高一数学集合与常用逻辑用语

合集下载

《第一章-集合与常用逻辑用语》大单元整体教学设计

《第一章-集合与常用逻辑用语》大单元整体教学设计

《第一章集合与常用逻辑用语》大单元整体教学设计一、内容分析与整合(一)教学内容分析《第一章集合与常用逻辑用语》是高中数学学习的起点,为学生后续学习函数、数列、不等式等数学内容提供了重要的逻辑基础。

本章内容主要分为五个部分:集合的概念、集合间的基本关系、集合的基本运算、充分条件与必要条件、以及全称量词与存在量词。

这些内容不仅在数学内部逻辑上紧密相连,而且在实际问题解决中也具有广泛的应用价值。

集合是现代数学的基本概念之一,它是描述事物群体及其相互关系的重要工具。

通过学习集合的概念,学生能够理解集合的确定性、互异性、无序性,并掌握集合的表示方法(如列举法、描述法等)。

集合的学习有助于学生形成分类讨论的数学思想,为后续学习打下坚实基础。

集合间的基本关系主要包括子集、真子集、相等关系等。

这些关系揭示了集合之间的层次结构和相互联系,是学习集合运算和逻辑推理的基础。

学生需要掌握判断集合间关系的方法,并能根据具体问题灵活应用。

集合的基本运算包括并集、交集、补集等。

这些运算是集合论中的重要内容,也是解决实际问题中常用的数学工具。

学生需要掌握集合运算的定义、性质及运算法则,并能够进行复杂的集合运算。

充分条件与必要条件是逻辑推理中的基本概念,它们描述了条件与结论之间的逻辑关系。

通过学习充分条件与必要条件,学生能够理解命题之间的逻辑关系,掌握推理的基本方法,提高逻辑思维能力。

全称量词与存在量词是数学语言中的重要组成部分,它们用于描述具有普遍性或特殊性的数学命题。

学生需要理解全称命题与特称命题的区别,掌握全称量词与存在量词的含义及用法,并能够运用量词进行逻辑推理和命题证明。

(二)单元内容分析本单元内容不仅涵盖了集合论和逻辑推理的基础知识,更在数学学科中占据着举足轻重的地位。

集合论,作为现代数学大厦的基石之一,为我们提供了一个描述和研究数学对象及其相互关系的强大框架。

它使我们能够更清晰地理解和表达数学中的基本概念,为深入学习更复杂的数学知识打下坚实的基础。

高一数学集合与常用逻辑用语试题答案及解析

高一数学集合与常用逻辑用语试题答案及解析

高一数学集合与常用逻辑用语试题答案及解析1.已知集合,集合,则集合()A.B.C.D.【答案】B【解析】两集合的公共元素组成的集合,所以【考点】集合的运算2.在空间,下列命题错误的是()A.一条直线与两个平行平面中的一个相交,则必与另一个相交B.一个平面与两个平行平面相交,交线平行C.平行于同一平面的两个平面平行D.平行于同一直线的两个平面平行【答案】D【解析】平行于同一直线的两个平面平行也可能相交,只要面外直线与它们的交线平行即可.【考点】空间直线、平面的位置关系.3.已知集合A={a,b},集合B={0,1},下列对应不是A到B的映射的是()【答案】C【解析】映射要满足对于A中的每一个元素a,b在B中都有唯一的元素与之对应,C项中对应关系不满足要求【考点】映射的概念4.已知集合A={0,1,4},B={2,4},则A∪B=()A.{4}B.{0,1,2,4}C.{0,1,2}D.{0,2,4}【答案】B【解析】由并集的定义易得,.故选B.【考点】并集运算.5.定义集合运算:,设,,则集合的所有元素之和为.【答案】54【解析】由新定义运算可知集合中所有的元素是由集合,中的元素的乘积得到的,所有元素依次为0,4,5,8,10,12,15,求和得54【考点】新定义集合问题6.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集划分为两个非空的子集与,且满足,,中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中不可能成立的是A.没有最大元素,有一个最小元素B.没有最大元素,也没有最小元素C.有一个最大元素,有一个最小元素D.有一个最大元素,没有最小元素【答案】C【解析】设,显然集合M中没有最大元素,集合N中有一个最小元素,即选项A可能;,显然集合M中没有最大元素,集合N中也没有最小元素,即选项B可能;,显然集合M中有一个最大元素,集合N中没有最小元素,即选项D可能;同时,假设答案C可能,即集合M、N中存在两个相邻的有理数,显然这是不可能的,故选C.【考点】以集合为背景的创新题型.【方法点睛】创新题型,应抓住问题的本质,即理解题中的新定义,脱去其“新的外衣”,转化为熟悉的知识点和题型上来.本题即为,有理数集的交集和并集问题,只是考查两个子集中元素的最值问题,即集合M、N中有无最大元素和最小元素.7.设,,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】要使, 当时,需有,解得;‚当时,需有,解得.综上,.故选C.【考点】由集合关系求参数范围.8.设全集集合则.【答案】【解析】集合M表示的是直线除去点(2,3)的所有点;集合P表示的是不在直线上的所有点,显然表示的是平面内除去点(2,3)的所有点,故.【考点】集合运算.9.已知集合,(Ⅰ)若,,求实数的取值范围;(Ⅱ)若,,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)解不等式,根据解分式不等式的方法,化不等式右端为0,即:,整理得:,化分式为整式,转化为,解得:,所以集合,若,则应先考虑B为空集时,此时有,解得:,然后再考虑集合B非空的情况,则应有:,解得:,所以,综合两种情况,所以;(Ⅱ)由于集合,若,则B为非空集合,所以应满足:,解得:,所以.试题解析:解不等式,得,即(Ⅰ)①当时,则,即,符合题意;②当时,则有解得:综上:(Ⅱ)要使,则,所以有解得:【考点】1.集合间的关系;2.分类讨论在集合中的应用.10.已知集合,,(1)当时,求(2)当时,求的取值范围.【答案】(1)[3,4)(2)m≥3或m≤一3【解析】(1)当代入不等式,求两集合的交集即两集合的公共部分;(2)由可知A B,借助于数轴可得两集合边界值的大小关系,从而得到不等式,求得的取值范围试题解析:(1) m=l时,A={x11<X<4}B={xIx≤0或x≥3}A B=[3,4)(2)A B=BA Bm+3≤0或m≥3解得m≥3或m≤一3【考点】1.集合的交集运算;2.集合子集关系11.(14分)已知集合,.(1)求;(2)求;(3)若,且,求的取值范围.【答案】(1)(2)(3)【解析】(1)(2)求集合的交并补运算时常借助于数轴求解,将两集合标注在数轴上,交集即两集合公共部分,并集即所包含的所有部分,(3)中由集合的子集关系得到集合边界值的大小关系,得到关于的不等式从而求解的值试题解析:(1)∵=∴(2)∵∴(3)∵,又∴∴∴∴的取值范围为【考点】1.集合的交并补运算;2.集合的子集关系12.设集合,,则()A.B.C.D.【解析】画数轴分析可得.故B正确.【考点】集合的运算.【易错点晴】本题主要考查的是集合的交集运算,属于容易题.解不等式时一定要注意端点处等号是否成立,否则很容易出现错误.13.下列各组对象中不能构成集合的是()A.正三角形的全体B.所有的无理数C.高一数学第一章的所有难题D.不等式2x+3>1的解【答案】C【解析】C中难题并没有确定的标准,因此不满足几何元素的确定性,不能构成集合【考点】集合元素特征14.(10分)集合A={x|3≤x<10},集合B={x|2x-8≥0}.(1)求A∪B;(A∩B).(2)求∁R【答案】(1){x|x≥3}(2){x|x<4或x≥10}【解析】首先由已知条件解不等式化简集合B,两集合A,B的并集为两集合所有的元素构成的集合;两集合的交集为相同的元素构成的集合,其补集为全集中除去A∩B的元素,剩余的元素构成的集合试题解析:(1)B={x|x≥4},∴A∪B={x|x≥3}.(A∩B)={x|x<4或x≥10}.(2)A∩B={x|4≤x<10},∁R【考点】集合的交并补运算15.已知集合,则下列式子表示正确的有()①②③④A.1个B.2个C.3个D.4个【答案】C【解析】,所以①③④正确;②中两集合的关系应该是关系【考点】元素与集合,集合与集合间的关系16.设集合,则f:A→B是映射的是()A.B.C.D.【答案】B【解析】根据映射定义A中的元素都有唯一的元素与之对应,可得B满足,故选择B【考点】映射定义17.若集合且对应关系是从A到B的映射,则集合B中至少有()个元素A.2B.3C.4D.5【解析】根据题意可得对应关系如下:所以集合B中至少有四个元素,故选择C【考点】映射定义18.设,则=__________________.【答案】(—1,3)【解析】.【考点】集合的运算.19.已知集合,,则与的关系是()A.B.C.D.【答案】C【解析】试题分析:,因此,故答案为C.【考点】1、三角函数的诱导公式;2、集合间的关系.20.已知,,则 _____.【答案】【解析】因为,,所以.【考点】1.集合交、补集运算;2.指数、对数运算.【思路点睛】首先根据集合,将其转化为,然后再借助指数函数的单调递减的性质,即可求出集合,由此可求出,进而求出结果.21.设集合U=R,;(1)求:,;(2)设集合,若,求a的取值范围.【答案】(1),;(2).【解析】(1)解不等式分别求出集合A、B,然后根据交集、补集、并集运算即可求出,.(2)易得,.然后由子集关系列出关于a的不等式组即可求解,但要注意对集合C为空集和非空两种情况讨论,否则易漏解.试题解析:(1)可得,所以,,(2)易得,,i)时,即,显然符合题意;ii)时,,【考点】•集合的交集、并集、补集运算;‚由子集关系求参数范围.22.设集合,B={x|<1},.(1)求;(2)若,求的取值范围.【答案】(1);(2).【解析】(1)根据条件解不等式得出集合,然后借助数轴即可得到;(2)根据得到,然后即可列出不等式组得到的取值范围.试题解析:(1),所以(2)因为,所以,若是空集,则,得到;若非空,则,得;综上所述,.【考点】集合间的基本关系.23.设全集则等于()A.B.C.D.【答案】B【解析】由题意可知,所以,所以.【考点】集合的交、并、补运算.24.已知集合,若,则实数的值为.【答案】0,±1【解析】当时,集合,满足;当时,,又,所以若,则有,综上实数的值为0,±1.【考点】利用子集关系求参数.25.下列说法正确的是()A.很小的实数可以构成集合B.=C.自然数集中最小的数是D.空集是任何集合的子集【答案】A【解析】根据子集的定义,可判断A;根据集合相等的定义,可判断B;根据自然数集元素的特征,可判断C;根据集合元素的确定性,可判断D.空集是任何集合的子集,是任何非空集合的真子集,故A正确;集合是一个数集,集合是一个点集,故不是同一个集合,故B错误;自然数集N中最小的数是0,不是1,故C错误;很小的实数不具备确定性,不可以构成集合,故D错误;故选:A【考点】命题的真假判断与应用26.“”是“”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】故“”是“”成立的充分不必要条件,故选:A.【考点】充分必要条件27.集合的真子集个数为()A.3B.4C.7D.8【答案】C【解析】,它的真子集分别为,{1},{2},{3},{1,2},{1,3},{2,3}.一般一个集合中含有n个元素,则它的子集的个数为个,真子集去掉它本身之后为.【考点】集合的关系:真子集.28.集合{x|x1}用区间表示为.【答案】【解析】集合{x|x<1}表示小于等于1的实数,用区间表示为【考点】集合的表示法29.满足条件的集合有个.【答案】8【解析】本题所求集合M的个数是所有由a,b,c组成的所有子集的个数8,【考点】子集的概念.30.(2014•海淀区校级模拟)集合,集合则P与Q的关系是()A.P=Q B.P⊋Q C.P⊊Q D.P∩Q=ϕ【答案】C【解析】先求出集合P和集合Q,然后再判断集合P和集合Q的相互关系.解:∵集合={}x|x≥1},集合={y|y≥0},∴P⊊Q.故选C.【考点】集合的包含关系判断及应用.31.(2013•建平县校级一模)已知集合,集合N={x|2x+3>0},则(∁M)∩N=()RA.[﹣)B.(﹣)C.(﹣]D.[﹣]【答案】C【解析】分别求出集合M和N中不等式的解集,确定出M和N,由全集为R,找出不属于M的部分,求出M的补集,找出M补集与N的公共部分,即可求出所求的集合.解:由集合M中的不等式移项得:﹣1≥0,即≥0,解得:x>1,∴集合M=(1,+∞),又全集为R,∴CM=(﹣∞,1],R由集合N中的不等式2x+3>0,解得:x>﹣,∴集合N=(﹣,+∞),M)∩N=(﹣,1].则(CR故选C【考点】交、并、补集的混合运算.32.已知A=,B=.(Ⅰ)若,求的取值范围;(Ⅱ)若,求的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】(1)求集合的交集通常画数轴来解;(2)由,可得,画数轴来解;试题解析:(1),,解得;(2),即,得或,得.【考点】集合的运算、解不等式.33.若集合,,且,则的值为()A.B.C.或D.或或【答案】D【解析】由,当时,,当时,,当时,,故选 D.【考点】子集概念34.已知,则.【答案】【解析】因为,所以.【考点】1.指数、对数不等式运算;2.集合的并集运算.【方法点睛】指数不等式、对数不等式的解法指数不等式:转化为代数不等式对数不等式:转化为代数不等式.35.已知为实数,则“且”是“且”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】是实数,“且”“且”;“且”则得与同号,又,所以必有“且”,“且”是“且” 的充要条件,故选C.【考点】1、充分条件与必要条件;2、不等式的性质.36.已知集合,集合,若,则为()A.B.C.或D.或【答案】D【解析】,集合,又或,故选D.【考点】1、集合的表示;2、集合的交集.37.已知集合,集合,则()A.B.C.D.【答案】B【解析】集合表示直线上的点,集合表示直线上的点,表示这两条直线的交点,联立方程得,用列举法表示为,选B.【考点】1、集合的表示方法;2、集合的运算.38.(2015秋•赣州期末)已知集合A={1,2,3},则B={x﹣y|x∈A,y∈A}中的元素个数为()A.9B.5C.3D.1【答案】B【解析】根据集合B中元素与A中元素之间的关系进行求解.解:∵A={1,2,3},B={x﹣y|x∈A,y∈A},∴x=1,2,3,y=1,2,3.当x=1时,x﹣y=0,﹣1,﹣2;当x=2时,x﹣y=1,0,﹣1;当x=3时,x﹣y=2,1,0.即x﹣y=﹣2,﹣1,0,1,2.即B={﹣2,﹣1,0,1,2}共有5个元素.故选:B.【考点】元素与集合关系的判断.39.集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}(1)求A∩B:(2)若集合C={x|2x+a>0}.满足B∪C=C.求实数a的取值范围.【答案】(1)A∩B={x|2≤x<3};(2)a>﹣4【解析】(1)化简B,根据集合的基本运算即可得到结论;(2)化简C,利用B∪C=C,可得B⊆C,即可求实数a的取值范围.解:(1)∵A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}={x|x≥2}.∴A∩B={x|2≤x<3};(2)C={x|2x+a>0}={x|x>﹣a}.∵B∪C=C,∴B⊆C,∴﹣a<2,∴a>﹣4.【考点】集合的包含关系判断及应用.40.已知集合,则集合=()A.B.C.D.【答案】B【解析】由并集的定义知:.故选B.【考点】并集.41.已知集合,.⑴若,求;⑵若,求实数的取值范围.【答案】(1)(2)【解析】(1)由题已知集合,,若,由交集的定义易得(2)由已知,由子集的定义,结合数轴可求出的取值范围.试题解析:⑴若,则,∩⑵,则,所以实数的取值范围是【考点】1.交集的定义; 2.子集的含义.42.设集合,集合B为函数的定义域,,则=()A.B.C.D.【答案】B【解析】由题,.则根据并集运算得:【考点】对数函数定义域与并集运算.43.已知集合,集合,则是()A.B.C.D.【答案】C【解析】【考点】集合运算44.满足条件的所有非空集合的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】满足条件的有如下:,共3个.故选C.【考点】集合的运算.45.设,集合,.(1)若,求集合B(用区间表示);(2)若,求实数的取值范围.【答案】(1);(2).【解析】(1)代入,解一元二次不等式:分解因式,求两根,写成区间形式;(2)若A=B,表示不等式恒成立,所以分或两种情况讨论.试题解析:时,,解得集合B:(2)当A=B=R时(ⅰ)当时,即时,符合题意(ⅱ)当时,则有解得:综上:A的取值范围:.【考点】一元二次不等式46.设集合和都是坐标平面上的点集,,映射使集合中的元素映射成集合中的元素,则在映射下,象(2,1)的原象是()A.(3,1)B.C.D.(1,3)【答案】B【解析】由题可知原象满足且,解得.故象的原象是,故本题答案选B.【考点】映射.47.设全集,,,则如图中阴影部分表示的集合为()A.B.C.D.【答案】B【解析】由题意得,集合,集合,所以阴影部分表示的集合为,故选B.【考点】集合的运算.48.设集合A={x|x2﹣3x+2=0},B={x|x2+2(a﹣1)x+(a2﹣5)=0}(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.【答案】(1)a=﹣5或a=1(2)a>3【解析】(1)先解出集合A,根据2是两个集合的公共元素可知2∈B,建立关于a的等式关系,求出a后进行验证即可.(2)一般A∪B=A转化成B⊆A来解决,集合A两个元素故可考虑对集合B的元素个数进行讨论求解试题解析:(1)由题可知:A={x|x2﹣3x+2=0}={1,2},∵A∩B={2},∴2∈B,将2带入集合B中得:4+4(a﹣1)+(a2﹣5)=0解得:a=﹣5或a=1当a=﹣5时,集合B={2,10}符合题意;当a=1时,集合B={2,﹣2},符合题意综上所述:a=﹣5,或a=1.(2)若A∪B=A,则B⊆A,∵A={1,2},∴B=∅或B={1}或{2}或{1,2}.若B=∅,则△=4(a﹣1)2﹣4(a2﹣5)=24﹣8a<0,解得a>3,若B={1},则,即,不成立.若B={2},则,即,不成立,若B={1,2}.则,即,此时不成立,综上a>3.【考点】集合的包含关系判断及应用;并集及其运算;交集及其运算49.已知集合A={x|x2-3x+2=0},B={x|ax-2=0},若A∪B=A,求实数a的值所组成的集合.【答案】{0,1,2}【解析】由条件可得B⊆A,分a=0和a≠0,分别求出B,再由B⊆A,求得a的值,即可得到实数a的值所组成的集合试题解析:A={1,2},由A∪B=A得:B⊆A.①若a=0,则B=∅,满足题意.②若a≠0,则B={},由B⊆A得:=1或=2,∴a=1或a=2,∴a的值所组成的集合为{0,1,2}.【考点】集合关系中的参数取值问题50.已知集合,,,则与的关系是()(R为实数集)A.B.C.D.不能确定【答案】A【解析】中的元素为所有奇数的四分之一,而中的元素为所有整数的四分之一,所以Ü.故选A.【考点】集合的含义.51.下列语句错误的是()A.如果不属于的元素也不属于,则B.把对数式化成指数式为C.对数的底数必为正数D.“二分法”对连续不断的函数的所有零点都有效【答案】D【解析】根据子集的定义知A正确;由对数的定义及性质知B,C正确,对于D,当零点左右符号相同时不能用二分法,故D错,故选D.【考点】1、子集的定义及对数的定义与性质;2、二分法的基本含义.52.若集合,,且,则的值为()A.1B.-1C.1或-1D.1或-1或0【答案】D【解析】由可得中元素可以为或空集,代入相应值可求得为1或-1或0【考点】集合的子集关系53.集合,,则=()A.B.C.D.【答案】A【解析】集合,所以,集合,所以,故选A.【考点】1、一元二次不等式的解法;2、集合的运算.54.已知集合,,且满足,则实数的取值范围是 .【答案】【解析】由可知两集合无公共点,结合数轴可得实数的取值范围是【考点】集合子集关系55.已知集合S={x|},P={x|a+1<x<2a+15}.(1)求集合S;(2)若S P,求实数a的取值范围.【答案】(1);(2).【解析】(1),,所以,根据函数是减函数,可得,求出的取值范围;(2)若,根据数轴表示两个集合,比较不等式的端点值,列不等式求解的取值范围.试题解析:由得解得-2<x<5,所以集合S={x|-2<x<5}.(2)因为S P,所以解得,所以a∈[-5,-3].【考点】1.对数不等式;2.集合的关系.56.满足的集合的个数为()A.15B.16C.31D.32【答案】C【解析】实际上求真子集个数:,选C.【考点】集合子集57.若,则这样的集合共有__________个.【答案】【解析】,或或或.故答案为:【考点】集合的子集.58.已知集合,,(1)若,求;(2)若,求实数的取值范围.【答案】(1);(2).【解析】集合的交并补运算常借助于数轴求解,将两集合标注在数轴上,求交集需找两集合重合的部分,两集合交集为空集则需满足两集合无重合部分,求解时集合需分是否为空集两种情况.试题解析:(1)(2)当时,需满足解得:;当时,需满足或解得:;综上,的取值范围为.【考点】集合的运算.59.已知集合,.(1)求集合;(2)若,求实数的取值范围.【答案】(1);(2).【解析】(1)根据指数函数的性质,得到,即可求解集合;(2)由,分和两种情况分类讨论,即可求解实数的取值范围.试题解析:(1),,∴,∴,∴.…………5分(2)若,则,解得,此时满足题意;若,且,∴必有,解得,综上所述的取值范围为.…………10分【考点】集合的运算及指数函数的性质.60.设全集U={x∈N+|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=()A.{1,4} B.{1,5} C.{2,4} D.{2,5}【答案】C【解析】【考点】集合运算61.已知全集,集合,集合,则()A.B.C.D.【答案】B【解析】由题意得,所以,故选B.【考点】集合的运算.62.设集合A={1,2,3},B={4,5},C={x|x=b﹣a,a∈A,b∈B},则C中元素的个数是()A.3B.4C.5D.6【答案】B【解析】由题意可知集合C为,共4个元素【考点】集合运算63.已知,.(1)若,求;(2)若,求实数的取值范围.【答案】(1);(2)【解析】(1)将代入到不等式中可得集合,再对集合进行求交集运算;(2)由题意,集合是集合的子集,得,则可得到实数的取值范围.试题解析:(1)当时,所以.(2)因为,则,即,所以实数的取值范围为.64.已知集合,,且,则实数的取值范围是( )A.或B.C.或D.【答案】D【解析】依题意,由于是的子集,所以,解得.65.若集合,.(1)若全集,求;(2)若,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)解一元二次不等式可求得集合的取值范围,由此求得其补集;(2)由于,所以是的子集,故的左端点不大于,即.试题解析:(1),∴.(2),由,得,则有.66.若,则.【答案】.【解析】因为,所以,所以.【考点】集合间的交运算.67.已知集合,,则__________.【答案】【解析】由得:,则,故答案为.68.已知集合,集合,则()A.B.C.D.【答案】B【解析】由,则,应选答案B。

高一数学第一册考点回顾及重难点总结

高一数学第一册考点回顾及重难点总结

高一数学第一册考点回顾 n a }一组对象的全体. x A ∈A的子集有真子集有2,A B B ⊆⊆{|x B A ={|x B A ={|U x x A =2n n a a n++≥(正数2||(,ab R ≥∈当且仅当32a b +≥,33a b ++33b c abc ++≥(a b +3a b c ++ ⇒(3a b c ++≤{4}-,不能写成()f x 为奇函数。

这两个式子有意义的前提条件是:定义域关于原点对称。

确定奇偶性方法有定义法、图像法等;如判断函数(f)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反单调性;;定义域含零的奇函数必过原点(1,2)②分别研究内、外函数在各自定义域内的单调性③根据“同性则增,异性则减”来判断原函数在其定义域内单调性.研究内外层函数的单调性的关系;的取值范围是翻折变换()|()|f x f x→;()(||)f x f x→.注意翻折时机和翻折的本质:如|3|2xy-=由||2xy=向右平移3单位求函数值域(最值)的方法配方法二次函数(二次函数在给出区间上的最值有两类:一是求闭区间[,]m n上的最值;二是求区间定(动),对称轴动(定)的最值问题。

求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系),如求函数225,[1,2]y x x x=-+∈-的值域(答:[4,8]);换元法通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型,如211y x x=++-的值域为_____(答:(3,)+∞)(令1x t-=,0t≥。

运用换元法时,要特别要注意新元t的范围);有界性利用已学过函数的有界性,确定值域,最常用的就是三角函数的有界性,如2sin11sinyθθ-=+1(,]2-∞单调性利用一次函数,反比例函数,指数函数,对数函数等函数的单调性,如求229sin1siny xx=++;11[,9]2;数形结合函数解析式具有明显的某种几何意义,如两点的距离、直线斜率、等等,如已知点(,)P x y在圆221x y+=上,求2yx+的取值范围(答:33[,]33-);求22(2)(8)y x x=-++的值域(答:[10,)+∞);判别式求21xyx=+的值域(答:11[,]22-);不等式利用基本不等式2(,)a b ab a b R++≥∈求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。

高一数学人教A版(2019)必修第一册思维导图 第一章 集合与常用逻辑用语

高一数学人教A版(2019)必修第一册思维导图 第一章 集合与常用逻辑用语

第一章集合与常用逻辑用语集合的概念
集合间的基本关系
全称量词与存在量词
集合的基本运算
充分条件与必要条件
定义:一般地,我们把研究对象统称为元素,把一些元素组成的总体
叫做集合(简称为集)
集合中元素的三个特征:确定性、互异性、无序性.
集合的表示方法:列举法、描述法
空集:∅,空集是任何集合的子集
子集:集合A为集合B的子集,记作或
真子集:集合A是集合B的真子集,记作或



若则是的充分条件是的必要条件
若则是的充要条件,也是的充要条件
全称量词命题:
存在量词命题:
否定:
否定:
集合与元素的字母表示:通常用大写拉丁字母A,B,C,…表示集合,
用小写拉丁字母a,b,c,…表示集合中的元素
元素与集合的关系:。

【课件】第一单元集合与常用逻辑用语知识点复习课件高一上学期数学人教A版(2019)必修第一册

【课件】第一单元集合与常用逻辑用语知识点复习课件高一上学期数学人教A版(2019)必修第一册
人教A版2019高中数学必修第一册
第1章 集合与常用逻辑用语
N*
N
Z
Q
R
什么是集合?什么是元素?
“对象”
集合中的“对象”所指的范围非常广泛,现实生活中
我看到的、听到的、想到的、触摸到的事物和抽象的符号
等等,都可以看做对象。比如数、点、图形、多项式、方
程、函数、人等等、
“总体”
集合是一个整体,已暗含“所有”“全部”“全体”
互异性
一个给定的集合当中的元素是互不相同的,即集合中的元素不会重复
出现
无序性
集合中的元素排列没有顺序之分,只要某两个集合当中的元素相同,
那么它们就是相等的集合。{1,2,3}和{3,2,1}是同样的集合
集合和元素怎么表示?它们之间有什么关系?
一般来说:
用大写拉丁字母A、B、C…等表示集合
用小写拉丁字母, , …等表示元素
元素与集合的关系:
如果是是集合A的元素,那么就说属于集合A,记作∈A;
如果是不是集合A的元素,那么就说不属于集合A,记作∉A;
比如,3∈自然数集;4∉奇数集
常用的数集比如自然数集怎么表示?
【自然数集】全体自然数组成的集合,包括0,1,2…等,记作N,也叫非负整数集
【正整数集】全体正整数组成的集合,记作N*或N+;
y 2 ≥ 0”
【3】全称量词命题中一般含有全称量词,但是有些全称量词命题中的全称
量词是省略的,理解时需要把它补充出来,例如“平行四边形的对角
线互相平分”应理解为“所有的平行四边形对角线都互相平分”
全称量词命题怎么判断真假?
要判断全称量词命题“∀x ∈ M, p x ”是真命题,需要对集合中每一个

高一数学第一章集合与常用逻辑用语

高一数学第一章集合与常用逻辑用语

高一数学第一章集合与常用逻辑用语好嘞,今天咱们聊聊高一数学的第一章,集合与常用逻辑用语。

听起来有点儿高深,但其实挺有趣的,像是一场数学的冒险。

集合这个词,听起来是不是有点像“大杂烩”?对,就是把不同的东西放到一起的感觉。

想象一下,咱们把各种水果放到一个篮子里,苹果、香蕉、橘子,统统都来了。

这就是集合。

它可以包含任何东西,比如数字、字母,甚至你最喜欢的动画角色。

把这些东西放到一起,就成了一个集合。

要是你问我,“嘿,集合里有什么?”我会说:“看你想要什么呀!我这儿有无限可能!”哈哈,没错,集合就这么简单又神奇。

然后呢,咱们得聊聊集合的运算。

听起来有点儿复杂,但其实就像打游戏一样。

咱们可以把集合进行并、交、补等操作。

并集就是把两个集合合起来,想象一下把你和朋友的零食合在一起,太完美了!交集嘛,就是找到两个集合里都存在的元素。

就好比你和朋友都是篮球迷,爱看的都是詹姆斯的比赛,那你们的共同爱好就是交集啦。

至于补集,简单来说就是集合外的那些东西。

就像你在学校里,咱们班的同学就是一个集合,而不在班里的同学就是补集。

数学可真有意思,让人忍不住想继续探索下去。

逻辑用语登场了!逻辑就像是数学的语言,表达方式别提多重要了。

有些小伙伴可能会觉得,逻辑和数学好像没什么关系,但其实是密不可分的。

想象一下,你在班级里开会,得说服大家去参加一次活动。

你要用逻辑,清晰地表达理由,才能让大家心服口服。

比如,“如果咱们去爬山,那就能锻炼身体”,这就是一个条件句。

听着就让人想动一动,对吧?逻辑用语的“如果……那么……”这种结构,让咱们表达观点时更有说服力。

除了“如果……那么……”,还有“并且”和“或者”,这两个小家伙就像是数学的调味料。

并且,表示两者同时成立,像你吃饭的时候,既要有米饭又要有菜,才能吃得饱饱的。

而“或者”就有趣多了,给你选择的自由。

就像你今天想喝可乐还是果汁,随便你,反正你都能爽一把。

用这些逻辑用语,我们可以搭建出严密的数学论证,简直就像建房子一样,一层一层的,稳稳当当。

高中数学必修一第一章集合与常用逻辑用语知识点汇总(带答案)

高中数学必修一第一章集合与常用逻辑用语知识点汇总(带答案)

高中数学必修一第一章集合与常用逻辑用语知识点汇总单选题1、设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案:D分析:利用并集的定义可得正确的选项.A∪B={1,2,4,6},故选:D.2、已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.∅答案:C分析:通过对集合N的化简即可判定出集合关系,得到结果.因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},因为x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z}.故选:C.3、已知集合S={x∈N|x≤√5},T={x∈R|x2=a2},且S∩T={1},则S∪T=()A.{1,2}B.{0,1,2}C.{-1,0,1,2}D.{-1,0,1,2,3}答案:C分析:先根据题意求出集合T,然后根据并集的概念即可求出结果.S={x∈N|x≤√5}={0,1,2},而S∩T={1},所以1∈T,则a2=1,所以T={x∈R|x2=a2}={−1,1},则S∪T={−1,0,1,2}故选:C.4、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C5、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.6、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.7、等比数列{a n}的公比为q,前n项和为S n,设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案:B分析:当q>0时,通过举反例说明甲不是乙的充分条件;当{S n}是递增数列时,必有a n>0成立即可说明q> 0成立,则甲是乙的必要条件,即可选出答案.由题,当数列为−2,−4,−8,⋯时,满足q>0,但是{S n}不是递增数列,所以甲不是乙的充分条件.若{S n}是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q>0成立,所以甲是乙的必要条件.故选:B.小提示:在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.8、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B分析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.多选题9、下列条件中,为“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有()A.0≤m<4B.0<m<2C.1<m<4D.−1<m<6答案:BC分析:对m讨论:m=0;m>0,Δ<0;m<0,结合二次函数的图象,解不等式可得m的取值范围,再由充要条件的定义判断即可.因为关于x的不等式mx2−mx+1>0对∀x∈R恒成立,当m=0时,原不等式即为1>0恒成立;当m>0时,不等式mx2−mx+1>0对∀x∈R恒成立,可得Δ<0,即m2−4m<0,解得:0<m<4.当m<0时,y=mx2−mx+1的图象开口向下,原不等式不恒成立,综上:m的取值范围为:[0,4).所以“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有0<m<2或1<m<4.故选:BC.10、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.11、对于集合M,N,我们把属于集合M但不属于集合N的元素组成的集合叫作集合M与N的“差集”,记作M−N,即M−N={x|x∈M,且x∉N};把集合M与N中所有不属于M∩N的元素组成的集合叫作集合M与N的“对称差集”,记作MΔN,即MΔN={x|x∈M∪N,且x∉M∩N}.下列四个选项中,正确的有()A.若M−N=M,则M∩N=∅B.若M−N=∅,则M=NC.MΔN=(M∪N)−(M∩N)D.MΔN=(M−N)∪(N−M)答案:ACD分析:根据集合的新定义得到A正确,当M⊆N时,M−N=∅,B错误,根据定义知C正确,画出集合图形知D正确,得到答案.若M−N=M,则M∩N=∅,A正确;当M⊆N时,M−N=∅,B错误;MΔN={x|x∈M∪N,且x∉M∩N}=(M∪N)−(M∩N),C正确;MΔN和(M−N)∪(N−M)均表示集合中阴影部分,D正确.故选:ACD.填空题12、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).13、已知集合A={−1,3,0},B={3,m2},若B⊆A,则实数m的值为__________.答案:0分析:解方程m2=0即得解.解:因为B⊆A,所以m2=−1(舍去)或m2=0,所以m=0.所以答案是:014、集合A={x|(x−1)(x2+ax+4)=0,x∈R}中所有元素之和为3,则实数a=________.答案:−4分析:由(x−1)(x2+ax+4)=0得x1+x2+x3=1−a,即可求解参数.由(x−1)(x2+ax+4)=0得x−1=0或x2+ax+4=0所以x1=1∈A,x2+ax+4=0,当Δ=a2−16=0时,x=2是方程x2+ax+4=0的根,解得a=−4,当Δ>0时,若方程x2+ax+4=0的一根为1,则a=−5,方程的另一根为4,不合题意;若1不是方程x2+ax+4=0的根,则方程两根x2+x3=−a=2,此时a=−2不满足Δ>0,舍去. 所以答案是:−4.解答题15、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。

新教材2023年高中数学 第1章 集合与常用逻辑用语 1

新教材2023年高中数学 第1章 集合与常用逻辑用语 1

必备知识 ·探新知
知识点 1 子集、真子集的概念 1.子集的概念
定义
一般地,对于两个集合A,B,如果集合A中__任__意__一__个___元素 都是集合B中的元素,就称集合A为集合B的子集
记法与读法 记作_A_⊆__B___(或_B_⊇__A___),读作“A包含于B”(或“B包含A”)
图示 结论
故集合A={-4,-1,4},由0个元素构成的子集为:∅. 由1个元素构成的子集为:{-4},{-1},{4}. 由2个元素构成的子集为:{-4,-1},{-4,4},{-1,4}. 由3个元素构成的子集为:{-4,-1,4}. 因此集合A的子集为:∅,{-4},{-1},{4},{-4,-1},{-4, 4},{-1,4},{-4,-1,4}. 真子集为:∅,{-4},{-1},{4},{-4,-1},{-4,4},{- 1,4}.
因此,B 中元素必定是 A 中的元素,即 B⊆A,故选 B.
(2)在A中,M和N表示不同的点; 在B中,M是空集,N是单元素集; 在C中,M是数集,N是点集; 在D中,M={y|y=x2+1,x∈R}={y|y≥1}, N={t|t=(y-1)2+1,y∈R}={t|t≥1}. 因此,M=N.故选D.
[正解] 因为 B⊆A,所以当 B≠∅,即 a≠0 时,B=x|x=-1a,因 此有-1a∈A,所以 a=±1;
③P={x|x2-x=0},Q=x|x=1+2-1n.
[分析] (1)将集合 A、B 中的表达式分别提取14,再分析得到式子的 形式,可得 A、B 的关系;
(2)结合每个集合中元素的形式和元素的取值进行判断; (3)根据数集的意义、不等式表示的范围等方法进行判断.
[解析] (1)对集合 B,x=2k+14=14(2k+1),因为 k 为整数,所以集合 B 表示的数是14的奇数倍;对集合 A,x=4k+12=14(k+2),因为 k+2 是整 数,所以集合 A 表示的数是14的整数倍.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.在解题时经常用到集合元素的互异性,一方面利用集合元素的互异性能顺利找到解题的切入点;另一方面,在解答完毕之时,注意检验集合的元素是否满足互异性以确保答案正确.
2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,
求其中参数的取值范围时,要注意单独考察等号能否取到.解题时注意区分两大关系:
一是元素与集合的从属关系;二是集合与集合的包含关系.
3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.这是数形结合思想的又一体现.
4.充分、必要条件与集合的关系,p ,q 成立的对象构成的集合分别为A 和B .
(1)若A ⊆B ,则p 是q 的充分条件,q 是p 的必要条件.
(2)若A ⊂≠
B ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件.(3)若A =B ,则p 是q 的充要条件
.
高一数学单元知识梳理:集合与常用逻辑用语
5.判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.
6.要写一个命题的否定,需先分清其是全称命题还是特称命题,再对照否定结构去写,并注意与否命题的区别;否定的规律是“改量词,否结论”.
一、数学抽象
数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养.主要表现为:获得数学概念和规则,提出数学命题和模型,形成数学方法和思想,认识数学结构与体系.在本章中,主要表现在集合概念的理解及应用中.
【典例1】(1)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )
A .1
B .3
C .5
D .9
(2)若-3∈{x -2,2x 2+5x ,12},则x =________.
【答案】(1)C (2)-2
3 【解析】(1)①当x =0时,y =0,1,2,此时x -y 的值分别为0,-1,-2;
②当x =1时,y =0,1,2,此时x -y 的值分别为1,0,-1;
③当x =2时,y =0,1,2,此时x -y 的值分别为2,1,0.
综上可知,x -y 的可能取值为-2,-1,0,1,2,共5个,故选C.
(2)由题意知,x -2=-3或2x 2+5x =-3.
①当x -2=-3时,x =-1.
把x =-1代入,得集合的三个元素为-3,-3,12,不满足集合中元素的互异性;
②当2x 2+5x =-3时,x =-2
3或x =-1(舍去), 当x =-23时,集合的三个元素为-27,-3,12,满足集合中元素的互异性,由①②知x =-23.
二、数学运算
数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养,主要表现为:理解运算对象,掌握运算法则,探究运算思路,求得运算结果.在本章中,主要表现在集合的交、并、补运算中.
【典例2】(1)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()
A.{1,-3} B.{1,0}
C.{1,3} D.{1,5}
(2)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()
A.{x|-2<x<-1} B.{x|-2<x<3}
C.{x|-1<x<1} D.{x|1<x<3}
【答案】(1)C(2)A
【解析】(1)由A∩B={1}得1∈B,
所以m=3,B={1,3}.
(2)A∩B={x|-2<x<-1}.
(3)已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.
①求A∪B,(∁R A)∩B;
②若A∩C≠∅,求a的取值范围.
【解析】①因为A={x|2≤x<7},B={x|3<x<10},
所以A∪B={x|2≤x<10}.
因为A={x|2≤x<7},
所以∁R A={x|x<2或x≥7},
则(∁R A)∩B={x|7≤x<10}.
②因为A={x|2≤x<7},C={x|x<a},且A∩C≠∅,所以a>2,
所以a的取值范围是{a|a>2}.
三、逻辑推理
逻辑推理是指从一些事实和命题出发,依据规则推出其他命题的素养,主要表现为:掌握推理基本形式和规则,发现问题和提出问题,探索和表述论证过程,理解命题体系,有逻辑地表达与交流.本章主要表现在集合的基本关系、充要条件及全称量词命题和存在量词命题中.
【典例3】(1)集合A={x|x=a2-4a+5,a∈R},B={y|y=4b2+4b+3,b∈R},则下列关系正确的是()
A.A=B B.B A
C.A⊆B D.B A
(2)已知集合A={x|0<x<4},B={x|x<a},若A⊆B,则实数a的取值范围是()
A.{a|0<a<4} B.{a|-8<a<4}
C.{a|a≥4} D.{a|a>4}
【答案】(1)B(2)C
【解析】(1)A={x|x=(a-2)2+1,a∈R},即A中的元素x≥1;而B={y|y=(2b+1)2+2,b∈R},即B中的元素y≥2,∴B A.
(2)在数轴上标出A,B两集合如图所示,
结合数轴知,若A⊆B,则a≥4.
【典例4】设x∈R,则“2-x≥0”是“-1≤x-1≤1”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】B
【解析】由-1≤x-1≤1,得0≤x≤2,因为0≤x≤2⇒x≤2,x≤20≤x≤2,故“2-x≥0”是“-1≤x-1≤1”的必要不充分条件,故选B.
【典例5】若a ,b 都是实数,试从①ab =0;②a +b =0;③a (a 2+b 2)=0;④ab >0中选出满足下列条件的式子,用序号填空:
(1)使a ,b 都为0的必要条件是________;
(2)使a ,b 都不为0的充分条件是________;
(3)使a ,b 至少有一个为0的充要条件是________.
【答案】(1)①②③ (2)④ (3)①8
【解析】①ab =0⇔a =0或b =0,即a ,b 至少有一个为0;
②a +b =0⇔a ,b 互为相反数,则a ,b 可能均为0,也可能为一正数一负数;
③a (a 2+b 2)=0⇔a =0,b 为任意实数;
④ab >0⇔⎩⎨⎧>>00b a 或⎩
⎨⎧<<00b a 即a ,b 同为正数或同为负数. 综上可知:(1)使a ,b 都为0的必要条件是①②③;
(2)使a ,b 都不为0的充分条件是④;
(3)使a ,b 至少有一个为0的充要条件是①.
【典例6】已知集合A ={x ∈R |2x +m <0},B ={x ∈R |x <-1或x >3}.
(1)是否存在实数m ,使得x ∈A 是x ∈B 成立的充分条件?
(2)是否存在实数m ,使得x ∈A 是x ∈B 成立的必要条件?
【解析】(1)欲使x ∈A 是x ∈B 成立的充分条件, 则只要}2{m x x -<⊆{x |x <-1或x >3},则只要-2
m ≤-1即m ≥2, 故存在实数m ≥2时使x ∈A 是x ∈B 成立的充分条件.
(2)欲使x ∈A 是x ∈B 成立的必要条件, 则只要}2
{m x x -
<⊇{x |x <-1或x >3},则这是不可能的,故不存在实数m ,使x ∈A 是x ∈B 成立
的必要条件.
【典例7】判断下列命题是全称量词命题还是存在量词命题,判断真假,并写出它们的否定:
(1)空集是任何一个非空集合的真子集.
(2)∀x∈R,4x2>2x-1+3x2.
(3)∃x∈{-2,-1,0,1,2},|x-2|<2.
(4)∀a,b∈R,方程ax+b=0恰有一解.
【解析】(1)该命题是全称量词命题,是真命题.该命题的否定:存在一个非空集合,空集不是该集合的真子集.
(2)该命题是全称量词命题,是假命题.
因为4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,
所以当x=1时,4x2=2x-1+3x2.
该命题的否定:∃x∈R,4x2≤2x-1+3x2.
(3)该命题是存在量词命题,是真命题.
因为当x=1时,|x-2|=1<2.
该命题的否定:∀x∈{-2,-1,0,1,2},|x-2|≥2.
(4)该命题是全称量词命题,是假命题.当a≠0时,方程ax+b=0才恰有一解.该命题的否定:∃a,b∈R,方程ax+b=0无解或至少有两解.
四、数学建模
数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养,主要表现在:发现和提出问题,建立和求解模型,检验和完善模型,分析和解决问题,在本章主要表现在集合的实际应用问题中.
【典例8】某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.
【答案】8
【解析】设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.
由全班共36名同学可得(26-6-x)+6+(15-4-6)+4+(13-4-x)+x=36,
解得x=8,即同时参加数学和化学小组的有8人.。

相关文档
最新文档