工程热力学史的感想

合集下载

工程热力学学习感想

工程热力学学习感想

工程热力学学习感想第一篇:工程热力学学习感想前言:工程热力学是以研究热能与其他形式的能量相互转换规律、工质的热力性质及各种热力装置工作情况的分析的一门学科。

目前,热力学的研究范围已涉及到化工、空调以及近代的低温、超导、电磁及生物等各个领域。

工程热力学属于应用科学的范畴,是工程科学的重要领域之一,是工程类各专业本科生重要的专业基础课,是研究热能和机械能相互转换的基本原理和规律,一提高热能利用为基础的一门学科。

工程热力学是研究热能和机械能相互转换的基本原理和规律,一提高热能利用为基础的一门学科,属于应用科学的范畴,是工程科学的重要领域之一,是工程类各专业本科生重要的专业基础课,是农业工程类、能源工程类、、电气信息类等专业的主要专业基础课之一。

工程热力学是关于热现象的宏观理论,它主要以热力学第一定律、热力学第二定律作为推理的基础,通过物质的压力、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究,通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。

自然能源的开发和利用更是人类走向繁荣的起点能源开发和利用的程度是生产发展的一个重要标志。

能源的开发和利用,不但推动着社会生产力的发展与进步,而且与国民经济发展有着密切的联系。

能源是指为人类生产和日常生活提供各种能量和动力的物质资源。

迄今为止,自然界中已为人们发现的可被利用的能源主要有风能、水能、太阳能、地热能、海洋潮汐能、核能及燃料的化学能等。

在众多能源中,人们从自然能源中获得能量的主要形式是热能。

但是长期以来,我们总是以为我国地大物博,资源丰富。

然而,我国是世界上人口最多的国家,人均资源水平极低,几乎所有人均资源都低于世界的平均水平,能源的使用已经达到瓶颈的状态,能源利用率低下,污染较严重,因此,运用工程热力学的理论知识,对实际工作中的热力过程和热力循环进行分析,才能提出提高能源利用经济性的具体途径与措施。

2023年热力学总结及学习感想

2023年热力学总结及学习感想

2023年热力学总结及学习感想在过去的一年里,我在学习热力学方面取得了很大的进步。

通过深入学习和实践,我对热力学的基本原理和应用有了更深入的理解。

下面我将对2023年热力学的学习总结和感想进行详细的阐述。

首先,我在热力学的学习过程中掌握了基本的概念和定律。

熟悉了理想气体状态方程、焓、熵等基本概念,并理解了热力学第一定律和第二定律的内涵和应用。

这些基本概念和定律为我进一步学习更复杂的热力学问题打下了坚实的基础。

其次,我对热力学的应用有了更全面的认识。

热力学在自然界和工程领域中有广泛的应用,比如在能源转化、环境工程和材料科学等方面都有重要的作用。

通过实际案例的学习,我学会了如何应用热力学的知识解决问题,并且在解决实际问题的过程中不断提高了自己的能力。

同时,我也深刻认识到热力学学习的重要性。

热力学是物理学中的一门基础学科,对于理解和研究物质的宏观行为有着重要的意义。

在学习热力学的过程中,我不仅仅学到了具体的知识和技能,更重要的是培养了科学思维和分析问题的能力。

这些能力在今后的学习和工作中都将发挥重要的作用。

此外,我还发现热力学学习需要不断的实践和探索。

热力学虽然有一套完整的理论体系,但是在实际应用中常常遇到复杂的情况和问题。

只有通过实际操作和动手实践,我们才能够更加深入地理解热力学的原理和应用。

因此,在学习热力学的过程中,我会注重实践环节,加强与实际问题的联系,提高自己的应用能力和解决问题的能力。

最后,我还发现热力学学习需要与其他学科进行深入的交叉融合。

热力学与物理学、化学、工程学等学科有着密切的关联,其理论和方法都可以在其他学科中得到应用和发展。

在今后的学习中,我将会与其他学科的知识进行交叉学习和融合,以提供更多的视角和方法来理解和解决问题。

总而言之,热力学的学习是一个艰辛但又充满挑战和乐趣的过程。

在2023年的学习中,我不仅仅掌握了热力学的基本概念和定律,更重要的是通过实践和探索,培养了自己的科学思维和问题解决能力。

工程热力学读书报告

工程热力学读书报告

工程热力学读书报告——火力发电的效率问题及引起的环境问题工程热力学是热力学的一个分支,是热力学理论在工程上的具体应用。

工程热力学主要研究热能和机械能及其他形式的能量之间相互转换的规律。

而工程热力学在发电厂的应用是相当广泛的,本实验报告主要针对火力发电厂涉及到的相关热力学理论及火力发电所引发的一系列环境问题展开讨论。

电力工业是为国民经济发展提供能源的基础性行业,同时也是社会发展和人民生活的公用性事业。

由于我国的能源结构是以煤炭为主,火力发电一直在我国的电力结构中占据主导地位,并且还将在很长一段时期内继续保持这种状态。

然而火力发电的效率由于各种条件因素的限制,一直处于较低水平,有待提高,虽然我国的煤炭资源相对丰富,但其使用量也必须是有一定限制的。

并且火电燃煤还引发了一系列环境问题,给社会发展和人民健康带来了威胁。

因此我国火力发电能否解决其效率问题与环境问题,实现热量的高效转换和与环境的和谐发展具有重要的战略意义。

提高火电厂发电效率的措施有:通过设置节流阀,减少热能的损失,提高气体的定向动能,从而达到较大程度提高火力发电的目的。

另外,火力发电过程中,各机件运动也是能量消耗的原因。

如汽轮机和磁极转动,它们本身没有能量,也是靠热能提供,有一部分不能转化为电能。

因此,还得尽量减小这些机件的质量或密度。

如汽轮机厂可把汽轮机的叶片尽可能做薄或用轻材料(如钛铝合金)代替钢铁部分。

对旋转磁极,也应该尽量让其减小质量。

当然,各生产线可综合各种情况,具体改进,从而提高火电效率。

火力发电厂的主要工作流程是,燃料燃烧的热能→锅炉→高温高压水蒸汽→汽轮机→机械能→发电机→电能→变压器→电力系统。

燃料的化学能在锅炉中转变为热能,加热锅炉中的水使之变为蒸汽,称为燃烧系统;锅炉产生的蒸汽进入汽轮机,推动汽轮机旋转,将热能转变为机械能,称为汽水系统;由汽轮机旋转的机械能带动发电机发电,把机械能变为电能,称为电气系统。

朗肯循环是最简单的蒸汽动力循环由水泵、锅炉、汽轮机和冷凝器四个主要装置组成.水在水泵中被压缩升压;然后进入锅炉被加热汽化,直至成为过热蒸汽后,进入汽轮机膨胀作功,作功后的低压蒸汽进入冷凝器被冷却凝结成水。

热力学总结及学习感想

热力学总结及学习感想

热力学总结及学习感想热力学是研究能量和能量传递规律的学科,它是自然科学中的一个重要分支。

热力学的发展和运用贯穿于各个领域,涉及到物理、化学、天文学、工程学等诸多学科。

在学习热力学的过程中,我深刻认识到了热力学的基本原理和应用,并对热力学的研究方法和思维方式有了更加清晰的认识。

以下是我对热力学的总结及学习感想。

热力学的基本原理可以由三个基本定律来概括。

第一定律是能量守恒定律,它指出能量既不能自发生成,也不能自发消失,只能从一种形式转化为另一种形式。

这个定律告诉我们能量是一个可转化的物理量,并且在转化过程中总是守恒的。

第二定律是热力学中最重要的定律之一,它阐述了一个重要的物理现象——热量是从高温物体传递到低温物体的,不会反向传播。

第二定律的研究为我们理解能量转化和传递提供了重要的理论基础。

第三定律则是物质在绝对零度时熵为零的定律,它告诉我们在绝对零度时,物质的分子和原子处于最低能量状态,熵(即混乱程度)为零。

热力学的学习过程中,我通过分析热力学系统的状态变化、热力学循环和热力学平衡等基本概念,深入理解了热力学的基本原理和规律。

我学会了热力学分析中的基本方法和计算技巧,例如热力学性质的计算、热力学过程的分析等。

在解决热力学问题时,我也学会了灵活运用热力学定律和公式,结合实际问题进行推导和计算。

通过与同学的讨论和合作,我也加深了对热力学的理解,并找到了解决问题的有效方法。

在学习热力学的过程中,我深感热力学在自然科学中的重要性和广泛应用。

热力学不仅是解释和分析自然界中许多现象的重要工具,也是工程技术中的基础理论之一。

我们的生活和工作中处处都离不开热力学的应用,例如汽车引擎、空调制冷、电力发电等。

热力学的研究不仅帮助我们更好地理解自然界的奥秘,还为创新科技和解决实际问题提供了重要的理论依据。

通过学习热力学,我也培养了一些重要的学习能力和思维方式。

热力学的学习需要具备一定的数学基础和逻辑思维能力。

在解决热力学问题时,我们需要进行系统的分析和推导,运用公式和模型来描述和解释物质的能量变化和热力学性质。

高等工程热力学——学后感

高等工程热力学——学后感

论学高等工程热力学后的感想张丽摘要:高等工程热力学作为暖通空调及热能动力等相关专业的核心基础课程,是研究生阶段所必须认真学习的关键学位课程,文章简要介绍了高等工程热力学的主要内容以及有关知识在相关领域的发展现状及前景。

关键词:高等工程热力学、关键学位课、前景Perceptions of Advanced engineering thermodynamicsZhangLiAbstract :Advanced engineering thermodynamics as hvac and thermal energy and power and related professional core courses, is the postgraduate stage must seriously study the key degree course, this paper briefly introduces the main content of higher engineering thermodynamics and relevant knowledge in the fields related to the developing situation and prospects.Key words: Advanced engineering thermodynamics;key degree course;prospects0引言高等工程热力学是热能与动力工程、建筑设备工程专业、能源、电力、化工、建筑、材料、水利及航空宇航科学与技术等相关科学的的专业课,它主要建立在大学工程热力学的基础上,从工程实际出发来研究物质的热力性质、能量转换的规律和方法以及有效合理利用热能的途径[1]。

本学期学习主要是进一步学习了热力学的基本概念、几个主要定律、热力学微分方程、火用、以及氢气技术。

同时了解了工程热力学在现今实际工程建设中的应用以及一些现今技术的发展前景。

2024年热力学总结及学习感想

2024年热力学总结及学习感想

2024年热力学总结及学习感想____年热力学总结及学习感想引言:热力学是一门研究物质能量转化和能量传递规律的学科,对于理解和解释自然界中的物质运动具有重要的意义。

在____年,热力学研究取得了一系列令人振奋的进展,对于推动科学技术的发展起到了积极的推动作用。

在本文中,我将对____年热力学领域的研究成果进行总结,并分享我的学习感想。

一、研究成果总结:1. 熵增定律的应用:熵增定律是热力学中的重要概念,它描述了自然界中熵的增加趋势。

在____年,熵增定律得到了更广泛的应用。

研究人员发现,可以通过控制系统的边界条件和过程路径,实现熵的减少或稳定。

这一发现对于提高能源利用效率和减少能量浪费具有重要的意义。

2. 热力学循环的优化:热力学循环是工程领域常用的能量转换方式。

在____年,研究人员通过优化热力学循环的工作流程和组件设计,不仅提高了能量转换效率,而且减少了能源消耗和环境污染。

这些优化措施在工业生产和能源利用中得到了广泛的应用,为可持续发展奠定了基础。

3. 多尺度热力学模拟:随着计算机技术的不断发展,多尺度热力学模拟方法在____年得到了广泛应用。

通过将不同长度尺度的模型结合起来,研究人员可以更准确地描述复杂系统中的能量转移和相变过程。

这些模拟方法不仅提供了对实验数据的解释,而且对于新材料的设计和开发具有重要的指导意义。

4. 热力学与生物学的交叉研究:在____年,热力学与生物学的交叉研究成为热点。

研究人员发现,热力学原理可以应用于生物体内的物质运输、能量转换和代谢过程的研究。

通过热力学的分析方法,研究人员可以揭示生物体内各种生物化学反应的基本规律,为疾病的治疗和新药的研发提供理论支持。

二、学习感想:1. 热力学是一门基础而重要的学科,对于理解自然界中的物质运动和能量转化过程具有重要的意义。

在学习热力学的过程中,我不仅掌握了它的基本理论和概念,还深入了解了它在各个领域中的应用。

2. 在____年,人们对于热力学的深入研究使我对这门学科产生了更大的兴趣。

热工学习体会

热工学习体会

热工学习体会第一篇:热工学习体会心得体会我们用了三个星期学习了在学校一年多的课程,热工理论,它包含了工程热力,流体,传热的课程,在学校没有好好的学,对热工的这本书还是很陌生,但是在这次学习中,可能有了对工作有帮助这种目的。

所以在这次学习中,虽然时间很短,但是学到了很多的内容:虽然热工理论不能直接用到电厂工作中,但是它对以后的汽机,锅炉等学习起着不可替代的作用。

一:热工让我们学会了水在电厂设备作为工质有着流动性,膨胀性,对环境无害,更重要的是廉价易得的好处,热工学对分析机组在采用朗肯循环的基础上,又加了再热和回热系统,适当提高蒸汽温度和压力及降低乏汽压力都对机组的热经济性有所提高。

二:在流体力学中,对分析管道内工质流动形态,管内结垢和管外积灰垢的形成,以及对管道选择顺列排布还是错列排布都起到了理论知识分析的作用。

三:传热学中,从导热,对流,辐射换热的角度,学到了从火焰的温度怎么传到工质中去,通过什么方法可以让水冷壁强化换热以及削弱炉墙和一些管道的对外热损失。

学习这门课程以后,为学习更重要的基础课程铺垫了很重要的知识,感谢公司提供提供这次培训,弥补大学学习的不足之处。

为以后的职业生涯打下坚实的基础。

第二篇:热工工作总结热工工作总结本次工程新建2×75t/h中温中压循环流化床锅炉房一座,采用集中控制方式。

设一个集中控制室,锅炉、厂用电及化学水处理等系统均纳入DCS进行集中监控。

脱硫、脱硝、布袋除尘采用单独的控制方式,在少量就地操作和巡回检查配合下在集中控制室实现锅炉的启停、运行工况监视和调整以及事故处理。

主设备锅炉,济南锅炉集团有限公司制造,75t/h中温中压循环流化床汽包炉,单锅筒自然循环,悬吊结构,平衡通风,固态排渣,全钢构架,运转层以下全封闭布置,运转层以上为露天布置。

锅炉点火采用0号轻柴油。

主要热力系统和燃烧系统(1)主汽系统采用母管制,两台锅炉过热器联箱出口蒸汽经一根φ219×7(20 G)的管道分别送至主蒸汽母管,经减温减压后对外供汽。

工程热力学的认识与学习体会

工程热力学的认识与学习体会

工程热力学的认识与学习体会工程热力学,英文名engineering thermodynamics 。

热力学是研究热现象中,物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时,系统与外界相互作用的学科。

工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。

工程热力学是关于热现象的理论,它以热力学第一定律、热力学第二定律和热力学第三定律作为推理的基础,通过物质的压力 、温度、比容等参数和受热、冷却、膨胀、收缩等行为,对现象和热力过程进行研究。

1842年,法国科学家卡诺提出来卡诺定理和卡诺循环,之处热机必须工作于不同温度的热源之间,提出了热机最高效率的概念,这在本质上已经阐明了热力学第二定律的基本内容。

但是他的证明过程却是错的。

在卡诺的基础上1850-1851年间克劳修斯和汤姆逊先后独自从热量传递和热转变成功的角度提出了热力学第二定律,指明了热过程的方向性。

1850年,焦耳在他的关于热工相当实验的总结论文中,以各种精确的实验结果使能量守恒与转换定律,即热力学第一定律得到了充分的证实。

1851年,汤姆逊把能量这一概念引入热力学,热力学第一定律的建立宣告第一类永动机(即不消耗能量的永动机)是不可能实现的。

热力学第二定律则使制造第二类油动机(只从一个热源吸热的永动机)的梦想破灭。

1906年,能斯特根据低温下化学反应的大于1912年将之表述为绝对零度不能达到元力,即热力学第三定律。

热力学第三定律的建立使热力学理论更加完善。

这三个定理是热力学的基础。

在整个热力学的学习过程中,我对熵这一部分的学习印象最深。

熵是与热力学第二定律紧密相关的状态参数。

它为判别实际过程的方向,过程能否实现,热力学第二定律的量化等方面有至关重要的作用。

〉÷⎰〈=T Q s σd ,可以用来判断过程是否可逆,任何不可逆过程的熵变大于)(T Q ÷⎰σ,极限状况(可逆)时相等,不可能出现小于的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热力学发展史
15041054 陈思远热力学发展史,其实就是热力学与统计力学的发展史,从热量概念的演变到热力学三个定律的形成,凝聚了众多科学家的心血,从一次次的推论,试验然后得出结论,这是一段艰辛的历史,也是人类认识自然,改造自然的历史。

热力学是专门探讨能量内涵、能量转换以及能量与物质间交互作用的科学,早期物理中,把研究热现象的部分称为热物理,后来称为热学,近代则称之为热力学。

顾名思义,热力学和“热”有关,和“力”也有关,热是一种传送中的能量。

物体的原子或分子通过随机运动,把能量由较热的物体传往较冷的物体。

人类很早就对热有所认识,并加以应用,但是将热力学当成一门科学且定量地研究,则是由十七世纪末开始,也就是在温度计制造技术成熟,并知道如何精密地测量温度以后,才真正开启了热力学的研究.十七世纪时伽利略曾利用气体膨胀的性质制造气体温度计,波义耳在 1662 年发现在定温下,定量气体的压力与体积成反比;十八世纪,经由准确的实验建立了摄氏及华氏温标,其标准目前我们仍在使用;1781 年查理发现了在定压下气体体积会随着温度改变的现象,但对于热本质的了解则要等到十九世纪以后。

焦耳自 1843 年起经过一连串的实验,证实了热是能量的另一种形式,并定出了热能与功两种单位换算的比值,此一能量守恒定律被称为热力学第一定律,自此人类对于热的本质才算了解。

1850 年凯尔文及克劳修斯说明热机输出的功一定少于输入的热能,称为热力学第二定律。

这两条定律再加上能士特在 1906 年所提出的热力学第三定律:即在有限次数的操纵下无法达到绝对零度,构成了热力学的基本架构。

综观而言,所谓热力学发展史,其实就是热力学与统计力学的发展史,基本上约可划分成四个阶段。

第一阶段开始于十七世纪末到十九世纪中叶,这个时期累积了大量的实验和观察,并制造出蒸汽机,关于“热”的本质展开了研究和争论,为热力学理论的建立做了准备。

在十九世纪前半叶首先出现的卡诺理论、热机理论(第二定律的前身)和热功相当互换的原理(第一定律的基础)已经包含了热力学的基本思想,这一阶段的热力学还留在热力学的现象描述,并未引进任何数学算式。

第二阶段是十九世纪中到十九世纪末。

这个时期发展了热力学和分子运动论,这些理论的诞生与热功相当原理有关。

热功相当原理奠定了热力学第一定律的基础,而第一定律和卡诺理论结合,又导致热力学第二定律的形成;热功相当原理跟微粒说结合则导致了分子运动论的建立,另一方面,以牛顿力学为基础的气体动力论也开始发展,而在这段时期内人们并不了解热力学与气体动力论之间的关连,热力学和分子运动论彼此还是隔绝的。

第三阶段是十九世纪七十年代末到二十世纪初,这个时期内,波兹曼结合热力学与分子动力学的理论,从而导致统计热力学的诞生,同时他也提出非平衡态的理论基础,至二十世纪初吉布斯提出系统理论建立了统计力学。

这一时期的汤姆逊为热力学也做出了重大贡献。

他研究卡诺循环也提出第二定律,同时更由此订定绝对温标,又称凯氏温标 K。

他利用卡诺循环建立绝对温标,他重新设定水的冰点为 273.7 度;沸点为 373.7 度,为了纪念他的贡献,绝对温度的单位以凯尔文来命名。

他在 1851 年发表题为《热动力理论》的论文,写出热力学第二定律的凯尔文表述:我们不可能从单一热源取热,使它完全变为有用的功而不产生其它影响。

第三定律的发现普朗克在能士特提出的“在 0 K 时任何化学
变化其纯物质凝聚态反应的总熵与纯物质凝聚态产物的总熵相等”的基础上,于1921 年提出热力学第三定律,既完美晶体在绝对零度时,其熵为零。

第四阶段是从二十世纪三十年底到今天。

这个时期由于量子力学的引进,建立了量子统计力学,同时非平衡态理论也有更近一步的发展,从而形成了近代理论与试验物理学中最重要的一环。

热力学是热学理论的一个方面,热力学主要从能量转化的观点来研究物质的热性质,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。

热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用,因此它是一种唯象的宏观理论,具有高度的可靠性和普遍性。

热力学的发展史像我们展示了人类认识自然的过程,它是充满艰辛的,从十七世纪至今,人们一直在探索、改进,这种认识自然并改造自然的精神,正是我们应该了解并传承的。

工程热力学,热力学是研究热现象中,物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时,系统与外界相互作用的学科。

工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。

工程热力学是关于热现象的理论,它以热力学第一定律、热力学第二定律和热力学第三定律作为推理的基础,通过物质的压力、温度、比容等参数和受热、冷却、膨胀、收缩等行为,对现象和热力过程进行研究。

通过一学期的学习,我对工程热力学中的一些基本概念,定律等又有了更深一层次的理解,同时了解湿空气、燃气、制冷剂、溶液等的热力性质。

我作为一名能源与动力工程学院的学生,要牢固掌握工程热力学的专业知识,努力提高自己的专业知识。

相关文档
最新文档