
高中数学教学设计案例篇二以现代教育理论,教学大纲和考纲为指导,以课本和大纲为依据,全面贯彻党的教育方针,积极实施和推进素质教育,提高学生的学习能力。
不仅使学生掌握高中数学基础知识与能力,而且要从全方位培养学生的创新意识,创新精神。
本学期执教班次是高二6班的文科班的数学教学,基础好的学生较少,绝大多数学生数学基础极差。
且成绩参次不齐,针对这种情况,必须要因材施教,充分调动学生学习积极性,提高学生的学习兴趣,力争本学期数学教学上新台阶。
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
高中数学教案设计范例优秀3篇

高中数学教案设计范例优秀3篇篇一:高中数学教案设计范例篇一一、复习内容平面向量的概念及运算法则二、复习重点向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。
三、具体教学过程1、学生准备课前预习回家做作业。
其具体步骤是:相应知识的系统梳理;典型例题的摘录;搜集平时作业,测验作业中存在的典型错误;提出针性训练的练习题;准备思考题,以及家庭作业。
学生的准备可以从中选择一项,学有余力的同学可以多选。
2、学生可以分为出题组、答题组和归纳组(每组3~4人),三个小组又可构成一个大的探究组,各小组的角色在其过程中可以互换;教师从旁引导,控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑,最后选出具有代表性的题目和表达最完整的归纳展示给学生。
出题组:在教师的引导下,确立出题意图后,可以自编或在课本、资料中寻找适当的例题。
答题组:迅速给出题目答案或解题思路步骤(由学生自己讲解),同时确立该题所考察的知识点和方法,并互相讨论解题过程中的易错点和容易忽视的问题。
归纳组:对照相应的问题,归纳出解决问题的关键和方法及其需要注意的事项。
并以书面的形式给出,可充分利用投影的方式展示给学生。
3、教学中教师按上述环节顺序,让每一环节准备相同内容,学生自己选择一人担任主讲,其余同学组成评议组,主讲讲解完后,由评议组补充、完善或评价、矫正……。
4、教师控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑。
5、在学生自己完成这一复习环节后,师生共同完成教师的精选题例题的讲解,同样采用启发讨论式,尽可能地让学生自己完成问题的解答。
6、课尾教师进行点评、归纳、小结(由学生自己完成),并评选本课“主讲明星”与“评议”。
四、案例分析及其反思1、让学生走上讲台,既为学生提供展示才华的舞台,满足其表现欲,尝试成功感,又让学生亲历知识掌握的构建过程。
2、由于要自己完成课前的准备作业和讲解内容,迫使学生进行章节的全面复习,对知识进行系统整理,这一复习环节,却真正达到了学生自觉地学习,使学生由被动学习转化为主动学习,提高学习效率。
高中数学优秀教案范例5篇

高中数学优秀教案范例5篇数学是一门日常都要使用的学科,所以要拥有好的教案才能充分教育同学们如何使用数学,这里给大家共享一些关于高中数学优秀教案范例,便利大家学习。
关于高中数学优秀教案范例篇1一、教学目标:把握向量的概念、坐标表示、运算性质,做到融会贯穿,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:向量的性质及相关学问的综合应用。
三、教学过程:(一)主要学问:把握向量的概念、坐标表示、运算性质,做到融会贯穿,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略四、小结:1、进一步娴熟有关向量的运算和证明;能运用解三角形的学问解决有关应用问题,2、渗透数学建模的思想,切实培育分析和解决问题的力量。
关于高中数学优秀教案范例篇2一、教学目标1.把握菱形的判定.2.通过运用菱形学问解决详细问题,提高分析力量和观看力量.3.通过教具的演示培育同学的学习爱好.4.依据平行四边形与矩形、菱形的附属关系,通过画图向同学渗透集合思想.二、教法设计观看分析商量相结合的方法三、重点·难点·疑点及解决方法1.教学重点:菱形的判定方法.2.教学难点:菱形判定方法的综合应用.四、课时支配1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计老师演示教具、创设情境,引入新课,同学观看商量;同学分析论证方法,老师适时点拨七、教学步骤复习提问1.表达菱形的定义与性质.2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.引入新课师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?生答:定义法.此外还有别的两种判定方法,下面就来学习这两种方法.讲解新课菱形判定定理1:四边都相等的四边形是菱形.菱形判定定理2:对角钱相互垂直的平行四边形是菱形.图1分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.分析判定2:师问:本定理有几个条件?生答:两个.师问:哪两个?生答:(1)是平行四边形(2)两条对角线相互垂直.师问:再需要什么条件可证该平行四边形是菱形?生答:再证两邻边相等.(由同学口述证明)证明时让同学注意线段垂直平分线在这里的应用,师问:对角线相互垂直的四边形是菱形吗?为什么?可画出图,明显对角线,但都不是菱形.菱形常用的判定方法归纳为(同学商量归纳后,由老师板书):注意:(2)与(4)的题设也是从四边形动身,和矩形一样它们的题没条件都包含有平行四边形的判定条件.例4已知:的对角钱的垂直平分线与边、分别交于、,如图.求证:四边形是菱形(按教材讲解).总结、扩展1.小结:(1)归纳判定菱形的四种常用方法.(2)说明矩形、菱形之间的区分与联系.2.思索题:已知:如图4△中,,平分,,,交于.求证:四边形为菱形.八、布置作业教材P159中9、10、11、13关于高中数学优秀教案范例篇3教学目标1.把握平面对量的数量积及其几何意义;2.把握平面对量数量积的重要性质及运算律;3.了解用平面对量的数量积可以处理有关长度、角度和垂直的问题;4.把握向量垂直的条件.教学重难点教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学工具投影仪教学过程一、复习引入:1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请同学回顾本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
高中数学教案设计(精选12篇)

高中数学教案设计(精选12篇)高中数学教学设计篇一一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。
因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。
因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。
为此本节内容在三角函数中占有非常重要的地位。
三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
高中数学教学设计优秀14篇

高中数学教学设计优秀14篇高中数学教学设计篇一一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。
强调斜二测画法的步骤。
练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
高中数学教案撰写模板共3篇 教案模版高中数学

高中数学教案撰写模板共3篇教案模版高中数学下面是整理的高中数学教案撰写模板共3篇教案模版高中数学,供大家参考。
高中数学教案撰写模板共1高中数学必修1 第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2 第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系必修3 第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图数学选修2-1第一章常用逻辑用语命题及其关系充分条件与必要条件简单的逻辑联结词全称量词与存在量词第二章圆锥曲线与方程曲线与方程椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆双曲线探究与发现抛物线探究与发现阅读与思考第三章空间向量与立体几何空间向量及其运算阅读与思考向量概念的推广与应用立体几何中的向量方法选修2-2 第一章导数及其应用变化率与导数导数的计算第三章统计案例回归分析的基本思想及其初步应用独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学导数在研究函数中的应用三生活中的优化问题举例第二讲定积分的概念一微积分基本定理二定积分的简单应用三第二章推理与证明四合情推理与演绎推理第三讲直接证明与间接证明一数学归纳法二第三章数系的扩充与复数的引入三数系的扩充和复数的概念四复数代数形式的四则运算第四讲一选修2-3二第一章计数原理三分类加法计数原理与分步乘法计数四原理第五讲探究与发现子集的个数有多少一排列与组合二探究与发现组合数的两个性质三二项式定理第六讲探究与发现“杨辉三角”中的一些一秘密二第二章随机变量及其分布第七讲离散型随机变量及其分布列一二项分布及其应用二探究与发现服从二项分布的随机变三量取何值时概率最大四离散型随机变量的均值与方差第八讲正态分布一信息技术应用μ,σ对正态分布的影二响三丰富多彩的记数制度古希腊数学希腊数学的先行者毕达哥拉斯学派欧几里得与《原本》数学之神──阿基米德中国古代数学瑰宝《周髀算经》与赵爽弦图《九章算术》大衍求一术中国古代数学家平面解析几何的产生坐标思想的早期萌芽笛卡儿坐标系费马的解析几何思想解析几何的进一步发展微积分的诞生微积分产生的历史背景科学巨人牛顿的工作莱布尼茨的“微积分” 近代数学两巨星分析的化身──欧拉数学王子──高斯千古谜题三次、四次方程求根公式的发现高次方程可解性问题的解决伽罗瓦与群论古希腊三大几何问题的解决对无穷的深入思考古代的无穷观念无穷集合论的创立集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-3 引言第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”()判定定理2.“边角边”()判定定理3.“角边角”()判定定理4.“角角角”()判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史选修3-4 引言第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1 第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2 引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式第四讲数伦在密码中的应用二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——法1.黄金分割常数2.黄金分割法——法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一附录二附录三6选修4-9 引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录初中数学面试教案撰写模板小学数学面试撰写教案模板教案撰写模板中小学教学案例撰写心得体会教学设计撰写高中数学教案撰写模板共2如何撰写小学数学教案一个完整的教案包括以下内容:【教学内容】【教学重难点】【教材简析】【教学用具】【教学目标】【教学过程】教案格式要求:目标明确意图明显流程清晰行文严谨预设充分回顾全面⑴教学内容。
高中数学教案编写模板

高中数学教案编写模板
标题:高中数学教学案例
一、教学内容:
本节课的教学内容为 xxxxxxxx
二、教学目标:
1. 知识与技能:
(1)掌握xxxxxx的基本概念和性质;
(2)能够运用xxxxxx解决相关问题;
(3)能够运用xxxxxx进行分析和推理。
2. 过程与方法:
(1)培养学生的思维能力和解决问题的能力;
(2)激发学生的学习兴趣;
(3)引导学生合作学习,提高学习效率。
三、教学重点与难点:
1. 教学重点:xxxxxx的基本概念与性质;
2. 教学难点:xxxxxx的运用及推理。
四、教学过程:
1. 导入:通过一个生活中的例子引导学生了解xxxxxx的重要性和应用价值。
2. 学习:介绍xxxxxx的相关知识点,并进行示范演示。
3. 练习:安排一些练习题让学生巩固所学知识。
4. 拓展:引导学生对xxxxxx进行拓展思考。
5. 总结:对本节课所学内容进行总结,并进行复习。
五、课后作业:
1. 完成相关练习题;
2. 准备下节课的预习内容。
六、教学反思:
对本节课的教学效果进行总结与反思,发现问题并寻找改进方法,以提高教学质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
联系已学知识,可以解决这个问题。
对应问题1. 第三边c 是确定的,如何利用条件求之?
首先用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。
由于涉及边长问题,从而可以考虑用向量来研究这个问题。
A
如图,设CB a =,CA b =,AB c =,那么c a b =-,则 b c
()()222 2 2c c c a b a b
a a
b b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a 从而2222cos
c a b ab C =+-,同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+-
于是得到以下定理
余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两
倍。
即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+-
教学情境二 对余弦定理的理解、定理的推论
对应问题2 公式有什么特点?能够解决什么问题?
等式为二次齐次形式,左边的边对应右边的角。
主要作用是已知三角形的两边及夹角求对边。
对应问题3 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?
从余弦定理,又可得到以下推论:(由学生推出)
222cos 2+-=b c a A bc ; 222cos 2+-=a c b B ac ; 222
cos 2+-=b a c C ba
[理解定理]余弦定理及其推论的基本作用为:
①已知三角形的任意两边及它们的夹角求第三边;
②已知三角形的三条边求三个角。
思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间
的关系,如何看这两个定理之间的关系?
(由学生总结)若∆ABC 中,C=90,则cos 0=C ,这时222=+c a b
由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
教学情境三 例题与课堂练习
例题.在∆ABC 中,已知=a c 060=B ,求b 及A
⑴解:2222cos =+-b a c ac B =222+-⋅cos 045=2121)+-=8
∴=b
求A 可以利用余弦定理,也可以利用正弦定理:
⑵解法一:∵cos 2221,22+-=b c a A bc ∴060.=A
解法二:∵0sin sin sin45a A B b = 又 a <c ,即00<A <090, ∴060.=A 评述:解法二应注意确定A 的取值范围。
课堂练习 在∆ABC 中,若222a b c bc =++,求角A (答案:A=120°)
教学情境四 课堂小结
(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;
(2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。
(3)正、余弦定理从数量关系的角度解释了三角形全等,已知边角求做三角形两类问题,使其化为可以
计算的公式。
习题设计
1. 在∆ABC 中,a=3,b=4,︒=∠60C ,求c 边的长。
2. 在∆ABC 中,a=3,b=5,c=7,求此三角形的最大角的度数。
3. 若sin :sin :sin 5:7:8A B C =,求此三角形的最大角与最小角的和的大小。
4. △ABC 中,若()
222tan a c b B +-=,求角B 的大小。
5.∆ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,求角
C 的大小)
(本案例由河北师大附中 刘建良设计,由汉沽五中 纪昌武 在目标设计和习题设计方面略作改动)
编写要求:
1、页面设置:A4,上、下、左、右边距都为2cm ;教学课题:小四宋体加粗;问题设计:课本上没有的
有价值的情境、问题、例题、习题用五号黑体字,并简要说明设计意图。
其他都用五号宋体。
“目标设计、
情境设计、问题设计、习题设计”要加粗。
2、目标设计主要写知识目标的设计。
目标要具体明确、具有可操作性、可测性。
3、习题设计:每节课的习题5个左右,其中前两个可作为当堂测验题,要求的难度:只要上课能认真参与的同学基本上都能作对。
后三题可根据各校学生水平适当提高,但应紧扣本节课教学目标,难度最好控制在0.8左右。
对于所选课本上的题要注明,并具体写出来。
4、把寒假交流的内容,按统一模作板适当修订,并于3月15日前传至学科牵头人处。
---精心整理,希望对您有所帮助。