高三二轮复习--三角函数与解三角形
第3讲 大题专攻——三角函数与解三角形 2023高考数学二轮复习课件

22
∴ba=ssiinn BA=
3 3
=2 3
6.
3
目录
解三角形中的证明问题
【例3】 (2022·全国乙卷)记△ABC的内角A,B,C的对边分别为a,b,c,
已知sin Csin(A-B)=sin Bsin(C-A).
(1)证明:2a2=b2+c2;
解 证明:法一:由sin Csin(A-B)=sin Bsin(C-A)可得,sin Csin Acos
目录
2.(2021·新高考全国Ⅱ卷)(正、余弦定理,三角形面积公式)在△ABC中,角 A,B,C所对的边分别为a,b,c,b=a+1,c=a+2. (1)若2sin C=3sin A,求△ABC的面积; 解:由2sin C=3sin A及正弦定理可得2c=3a. 结合b=a+1,c=a+2,解得a=4,b=5,c=6. 在△ABC 中,由余弦定理得 cos C=a2+2ba2b-c2=16+2450-36=18,所以 sin
C= 1-cos2C=387, 所以 S△ABC=12absin C=12×4×5×387=154 7.
目录
(2)是否存在正整数a,使得△ABC为钝角三角形?若存在,求出a的值;
若不存在,说明理由.
解:设存在正整数a满足条件,由已知c>b>a,所以C为钝角.
所以cos
C=
Байду номын сангаас
a2+b2-c2 2ab
<0⇒a2+b2<c2⇒a2+(a+1)2<(a+2)2⇒(a+1)(a
目录
三角形中基本量的求解
【例2】 (2022·新高考Ⅱ卷)记△ABC的内角A,B,C的对边分别为a,b,
c,分别以a,b,c为边长的三个正三角形的面积依次为S1,S2,S3.已知S1
高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-

专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。
专题07 解三角形与三角函数结合-备战2022年高考数学二轮复习之大题核心考点(原卷版)

第一篇 解三角形专题07 解三角形与三角函数结合常见考点考点一 结合三角函数典例1.已知函数2()cos 2332f x x x π⎛⎫=--+⎪⎝⎭(1)求函数f (x )的单调性;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且32A f ⎛⎫= ⎪⎝⎭,3a =c=1,求△ABC 的面积.变式1-1.已知函数2()2sin cos 233f x x x x =+ (1)求函数()f x 的最小正周期和单调增区间;(2)已知ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,若锐角A 满足26A f π⎛⎫-= ⎪⎝⎭3133sin sin B C +=bc 的值.变式1-2.已知函数()sin 2(0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数f (x )的值域;(2)已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,若32A f ⎛⎫= ⎪⎝⎭且a =4,b +c =5,求△ABC 的面积.变式1-3.已知向量()sin ,1m x =-,向量13cos ,2n x ⎛⎫=- ⎪⎝⎭,函数()()f x m n m =+⋅.(1)求()f x 单调递减区间;(2)已知,,a b c 分别为ABC 内角,,A B C 的对边,A 为锐角,3,4a c ==,且()f A 恰是()f x 在02π⎡⎤⎢⎥⎣⎦,上的最大值,求,A b 和ABC 的面积S .例2.已知函数()3cos 3f x x x π⎛⎫=+- ⎪⎝⎭.(1)求函数()f x 在[]0,π上的最小值;(2)已知a ,b ,c 分别为ABC 内角A ,B ,C 的对边,53b =3cos 5A =,且()1fB =,求边a 的长.变式2-1.已知函数()223sin cos 2cos 1f x x x x =+-,()0,πx ∈,ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 223. (1)求函数()f x 的单调递减区间; (2)若()1f C =,求bc 的值.变式2-2.已知向量3sin ,,(cos ,1)4a x b x ⎛⎫==- ⎪⎝⎭,设函数()2()f x a b b =+⋅.(1)当//a b 时,求2cos sin 2x x -的值;(2)已知在ABC 中,内角、、A B C 的对边分别为a b c 、、,若3,2a b ==,6sin B =求当04x π≤≤时()()4cos 26g x f x A π⎛⎫=++ ⎪⎝⎭的取值范围.变式2-3.已知向量23,22x m ⎛⎫= ⎪⎝⎭,2cos ,cos 22x x n ⎛⎫= ⎪⎝⎭,函数()f x m n =⋅.(1)求方程()0f x =在区间[]2,2ππ-的解集;(2)在ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足()2cos cos a c B b C -=,求()f A 的取值范围.巩固练习练习一 结合三角函数1.已知()2223sin cos sin cos f x x x x x =+- (1)求函数()f x 取最大值时x 的取值集合;(2)设锐角..ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,()1f C =,3c =求ABC 的面积S 的最大值.2.设函数21()cos 3cos 2f x x x x =+.(1)求()f x 的最小正周期;(2)已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3()2f B C +=,3a =3b c +=,求ABC 的面积.3.已知函数()2123sin cos 2cos f x x x x m =--+在R 上的最大值为3. (1)求m 的值及函数()f x 的单调递增区间;(2)若锐角ABC 中角A 、B 、C 所对边分别为a 、b 、c ,且()0f A =,求sin sin BC的取值范围.4.已知函数21()cos 3)cos()2f x x x x ππ=-+-,x ∈R .(1)求函数()f x 的最小正周期及其图象的对称轴方程;(2)在锐角ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,已知()1,3f A a =-=, sin sin b C a A =,求ABC ∆的面积.5.设函数()22sin 2sin cos 6f x x x x π⎛⎫=++- ⎪⎝⎭.(1)求()f x 的单调递增区间;(2)若角A 满足()1f A =,3a =ABC 3b c +的值.6.已知函数22()sin 3cos 2cos f x x x x x =-. (1)求函数()f x 的单调递增区间;(2)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2c =,()1f C =且2C π≠,求ABC 周长的范围.7.函数()sin 16f x m x πω⎛⎫=-+ ⎪⎝⎭(0m >,0>ω)的最大值为3,其图像相邻两个对称中心之间的距离为2π.(1)求函数()f x 的解析式;(2)若在ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且22B f ⎛⎫= ⎪⎝⎭,23b =ABC 的面积为23a c +的值.8.已知向量(sin ,cos ),(3cos ,cos )a x x b x x ==. (1)求函数()f x a b =⋅的最小正周期;(2)在ABC ∆中,7,sin 3sin BC B C =,若()1f A =,求ABC ∆的周长.。
高考数学二轮复习考点知识讲解与练习29---三角函数与解三角形热点问题

高考数学二轮复习考点知识讲解与练习第29讲三角函数与解三角形热点问题核心热点真题印证核心素养三角函数的图象与性质2022·全国Ⅰ,7;2022·全国Ⅲ,16;2022·天津,8;2019·全国Ⅰ,11;2019·北京,9;2019·全国Ⅲ,12;2019·天津,7;2018·全国Ⅱ,10;2018·全国Ⅰ,16;2018·全国Ⅲ,15直观想象、逻辑推理三角恒等变换2022·全国Ⅰ,9;2022·全国Ⅱ,2;2022·全国Ⅲ,9;2019·全国Ⅱ,10;2019·浙江,18;2018·浙江,18;2018·江苏,16;2018·全国Ⅱ,15;2018·全国Ⅲ,4逻辑推理、数学运算解三角形2022·全国Ⅰ,16;2022·全国Ⅲ,7;2022·北京,17;2022·天津,16;2022·新高考山东,17;2022·浙江,18;2019·全国Ⅰ,17;2019·全国Ⅲ,18;2019·北逻辑推理、数学运算京,15;2019·江苏,15;2018·全国Ⅰ,17三角函数的图象与性质(必修4P147复习参考题A 组第9题、第10题)题目9 已知函数y =(sin x +cos x )2+2cos 2x . (1)求它的递减区间; (2)求它的最大值和最小值.题目10 已知函数f (x )=cos 4x -2sin x cos x -sin 4x . (1)求f (x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求f (x )的最小值及取得最小值时x 的集合.[试题评析]两个题目主要涉及三角恒等变换和三角函数的性质,题目求解的关键在于运用二倍角公式及两角和公式化为y =A sin(ωx +φ)+k 的形式,然后利用三角函数的性质求解. 【教材拓展】 已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝ ⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解 (1)f (x )的定义域为{x |x ≠π2+k π,k ∈Z}, f (x )=4tan x cos x cos ⎝⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z),得-π12+k π≤x ≤5π12+k π(k ∈Z).设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.探究提高 1.将f (x )变形为f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3是求解的关键,(1)利用商数关系统一函数名称;(2)活用和、差、倍角公式化成一复角的三角函数.2.把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.【链接高考】(2019·浙江卷)设函数f (x )=sin x ,x ∈R. (1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值;(2)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42的值域.解 (1)因为f (x +θ)=sin(x +θ)是偶函数, 所以,对任意实数x 都有sin(x +θ)=sin(-x +θ), 即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ, 故2sin x cos θ=0,所以cos θ=0. 又θ∈[0,2π),因此θ=π2或3π2. (2)y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42=sin 2⎝ ⎛⎭⎪⎫x +π12+sin 2⎝⎛⎭⎪⎫x +π4=12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x +π6+12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x +π2=1-12⎝ ⎛⎭⎪⎫32cos 2x -32sin 2x=1-32cos ⎝⎛⎭⎪⎫2x +π3.由于x ∈R ,知cos ⎝ ⎛⎭⎪⎫2x +π3∈[-1,1],因此,所求函数的值域为⎣⎢⎡⎦⎥⎤1-32,1+32.三角函数与平面向量【例题】(2021·湘赣十四校联考)已知向量m =(sin x ,-1),n =(3,cos x ),且函数f (x )=m ·n .(1)若x ∈⎝⎛⎭⎪⎫0,π2,且f (x )=23,求sin x 的值;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =7,△ABC 的面积为332,且f ⎝⎛⎭⎪⎫A +π6=73b sin C ,求△ABC 的周长.[自主解答]解 (1)f (x )=m ·n =(sin x ,-1)·(3,cos x ) =3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6.∵f (x )=23,∴sin ⎝⎛⎭⎪⎫x -π6=13.又∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π6∈⎝ ⎛⎭⎪⎫-π6,π3,∴cos ⎝⎛⎭⎪⎫x -π6=223.∴sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -π6+π6=13×32+223×12=3+226. (2)∵f ⎝⎛⎭⎪⎫A +π6=73b sin C , ∴2sin A =73b sin C ,即6sin A =7b sin C . 由正弦定理可知6a =7bc . 又∵a =7,∴bc =6.由已知△ABC 的面积等于12bc sin A =332,∴sin A =32. 又∵A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3.由余弦定理,得b 2+c 2-2bc cos A =a 2=7,故b 2+c 2=13, ∴(b +c )2=25,∴b +c =5, ∴△ABC 的周长为a +b +c =5+7.探究提高 1.破解平面向量与“三角”相交汇题的常用方法是“化简转化法”,即先利用三角公式对三角函数式进行“化简”;然后把以向量共线、向量垂直、向量的数量积运算等形式出现的条件转化为三角函数式;再活用正、余弦定理对边、角进行互化. 2.这种问题求解的难点一般不是向量的运算,而是三角函数性质、恒等变换及正、余弦定理的应用,只不过它们披了向量的“外衣”.【尝试训练】(2021·沧州质检)已知a =(53cos x ,cos x ),b =(sin x,2cos x ),函数f (x )=a ·b +|b |2.(1)求函数f (x )的最小正周期; (2)求函数f (x )的单调减区间;(3)当π6≤x ≤π2时,求函数f (x )的值域.解 f (x )=a ·b +|b |2=53cos x sin x +2cos 2x +sin 2x +4cos 2x =53sin x cos x +sin 2x +6cos 2x =532sin 2x +1-cos 2x 2+3(1+cos 2x ) =532sin 2x +52cos 2x +72=5sin ⎝⎛⎭⎪⎫2x +π6+72.(1)f (x )的最小正周期T =2π2=π. (2)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z)得k π+π6≤x ≤k π+2π3(k ∈Z).∴f (x )的单调减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z).(3)∵π6≤x ≤π2,∴π2≤2x +π6≤7π6,∴-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1, ∴1≤5sin ⎝⎛⎭⎪⎫2x +π6+72≤172. ∴当π6≤x ≤π2时,函数f (x )的值域为⎣⎢⎡⎦⎥⎤1,172.解三角形【例题】(12分)(2022·全国Ⅱ卷)△ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求△ABC 周长的最大值. [规范解答]解 (1)由正弦定理和已知条件得用正弦定理化角为边BC 2-AC 2-AB 2=AC ·AB .①2′由余弦定理得BC 2=AC 2+AB 2-2AC ·AB cos A .② 由①②得cos A =-12. 用余弦定理化边为角4′因为0<A <π,所以A =2π3.6′ (2)由正弦定理及(1)得AC sin B=AB sin C=BC sin A=23,8′从而AC =23sin B ,AB =23sin(π-A -B )=3cos B -3sin B . 故BC +AC +AB =3+3sin B +3cos B=3+23sin ⎝ ⎛⎭⎪⎫B +π3. 两角和正弦公式的逆用10′又0<B <π3,所以当B =π6时,△ABC 周长取得最大值3+2 3. 三角函数性质的应用12′❶写全得步骤分:对于解题过程中得分点的步骤有则给分,无则没分,所以得分点步骤一定要写全,如第(1)问中只要写出0<A <π就有分,没写就扣1分,第(2)问中0<B <π3也是如此.❷写明得关键分:对于解题过程中的关键点,有则给分,无则没分,所以在答题时要写清得分关键点,如第(1)问中由正弦定理得BC 2-AC 2-AB 2=AC ·AB ,由余弦定理得BC 2=AC 2+AB 2-2AC ·AB ·cos A ,第(2)问中ACsin B=AB sin C=BC sin A=23等.❸保证正确得计算分:解题过程中计算准确,是得满分的根本保证,如第(1)问中,cos A =-12,若计算错误,则第(1)问最多2分;再如第(2)问3+3sin B +3cos B =3+23sin ⎝⎛⎭⎪⎫B +π3化简如果出现错误,则第(2)问最多得2分.……利用正弦、余弦定理,对条件式进行边角互化……由三角函数值及角的范围求角……由正弦、余弦定理及条件式实现三角恒等变换……利用角的范围和三角函数性质求出最值……检验易错易混,规范解题步骤得出结论【规范训练】(2022·浙江卷)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知2b sin A -3a =0. (1)求角B 的大小;(2)求cos A +cos B +cos C 的取值范围. 解 (1)由正弦定理,得2sin B sin A =3sin A ,故sin B =32,由题意得B =π3. (2)由A +B +C =π,得C =2π3-A . 由△ABC 是锐角三角形,得A ∈⎝ ⎛⎭⎪⎫π6,π2 .由cos C =cos ⎝⎛⎭⎪⎫2π3-A =-12cos A +32sin A ,得 cos A +cos B +cos C =32sin A +12cos A +12=sin ⎝⎛⎭⎪⎫A +π6+12∈⎝⎛⎦⎥⎤3+12,32. 故cos A +cos B +cos C 的取值范围是⎝ ⎛⎦⎥⎤3+12,32.1.(2019·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a , 3c sin B =4a sin C . (1)求cos B 的值; (2)求sin ⎝ ⎛⎭⎪⎫2B +π6的值.解 (1)在△ABC 中,由正弦定理b sin B=c sin C,得b sin C =c sin B .又由3c sin B =4a sin C , 得3b sin C =4a sin C ,即3b =4a . 因为b +c =2a ,所以b =43a ,c =23a . 由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a =-14. (2)由(1)可得sin B =1-cos 2B =154, 从而sin 2B =2sin B cos B =-158, cos 2B =cos 2B -sin 2B =-78, 故sin ⎝⎛⎭⎪⎫2B +π6=sin 2B cos π6+cos 2B sin π6 =-158×32-78×12=-35+716. 2.已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R.(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.解 (1)f (x )=2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z), 解得k π-π6≤x ≤k π+π3(k ∈Z), ∴函数y =f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z). (2)∵f (A )=1+2cos ⎝⎛⎭⎪⎫2A +π3=-1, ∴cos ⎝⎛⎭⎪⎫2A +π3=-1,又π3<2A +π3<7π3, ∴2A +π3=π,即A =π3. ∵a =7,∴由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,∴2sin B =3sin C ,由正弦定理得2b =3c ,②由①②得b =3,c =2.3.已知函数f (x )=cos x (cos x +3sin x ).(1)求f (x )的最小值;(2)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,S △ABC =334,c =7,求△ABC 的周长.解 (1)f (x )=cos x (cos x +3sin x )=cos 2x +3sin x cos x =1+cos 2x 2+32sin 2x =12+sin ⎝⎛⎭⎪⎫2x +π6. 当sin ⎝⎛⎭⎪⎫2x +π6=-1时,f (x )取得最小值-12. (2)f (C )=12+sin ⎝ ⎛⎭⎪⎫2C +π6=1,∴sin ⎝⎛⎭⎪⎫2C +π6=12, ∵C ∈(0,π),2C +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2C +π6=5π6,∴C =π3.∵S △ABC =12ab sin C =334,∴ab =3. 又(a +b )2-2ab cos π3=7+2ab , ∴(a +b )2=16,即a +b =4,∴a +b +c =4+7, 故△ABC 的周长为4+7.4.(2021·东北三省三校联考)已知在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若b 2tan A =a 2tan B ,2sin 2A +B 2=1+cos 2C .(1)求角A 的大小; (2)若点D 为AB 上一点,满足∠BCD =45°,且CD =32-6,求△ABC 的面积. 解 (1)由2sin 2A +B2=1+cos 2C 得1-cos(A +B )=2cos 2C ,即2cos 2C -cos C -1=0, 解得cos C =-12(cos C =1舍去),故C =120°. 因为asin A =bsin B ,b 2tan A =a 2tan B ,所以sin 2B sin A cos A =sin 2A sin B cos B, 即sin A ·cos A =sin B cos B ,故sin 2A =sin 2B ,因此A =B 或A +B =90°(舍去),故A =30°.(2)由(1)知△ABC 为等腰三角形,设BC =AC =m ,由S △ABC =S △ACD +S △BCD 得12m 2·sin 120°=12m · CD ·sin 45°+12m ·CD ·sin 75°,整理得32m=CD⎝⎛⎭⎪⎫22+2+64=()32-6×32+64,解得m=23,故S△ABC=12m2·sin 120°=3 3.5.(2021·郑州调研)已知△ABC的内角A,B,C所对的边分别是a,b,c,其面积S=b2+c2-a24.(1)若a=6,b=2,求cos B;(2)求sin(A+B)+sin B cos B+cos(B-A)的最大值.解(1)∵S=b2+c2-a24,∴12bc sin A=b2+c2-a24,即sin A=b2+c2-a22bc=cos A,则tan A=1,又A∈(0,π),∴A=π4.由正弦定理asin A =bsin B,得622=2sin B,∴sin B=66,又a>b,∴cos B=1-16=306.(2)由第(1)问可知,A=π4,sin(A +B )+sin B cos B +cos(B -A )=sin ⎝ ⎛⎭⎪⎫B +π4+sin B cos B +cos ⎝⎛⎭⎪⎫B -π4 =22sin B +22cos B +sin B cos B +22cos B +22sin B =2(sin B +cos B )+sin B cos B ,令t =sin B +cos B ,则t 2=1+2sin B cos B ,sin(A +B )+sin B cos B +cos(B -A )=2t +12(t 2-1), 令y =12t 2+2t -12=12(t +2)2-32,t ∈(0,2], ∴当t =2,即B =π4时, sin(A +B )+sin B cos B +cos(B -A )取得最大值52.。
高考数学 二轮 专题六 三角函数与解三角形 第3讲 解三角形 理

专题六 三角函数与解三角形
3.辨明易错易混点 (1)利用正弦定理解三角形时,注意解的个数讨论,可能有一 解、两解或无解. (2)在判断三角形形状时,等式两边一般不要约去公因式,应 移项提取公因式,以免漏解.
栏目 导引
专题六 三角函数与解三角形
考点一 正、余弦定理的基本应用
(经典考题)已知锐角△ABC的内角A,B,C的对边分
专题六 三角函数与解三角形
栏目 导引
专题六 三角函数与解三角形
(3)由余弦定理得 b2+c2-bc=4,
配方得(b+c)2-3bc=4,③
∵b+c≥2 bc,④
将③代入④得
(b+
c)2≥
( 4×
b+
c)
2-
4,
3
解得 b+c≤4,当且仅当 b=c 时取等号,
又∵b+c>a=2,则 2<b+c≤4,
∴△ABC 的周长的范围为(4,6].
栏目 导引
专题六 三角函数与解三角形
2.在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,已知 a =c.
3cos A sin C (1)求 A 的大小; (2)若 a=6,求 b+c 的取值范围. 解:(1)∵ a = c = a ,
3cos A sin C sin A
A. 3 2
C.1 2
B. 2 2
D.-1 2
解析:由余弦定理得
cos C=a2+b2-c2= c2 2ab 2ab
≥a2+c2 b2=2cc22=12.故选 C.
栏目 导引
专题六 三角函数与解三角形
栏目 导引
专题六 三角函数与解三角形
3.如图,在△ABC 中,D 是边 AC 上的点,且 AB=AD,2AB = 3BD,BC=2BD,则 sin C 的值为( D ) A. 3
2023年高考数学二轮复习第二篇经典专题突破专题一三角函数和解三角形第1讲三角函数的图象和性质

返回导航
专题一 三角函数和解三角形
高考二轮总复习 • 数学
所以 ω=-16+23k,k∈Z, 所以 ω=52,f(x)=sin 52x+π4+2, 所以 fπ2=sin 54π+π4+2=1. 故选 A.
返回导航
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
2.(2022·全国甲卷)设函数 f(x)=sin ωx+π3在区间(0,π)恰有三个极
返回导航
【解析】 f′(x)=-sin x+sin x+(x+1)cos x=(x+1)cos x,所以 f(x) 在区间0,π2和32π,2π上 f′(x)>0,即 f(x)单调递增;在区间π2,32π上 f′(x)<0, 即 f(x)单调递减,又 f(0)=f(2π)=2,fπ2=π2+2,f32π=-32π+1+1=- 32π,所以 f(x)在区间[0,2π]上的最小值为-32π,最大值为π2+2.故选 D.
值点、两个零点,则 ω 的取值范围是
( C)
A.53,163
B.53,169
C.163,83
D.163,169
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
【解析】 依题意可得 ω>0,因为 x∈(0,π),所以 ωx+π3∈π3,ωπ+π3,
要使函数在区间(0,π)恰有三个极值点、两个零点,
又 y=sin x,x∈π3,3π的图象如下所示:
则52π<ωπ+π3≤3π,解得163<ω≤83,即 ω∈163,83.故选 C.
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
3.(2022·全国甲卷)将函数 f(x)=sin ωx+π3(ω>0)的图象向左平移π2个 单位长度后得到曲线 C,若 C 关于 y 轴对称,则 ω 的最小值是 ( C )
2023届高考数学二轮复习提升练之三角函数与解三角形——(8)二倍角公式【配套新教材】

(8)二倍角公式【配套新教材】1.已知1sin 3θ=-,3,2θπ⎛⎫∈π ⎪⎝⎭,则sin 2θ=( )A.79B.9C.3D.9-2.若3cos 45απ⎛⎫-= ⎪⎝⎭,则sin 2α=( )A.725B.15C.15-D.725-3.函数()y f x =满足当ππ,22x ⎛⎫∈- ⎪⎝⎭时,sin 2()01cos2xf x x-+=+,则()f x =( ). A.tan x - B.tan x C.tan 2x D.tan 2x -4.若tan 2α=,则2cos sin 2αα+=( ). A.2B.32C.25D.15.若曲线2y x x=-在1x =处的切线的倾斜角为α,则cos21tan αα=+( ).A.-1B.15-D.26.已知πsin 122α⎛⎫-= ⎪⎝⎭则πsin 26α⎛⎫+ ⎪⎝⎭的值为( ) A.710-B.710C.79-D.797.已知(0,π)α∈,且1sin 23α=,则πsin 4α⎛⎫+ ⎪⎝⎭的值为( )A. B. 8.(多选)若tan 1α>,则( ) A.sin 0α>B.sin20α>C.cos20α<D.tan20α<9. (多选)设函数ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( ).A.()y f x =的最小值为π B.()y f x =的最小值为-2,其周期为π2C.()y f x =在π0,2⎛⎫ ⎪⎝⎭上单调递增,其图象关于直线π4x =对称D.()y f x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,其图象关于直线π2x =对称10. (多选)已知α,β,π0,2γ⎛⎫∈ ⎪⎝⎭,sin sin sin αγβ+=,cos cos cos βγα+=,则下列说法正确的是( ). A.1cos()2βα-=B.1cos()2βα-=-C.π3βα-=D.π3βα-=-11.求值:44cos 15sin 15︒-︒=__________. 12.)sin 40tan10︒︒=______________. 13.等腰三角形顶角的余弦值为513,则一个底角的正切值为_____________. 14.已知π1sin sin 32αα⎛⎫-+= ⎪⎝⎭,1cos 3β=,,(0,π)αβ∈. (1)求α的值; (2)求cos(2)αβ+的值.15.已知函数2π()sin 22cos 16f x x x ⎛⎫=-+- ⎪⎝⎭.(1)求函数 ()f x 的最大值及取得最大值时相应的x 的取值集合;(2)若ππ,42α⎛⎫∈ ⎪⎝⎭,且4()5f α=,求cos2α的值.答案以及解析1.答案:B解析:本题考查二倍角的正弦公式.由1sin 3θ=-,3,2θπ⎛⎫∈π ⎪⎝⎭,得cos θ=,所以1sin 22sin cos 23θθθ⎛⎛⎫==⨯-⨯= ⎪ ⎝⎭⎝⎭. 2.答案:D解析:本题考查诱导公式及二倍角的余弦公式的应用.3cos 45απ⎛⎫-= ⎪⎝⎭,297sin 2cos(2)cos 22cos 1212442525ααααπππ⎛⎫⎛⎫∴=-=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.3.答案:B 解析:因为sin 2()01cos2x f x x -+=+,所以2sin 22sin cos ()tan 1cos212cos 1x x xf x x x x -=-=-=-++-,所以()tan()tan f x x x =--=,故选B. 4.答案:D解析:2222cos 2sin cos cos sin 2cos sin ααααααα++==+2212tan 12211tan 12αα++⨯==++,故选D.5.答案:B解析:由题意得221y x '=+,当1x =时,123y '=+=,所以tan 3α=,因为222222cos sin 1tan 194cos2cos sin 1tan 195ααααααα---====-+++,所以cos24111tan 545αα=-⨯=-+,故选B. 6.答案:C解析:πsin 122α⎛⎫-= ⎪⎝⎭ 2ππ1cos 12sin 61223αα⎛⎫⎛⎫∴-=--= ⎪ ⎪⎝⎭⎝⎭,22πππ17sin 2cos 22cos 12163639ααα⎛⎫⎛⎫⎛⎫⎛⎫∴+=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.7.答案:D解析:(0,π)α∈,且sin22sin cos 0ααα=>,π0,2α⎛⎫∴∈ ⎪⎝⎭.又21sin 2(sin cos )ααα+=+,sin cos αα∴+==即πsin cos )4ααα⎛⎫+=+= ⎪⎝⎭,故选D.8.答案:BCD解析:本题考查二倍角公式的应用.因为tan 1α>,所以sin 10cos αα>>,sin α可能是负数,故A 项错误,sin22sin cos 0ααα=>,B 项正确,22222222cos sin 1tan cos2cos sin 0cos sin 1tan ααααααααα--=-==<++,C 项正确,22tan tan 201tan ααα=<-,D 项正确. 9.答案:AD解析:ππ()2244f x x x ⎛⎫=++= ⎪⎝⎭,函数的最小值是2ππ2T ==,故A 正确,B 错误; 当π0,2x ⎛⎫∈ ⎪⎝⎭时,2(0,π)x ∈,因为函数cos y x =在(0,π)上单调递减,所以()y f x =在π0,2⎛⎫⎪⎝⎭上单调递减,因为函数cos y x =图象的对称轴方程是πx k =,k ∈Z ,所以令2πx k =,k ∈Z ,得π2k x =,k ∈Z ,当1k =时,π2x =,所以直线π2x =是函数()f x 图象的一条对称轴,故C 错误,D 正确.故选AD. 10.答案:AC解析:由已知,得sin sin sin γβα=-,cos cos cos γαβ=-, 两式分别平方相加,得22(sin sin )(cos cos )1βααβ-+-=,2cos()1βα∴--=-,1cos()2βα∴-=,∴A 正确,B 错误. α,β,π0,2γ⎛⎫∈ ⎪⎝⎭,sin sin sin 0γβα∴=->,βα∴>,π3βα∴-=,∴C 正确,D 错误.故选AC.11. 解析:本题考查二倍角的余弦公式.()44222222cos 15sin 15cos 15sin 15(cos 15sin 15)cos 15sin 15cos30︒-︒=︒-︒︒+︒=︒-︒=︒=.12.答案:1解析:)sin40tan10︒︒sin10sin40cos10︒︒︒⎫=⎪⎭)sin40sin10cos10︒︒︒-=︒12sin40sin102cos10⎫-⎪⎪⎝⎭︒=︒︒︒()2sin40cos30cos10sin30sin10cos10︒︒︒︒︒-=︒2sin40cos40sin801cos10cos10︒︒=︒=︒=︒.13.答案:32解析:设等腰三角形的顶角为A,一个底角为B,则B与2A互余,因为等腰三角形顶角的余弦值为513,所以5cos13A=,所以π2A<<,所以π0,24A⎛⎫∈ ⎪⎝⎭,所以252cos1213A-=,所以2182cos213A=,因为π0,24A⎛⎫∈ ⎪⎝⎭,所以cos sin2AB==,则sin cos2AB==,所以3tan2B===.14.答案:(1)易得πsin sin3αα⎛⎫-+⎪⎝⎭1π1sin sin232ααα⎛⎫=+=+=⎪⎝⎭.因为(0,π)α∈,所以ππ4π,333α⎛⎫+∈ ⎪⎝⎭,所以π5π36α+=,所以π2α=.(2)因为1cos 03β=>,(0,π)β∈,所以π0,2β⎛⎫∈ ⎪⎝⎭,所以sin 3β=, πcos(2)cos 2sin 22αβββ⎛⎫+=+=- ⎪⎝⎭2sin cos ββ=-=. 15.答案:(1)2π()sin 22cos 16f x x x ⎛⎫=-+- ⎪⎝⎭ππsin 2coscos2sin cos266x x x =-+1π2cos 2sin 226x x x ⎛⎫=+=+ ⎪⎝⎭. 所以当ππ22π62x k +=+,k ∈Z ,即ππ6x k =+,k ∈Z 时,max ()1f x =,相应的x 的取值集合为π|π,6x x k k ⎧⎫=+∈⎨⎬⎩⎭Z .(2)由(1)知π4()sin 265f αα⎛⎫=+= ⎪⎝⎭.由ππ42α<<,得2ππ7π2366α<+<, 所以π3cos 265α⎛⎫+=- ⎪⎝⎭. 因此ππcos 2cos 266αα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ππππ341cos 2cos sin 2sin 6666552αα⎛⎫⎛⎫=+++⋅=-⨯= ⎪ ⎪⎝⎭⎝⎭.。
专题:三角函数及解三角形 第二课时 三角函数的图象与解析式(课件)高三数学二轮复习

(D)y=2sin(2x– )
3
题型突破
题型一 三角函数的图象变换问题
2.(2022·浙江高考)为了得到函数y=2sin 3x的图象,只要把函数 y 2sin3x
5
图象上所有的点 ( D )
A.向左平移 个单位长度
5
B.向右平移 个单位长度
5
C.向左平移 个单位长度
15
D.向右平移 个单位长度
( C)
A. 10π 9
B. 7π 6
C. 4π 3
D. 3π 2
题型突破
题型二 三角函数的图象及应用
7. 如 图 所 示 的 曲 线 为 函 数 f x Acosx A 0, 0, 的 部 分 图 象 , 将
2
y f x 图象上的所有点的横坐标伸长到原来的 3 倍,再将所得曲线向右平移
2
8
个单位长度,得到函数y=g(x)的图象,求 gx =
2sin 2x
达标检测
1.为了得到函数 y 2sin 2x 的图象,可以将函数y=2sin
3
2x的图象(
C)
A.向右平移π 个单位长度 6
B.向右平移π 个单位长度 3
C.向左平移π 个单位长度 6
D.向左平移π 个单位长度 3
达标检测
15Leabharlann 题型突破题型一 三角函数的图象变换问题
3. (2021年全国乙卷)把函数y=f(x)图像上所有点的横坐标缩短到原来的1 2
倍,纵坐标不变,再把所得曲线向右平移 个单位长度,得到函数
3
y=sin(x−
)的图像,则f(x)=(
4
B
)
A.sin(
2
−
7)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
咼二二轮大题---三角函数题型一三角函数与三角恒等变换
n
例1 已知函数f(x) = sin ax—sin W x+ 3 (w>0).
(1)若f(x)在[0 , n上的值域为一¥,1,求3的取值范围;
n n
⑵若f(x)在o, 3上单调,且f(0)+f 3 =0,求3的值.
3cos x), b= (cos x,—cos x),函数f(x) = a •甘例2.已知a= (sin x,
(1)求函数y= f(x)图象的对称轴方程;
1
⑵若方程f(x) = 3在(0, n上的解为x i, X2,求cos(x i —X2)的值.
例3.已知函数f (x) cos 2x n sin2x cos2 x
3
⑴求函数f(x)的最小正周期及图象的对称轴方程;
⑴设函数g(x) [f (x)]2 f (x),求g(x)的值域.
【过关练习】
■jn jn
1 已知函数 f(x) sin x cos x , g (x ) 2sin 2^
6 3 2 (1 )若 3*/3
疋第象限角,且 f() .求g ()的值;
5 (2)求使 f(x)—g(x)成立的X 的取值集合.
n 2.已知函数f x Asin x - ,x R ,且 (1 )求A 的值;
(2)若 f f
(2)若f 0,f 1求a ,的值•
3•已知函数 f x sin x acos x 2 ,其中 a R ,
7t 7t 2, 2 (1 )当 a 、2 , 时,求
f X 在区间0,上的最大值与最小值;
4 5n 3
12 2
2 ,求
4•已知函数 f x sin 2x cos 2 x 2 3sin xcosx x R
2
(1 )求f 的值;
3 (2)求f X 的最小正周期及单调递增区间
5. 设函数f x COS x n 3 ⑴求f x 的值域;
6. 已知函数 f x 1 cotx sin 2x msin x n sin x — 4
4 ⑴当m 0时,求f x 在区间-,—上的取值范围;
8 4 3
⑴当tan 2时,f x -,求m 的值.
5
2cos 2x ,x R .
2
(⑴己△ ABC 的内角A 、B C 的对边长分别为
a ,
b ,
c ,若 f B 1 , b 1, c . 3,求 a 的值.
7. 已知函数f(x) 2 /3sinxcosx 2cos2 x 1(x R)
⑴求函数f (x)的最小正周期及在区间0, n上的最大值和最小值;
2
⑴若f (x o) 6, x o n,n,求COS2X o 的值.
5 4 2
8. 已知函数f x Asin
亍),其部分图象如图所示
.
x,x R(其中AO, 0,亍
⑴求f x的解析式;
⑴求函数g(x) x n f x n在区间0 ,—上的最大值及相应的x值.
4 4 2
例3•设△ ABC 是锐角三角形,a , b , c 分别是内角A , B , C 所对边长,并且
2 n n 2
sin A sin B sin B sin B . 3 3
⑴求角A 的值;
uuu UULT
⑴ AB AC 12 , a 2 7,求 b , c (其中 b c ).
题型二解三角形
例1如图,平面四边形 ABDC K/ CAD=Z BAD= 30°
(1)若/ ABC= 75°, AB= 10,且 AC// BD 求 CD 的长;
⑵若BC= 10,求AO AB 的取值范围
例2•如图所示,已知 a , b , c 分别为△ ABC 三个内角代B , C 的对边,且 a cos C +、:'3a sin
C- b — c = 0. (1)求 A;
⑵若AD 为BC 边上的中线,
cos 1 129
B = 7, AD=p , 求厶AB
C 的面积.
【过关练习】
1•在△ ABC中,a,b,c分别是内角A,B,C的对边,且(a+c)2=b2+3ac
(I )求角B的大小;
(n )若b=2,且sinB+sin(C- A)=2sin2A, 求△ ABC 的面积。
2.△ ABC的内角A,B,C所对的边分别为a,b, c.
(1 )若a,b,c成等差数列,求证:sinA sinC 2sin A C ;
(2)若a,b,c成等比数列,求cosB的最小值.
3.在厶ABC 中,a , b, c分别为内角A , B , C 的对边,且2asinA 2b c sinB 2c b sinC .
⑴求A的大小;
⑵求sinB sinC的最大值.
4.在厶ABC 中,角A 、B 、C 所对的边分别为a , b , c ,已知cos2C -.
4
⑴求sinC 的值;
⑵当a 2, 2si nA si nC 时,求b 及c 的长.
5•某学校的平面示意图为如下图五边形区域 ABCDE ,其中三角形区域 ABE 为生活区,四边形区域BCDE 为教
2
学区,AB,BC,CD,DE,EA,BE 为学校的主要道路(不考虑宽度)•/ BCD= / CDE= ,/BAE= 3
2 2
6. ABC 内接于半径为 R 的圆,a,b,c 分别是A,B,C 的对边,且2R s in B si nA b c si nC,c 3
(1).求 A
(2)若AD 是BC 边上的中线, AD 19
,求 ABC 的面积。
2 —,DE =3BC=3 CD=910 km. 3
(2)求生活区△ ABE 面积的最大值。
7•已知△ ABC的内角A,B,C的对边长分别为a,b,c,且----------- =tanA+tanB.
acosB
(1)求角A的大小;
⑵设AD为BC边上的高,a 3,求AD的范围。
8A ABC 的内角为A,B,C 的对边分别为a,b,c,已知acosCsinB=bsinB+ccosC.
(1)求sin(A+B)+sinAcosA+cos(A- B)的最大值;
⑵若b 一2,当△ ABC的面积最大时,△ ABC的周长;
9. 已知△ ABC 的内角A,B,C 的对边分别为a,b,c,(a- 2b)cosC+ccosA=0.
(1)求角C ;
⑵若c 2 3,求△ ABC的周长的最大值
10.在ABC中,a,b,c分别是角A,B,C的对边,且2bcosC 2a c
(1) B
(2)若b 2,a c 、5,求ABC的面积。