(完整版)管道混合器的计算和选型
管道混合器

管道混合器1介绍2构造原理3适用范围4设计数据5特点喷嘴式涡流式异形管道混合器静态管道混合器1、介绍管道混合器也称管式静态混合器,在给排水和环保工程中对投加各种混凝剂、助凝剂、臭氧、液氯及酸碱中和、气水混合等方面都非常有效,是处理水域各种药剂实现瞬间混合的理想设备,具有快速高效混合、结构简单,节约能耗、体积小巧等特点,在不需外动力情况下,水流通过管道混合器会产生分流、交叉混合和反向旋流三个作用,使加入的药剂迅速、均匀地扩散到整个水体中,达到瞬间混合的目的,混合效率高达90~95%,可节省药剂用量约20~30%,对提高水处理效果,节约能源具有重大意义。
管道混合器的材质分玻璃钢,碳钢和不锈钢三种。
采用玻璃钢材质具有加工方便,坚固耐用耐腐蚀等优点。
管道混合器2、构造原理管道混合器一般由管道分别与喷嘴、涡流室、多孔板或异形板等促进混合的原件组成,一般三节管道连用,作为一个单元(也可根据混合介质的性能增加节数)。
混合的方法有3种,分别为喷嘴式,涡流式,多孔板、异形板式。
对于常见的静态螺旋片式混合器,是在多孔板、异形板式混合器上发展而来,每节混合器有一个180°扭曲的固定螺旋叶片,分左旋和右旋两种。
相邻两节中的螺旋叶片旋转方向相反,并相错90°。
为便于安装螺旋叶片,筒体做成两个半圆形,两端均用法兰连接,筒体缝隙之间用环氧树脂粘合,保证其密封要求。
管道内螺旋叶片是固定的,流体通过它产生流向变化,出现紊流现象从而提高混合效率,这种静态混合器除产生降压外,它不用外部能源。
3、适用范围1.城市生活用水和工业给水处理中投加各种混凝剂、助凝剂进行混合作用;2.城市生活污水和工业废水处理中投加各种混凝剂、助凝剂进行混合作用;3.给水排水、环保工程中气水混合、投加液氯、臭氧等药剂进行消毒处理;4.工业废水进行酸碱中和混合作用;5.几种工业废水进行混合均化处理。
4、设计数据1.混合器管径按经济流速进行选择,一般按~s计算,管径大于500mm的最大流速可达s。
2 管道混合器性能参数与选用

管道静态混合器性能参数与选用静态混合器是一种没有运动部件的高效混合设备。
除了在石油炼制、化工行业被广泛应用外,在医药、食品、矿冶、塑料挤出和环保等部门也被广泛应用。
与搅拌器、胶体磨、均质机、文氏管等传统的混合设备相比,具有流程简单,结构紧凑、能耗小、投资少、操作弹性大、不用维修、混合性能好等优点。
凡涉及到液—液,液—气,液—固,气—气的混合,乳化,中和,吸收,萃取,反应和强化传热等过程,都可以替代传统的相关设备。
静态混合器使用在管路中,它所产生的压力降并不大。
使用静态混合器的系统压力比较高时,可忽略静态混合器产生的压力降。
如果使用静态混合器的系统压力比较低时,就要校核静态混合器的压力降。
静态混合器的压力降计算方法因混合器的型号不同而不同。
管道混合器的结构形式为更好地选用静态混合器,必须确定以下参数:1、操作工况:①工作介质;②工作流量;③工作压力;④工作温度;⑤物料粘度;⑥物料密度;⑦允许压损;⑧法兰标准;⑨设备材质。
2、连接法兰:混合器进出口法兰标准可以为HG、GB、JB/T、SH、ANSI等,未注明的一律按HG 20592 - 2009制作。
3、带夹套产品:需提供管程及夹套内的最高工作压力、工作温度、工作介质等参数。
1 SV型静态混合器产品特性:SV型静态混合器俗称波纹板型。
SV型静态混合器内部单元是由精心设计的波纹片组装而成,它能使不同流体在三维空间内作Z字形流动,各自分散彼此种型号的静态混合器中,SV型的混合效果最好,用于乳化过程时能使液滴分散0.5-2μm,用于一般混合过程的不均匀度系数%5~1<Xσ,而且没有放大效应。
常用规格:国内已经有二米直径的静态混合器投入工业应用,国外则有更大直径的静态混合器投入使用。
下面给出的是部分常用列参考流量是指普通粘度液体相混合时的流量,不适用于气体和高粘度液体。
型号公称直径DN水力直径d h空隙率ε混合器长度L处理量V /mm /mm /mm /(m3/h)SV-2.3/20 20 2.3 0.88 1000 0.5~1.2 SV-2.3/25 25 2.3 0.88 1000 0.9~1.8 SV-3.5/32 32 3.5 0.909 1000 1.4~2.8 SV-3.5/40 40 3.5 0.909 1000 2.2~4.4 SV-3.5/50 50 3.5 0.909 1000 3.5~7.0 SV-5/80 80 5 ~1.0 1000 9.0~18.0 SV-5/100 100 5 ~1.0 1000 14~28 SV-5~7/150 150 5~7 ~1.0 1000 30~60 SV-5~15/200 200 5~15 ~1.0 1000 56~110 SV-5~20/250 250 5~20 ~1.0 1000 88~176 SV-7~30/300 300 7~30 ~1.0 1000 120~250 SV-7~30/500 500 7~30 ~1.0 1000 353~706 SV-7~50/1000 1000 7~50 ~1.0 1000 1413~2826 典型应用:汽油调合;柴油调合;油品调合;盐水中和;酸碱中和;煤气混合等。
管道混合器的计算和选型

SX ReD ≤13 13~70 70~2000 ≥2000 摩擦系数f 0.879538022 5.225856713 7.542287686 5.11
SV-2.3 Re ≤23 23~150 150~2400 ≥2400 摩擦系数f 0.520237383 2.113177177 2.242836191 1.09
应用范围 a b c d e 液液混合 液气混合 液固混合 气气混合 强化传热
静态混合器的技术参数与压力降计算 (1) 各种静态混合器的使用范围 流体特性 中、高粘度 低、中粘度 流状 层流 过渡流或湍流 流速m/s 0.1~0.3 0.3~0.8
(2)
静态混合器的长度与混合效果
(3)
静态混合器的压力降计算 物流一工作温度T1 物流二工作温度T2 物流一密度ρ 1 物流二密度ρ 2 物流一输送压力P1 物流二输送压力P2 40 40 710 1000 1.6 ℃ ℃ kg/m3 kg/m3 Mpa(G) 物流一体积流量V1 物流二体积流量V2 物流一粘度μ 1 物流二粘度μ 2 静态混合器允许压降△P 80 2 0.0289 0.02 0.3
1.6 Mpa(G)
静态混合器直径D 初选L/D 静态混合器型号
0.2 m 10 SK (根据流体的粘度判断)
物流体积流量V 工作条件下连续相流体密度ρ c 工作条件下连续相粘度μ 流体流速u 混合器长度L a SV、SX、SL型计算 空隙率ε 水力直径dh 雷诺数Re 摩擦系数f 压力降△P 结论 b SH、SK型计算 雷诺数ReD 摩擦系数f 压力降△P 结论 c 气-气混合压力降计算公式 气-气混合一般均采用SV型静态混合器 水力直径dh 压力降△P 结论 注: 1.蓝色为需要输入的数据
管道混合器的计算和选型

管道混合器的计算和选型应用范围a液液混合b液气混合c液固混合d气气混合e强化传热静态混合器的技术参数与压力降计算(1)各种静态混合器的使用范围流体特性流状流速m/s中、高粘度层流0.1~0.3低、中粘度过渡流或湍流0.3~0.8(2)静态混合器的长度与混合效果(3)静态混合器的压力降计算物流一工作温度T140℃物流一体积流量V180m3/h物流二工作温度T240℃物流二体积流量V22m3/h物流一密度ρ1710kg/m3物流一粘度μ10.0289Pa.s物流二密度ρ21000kg/m3物流二粘度μ20.02Pa.s物流一输送压力P1 1.6Mpa(G)静态混合器允许压P0.3Mpa (G)物流二输送压力P2 1.6Mpa(G)静态混合器直径D0.2m初选L/D10静态混合器型号SK(根据流体的粘度判断)物流体积流量V82.0m3/h工作条件下连续相流体密度ρc710kg/m3工作条件下连续相粘度μ0.0289Pa.s流体流速u0.73m/s混合器长度L2ma SV、SX、SL型计算空隙率ε1(查表)水力直径dh15mm(查表)雷诺数Re267.2摩擦系数f 3.18压力降△P79110Pa结论选型正确b SH、SK型计算雷诺数Re D3562.47627摩擦系数f 3.18压力降△P5933.2Pa结论选型正确c气-气混合压力降计算公式气-气混合一般均采用SV型静态混合器水力直径dh15mm(查表)压力降△P0.62838168Pa结论选型正确注: 1.蓝色为需要输入的数据2.红色为得到的结果。
管道混合器计算条件

管道混合器计算条件
1进液条件
1)原料氨水小时耗量(NH4OH):105.59kg/h
氨水温度:-36℃;
氨水重量浓度:20wt%;
氨水密度:923kg/m3
氨水粘度:与水相近
氨水压力:4~6bar
2)稀释水小时耗量(H2O):316.76kg/h
稀释水温度:20℃;
水密度:1004kg/m3
稀释水粘度:1 cp
稀释水压力:4~6bar
2变量条件
1)变环境条件:夏季氨水温度变成20摄氏度,水仍然是20摄氏度。
2)变工况条件:
锅炉负荷75%BMCR,原料氨水耗量减小1.3倍,稀释水耗量减小1.3倍。
锅炉负荷110%BMCR,原料氨水耗量增大1.1倍,稀释水耗量增大1.1倍。
3)压力变动条件:
恒压管路→电动流量调节阀→流量计(控制器)
锅炉工况变大(NOx大)需要调浓氨水的重量浓度(设计稀氨水浓度为5wt%);稀释水不变流量的条件,开大调节阀开度(阀门压损减小)会使阀后压力略大;即氨水压力大,稀释水压力小。
另一种情况:锅炉工况变小(NOx小)需要调稀氨水的重量浓度(设计稀氨水浓度为5wt%);稀释水不变流量的条件,关小调节阀开度(阀门压损增大)会使阀后压力略小;即氨水压力小,稀释水压力大。
3采用下图那种方式对我的工况更有利?
请厂家提供方案、计算书和图纸。
市政管道混合器选型

注:1.安装方式:水平或垂直装均可。 2.以玻璃纤维为增强材料的各型玻璃钢制品用于生活饮用水净化时应征得卫生部门的同意。
检查井
排水管道公称直径 (mm) ≤200 200~400 800 最大间距(m) 污水管道 20 40 60 雨水及合流管道 30 50 70
承压圈选用: 具体可按我公司 承压圈选用:在车行道路上安装检查井时应选用混凝土承压圈, 混凝土承压圈规格表和选用图进行选用。 内盖选用: 内盖选用:污水井需选用与井筒匹配的内盖。 井盖及盖座: 井盖及盖座:应根据承载要求和井径选用,具体见下表:
管道混合器选型标准

管道混合器选型标准
管道混合器的选型主要基于混合物性质、流量和管径等因素的考虑。
以下为管道混合器选型的基本标准:
混合物性质:混合物的物性指标,如黏度、浓度、是否易结晶等,将决定选择何种类型的混合器。
例如,对于高黏度、高浓度、易结晶等特殊液体物质,需要选择适合的混合器类型。
流量和流速:混合器的管径通常根据经济流速进行选择,一般按0.9~1.2m/s计算,管径大于500mm的最大流速可达1.5m/s。
有条件时,可以将管径放大50~100mm,以减少水头损失。
管节数和节长:混合器基本组合按三节考虑,水头损失约为0.4~0.6m,也可根据混合介质的情况增减节数。
水压:混合器管内水压按1.0kg/cm2考虑,也可根据实际压力进行设备加工。
以上信息仅供参考,具体的选型标准可能因实际应用场景和需求而有所不同。
如需了解更多信息,建议咨询相关领域的专业人士。
设备简介

回转式机械格栅一、工作原理回转式机械格栅是一种可以连续自动清除的格栅。
它由许多个相同的耙齿机件交错平行组装成一组封闭的耙齿链,在电动机和减速机的驱动下,通过一组槽轮和链条组成连续不断的自上而下的循环运动,达到不断清除格栅的目的。
当耙齿链运转到设备上部及背部时,由于链轮和弯轨的导向作用,可以使平行的耙齿排产生错位,使固体污物靠自重下落到渣槽内,脱落不干净时,这类格栅容易把污物带到栅后渠道中。
钢丝绳牵引卷筒机械格栅工作时钢绳驱动装置放绳,耙斗从最高位置(上一循环撇渣结束处)沿导轨下行,撇渣板在自重的作用下随耙斗下降。
当撇渣板复位后,耙斗在开闭耙装置(电动推杆)的推动下通过中间钢绳的牵引张开并继续下行直至抵达渠道下限位,待耙齿插入格栅间隙后,钢绳驱动装置收绳,进一步强制耙斗完全闭合后耙斗和斗车沿导轨上行,清除栅渣直至触及撇渣板,在两者相对运动作用下,栅渣被撇出,经导渣板落入渣槽,完成一个工作循环。
二、性能优点回转式机械格栅最大优点是自动化程度高、分离效率高、动力消耗小、无噪音、耐腐蚀性能好,在无回转式机械格栅的组成人看管的情况下可保证连续稳定工作,设置了过载安全保护装置,在设备发生故障时,会自动停机,可以避免设备超负荷工作。
该设备可以根据用户需要任意调节设备运行间隔,实现周期性运转;可以根据格栅前后液位差自动控制;并且有手动控制功能,以方便检修。
用户可根据不同的工作需要任意选用。
由于该设备结构设计合理,在设备工作时,自身具有很强的自净能力,不会发生堵塞现象,所以日常维修工作量很少。
三、设备参数表行车式泵吸泥机一、HJB-10-1泵吸式排泥车概述行车式泵吸泥机,用于污水处理厂平流沉淀池,将沉降在池底上的污泥刮到泵吸泥口,通过泵吸,边行车边吸泥,然后将污泥排出池外,以便污泥回流或浓缩脱水。
设备主要由主桁架,驱动装置,集泥装置,吸泥排泥系统,电气控制系统组成,是有传动平衡,运行可靠,对污泥干扰小,排泥效果优异等优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1794 3.17936 3.17936043
2.53
0
SL ReD ≤10 10~100 100~3000 ≥3000
SX SH SK SL SV-2.3 SV-3.5
摩擦系数f 0.583863538 2.414047941 3.435002366 2.1
7.542287686 25.28340066 3.179360435 3.435002366
应用范围
a 液液混合 b 液气混合 c 液固混合 d 气气混合 e 强化传热
静态混合器的
技术参数与压 各种静态混合器的使用
(1)
范围
流体特性 中、高粘度 低、中粘度
流状
流速m/s
层流
0.1~0.3
过渡流或湍流 0.3~0.8
(2)
静态混合器的长度与混 合效果
(3)
静态混合器的压力降计 算
物流一工作温度T1 物流二工作温度T2 物流一密度ρ1 物流二密度ρ2 物流一输送压力P1 物流二输送压力P2
3.18 5933.2 Pa 选型正确
80 2 0.0289 0.02
0.3
注:
气-气混合压力降计算 c 公式
气-气混合一般均采用 SV型静态混合器 水力直径dh 压力降△P 结论
1.蓝色为需要 输入的数据 2.红色为得到 的结果
15 mm 0.62838168 Pa 选型正确
(查表)
m3/h m3/h Pa.s Pa.s
水力直径dh 雷诺数Re 摩擦系数f 压力降△P 结论
b SH、SK型计算 雷诺数ReD 摩擦系数f 压力降△P 结论
82.0 m3/h
710 kg/m3
0.0289 Pa.s 0.73 m/s 2m
1 15 mm 267.2 3.18 79110 Pa 选型正确
(查表) (查表)
3562.47627
2.242836191 1.448857843
SV-3.5
Re ≤23
23~150 150~2400
摩擦系数f 0.520237383 1.285767015 1.448857843
≥2400Biblioteka 0.702SV-5
Re
摩擦系数f
≤150 >150
0.561407248 1
SV-7 Re
≤150 >150
静态混合器直径D 初选L/D
静态混合器型号
40 ℃ 40 ℃ 710 kg/m3 1000 kg/m3
1.6 Mpa(G) 1.6 Mpa(G)
0.2 m 10
(根据流体 的粘度判 SK 断)
物流一体积流量V1
物流二体积流量V2
物流一粘度μ1 物流二粘度μ2 静态混合器允许压降 △P
物流体积流量V 工作条件下连续相流体 密度ρc 工作条件下连续相粘度 μ 流体流速u 混合器长度L a SV、SX、SL型计算 空隙率ε
摩擦系数f
0.561407248 1
SV-15 Re
≤150 >150
摩擦系数f 0.561407248 1
SV-5
1
SV-7
1
SV-15
1
Mpa(G)
SX ReD
≤13 13~70 70~2000 ≥2000
摩擦系数f
0.879538022 5.225856713 7.542287686
5.11
SV-2.3 Re
摩擦系数f
≤23 23~150 150~2400 ≥2400
0.520237383 2.113177177 2.242836191
1.09
SH
ReD ≤30 30~320 >320
摩擦系数f
判断数据
0.982462684
0
10.5609083
0 5.28045415
25.28340066 25.2834
SK ReD ≤23
摩擦系数f
判断数据
0.120702558
0
23~300
1.572556516
0 0.78627826
300 ~11000 >11000