动能定理练习题(附答案)解析
动能定理练习题全文编辑修改

–2 f s = m(v0/2 )2/2– m v02/2
mg
式中f =μ mgcos 37º,任意两式相除,得μ=0.45。
11、一学生用100N的力,将质量为0.5kg的球水平踢出20m远,则
该学生对球做的功是 (
)
A.2000J B.10J
C.100J
D.无法确定 答案:D
12、质量为m的物体,静止于倾角为α的光滑斜面底端,用平行于 斜面方向的恒力F 作用于物体上使之沿斜面向上运动。当物体运动到 斜面中点时撤去外力,物体刚好能滑行到斜面顶端,则恒力F 的大小 为多大?
某同学从h=5 m高处,以初速度v0=8 m/s水 平抛出一个质量为m=0.5 kg的橡皮球,测得橡皮 球落地前瞬间速度为12 m/s,求该同学抛球时所 做的功和橡皮球在空中运动时克服空气阻力做的 功.(g取10 m/s2)
解:本题所求的两问,分别对应着两个物理过程,但这两个物理 过程以速度相互联系,前一过程的末速度为后一过程的初速度.该同 学对橡皮球做的功不能用W=F·l求出,只能通过动能定理由外力做功 等于球动能的变化这个关系求出.
质量为m的物体A,从弧形面的底 端以初速v0往上滑行,达到某一 高度后,又循原路返回,且继续 沿水平面滑行至P点而停止,则整 个过程摩擦力对物体所做的功
一物体以初速度v0沿倾角为37º的斜面上滑,到达最高点后又下滑,回
到出发点时的速度为v0 /2,求物体与斜面间的动摩擦因数。
分析:物体受力如图,
N
设上升的最大位移为s,
f
上滑过程:
- mgsin 37ºs–f s = 0– m v02/2
下滑过程:
N
v0
mg
mgsin 37ºs–f s = m(v0/2 )2/2– 0
高中物理动能与动能定理试题(有答案和解析)及解析

高中物理动能与动能定理试题(有答案和解析)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析1.一子弹以速度v飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为()A.3块B.6块C.9块D.12块【答案】C【解析】子弹以速度v运动时,恰能水平穿透一块固定的木板,根据动能定理有:,设子弹的速度为时,穿过的木板数为n,则有:联立两式并代入数据得:n=9块,C正确。
【考点】考查了动能定理的应用2.在一次试车实验中,汽车在平直的公路上由静止开始做匀加速运动,当速度达到v时,立刻关闭发动机让其滑行,直至停止。
其v-t图象如图所示。
则下列说法中正确的是()A.全程牵引力做功和克服阻力做功之比为1:1B.全程牵引力做功和克服阻力做功之比为2:1C.牵引力和阻力之比为2:1D.牵引力和阻力之比为3:1【答案】AD【解析】试题解析:由于物体初始的速度为零,最后的速度也为零,故物体的动能没有变化,即动能的增量为零,根据动能定理可知,物体受到的合外力也为零,即全程牵引力做功和克服阻力做功相等,故它们的比值为1:1,A正确,B错误;由图像可知,1s前物体在牵引力的作用下运动,其位移为x,则后2s内物体的位移为2x,故由动能定理可得:Fx=f(x+2x),所以牵引力F和阻力f之比为3:1,D正确,C错误。
【考点】动能定理。
3.甲、乙两物体质量之比m1∶m2=1∶2,它们与水平桌面间的动摩擦因数相同,若它们以相同的初动能在水平桌面上运动,则运动位移之比为.【答案】2:1。
【解析】根据动能定理得可知,对于甲物体:m1gμ×x1=Ek,对于乙物体:m2gμ×x2=Ek,联立以上两式解之得x1:x2=m2:m1=2:1,故位移之比为2:1。
【考点】动能定理。
4.一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m、带电量为+q的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是A.球的速度为零时,弹簧伸长qE/kB.球做简谐运动的振幅为qE/kC.运动过程中,小球的机械能守恒D.运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零【答案】BD【解析】球的平衡位置为Eq=kx,解得x= qE/k,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k,选项B正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确。
高考物理动能定理的综合应用题20套(带答案)含解析

高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.3.如图所示,光滑曲面与光滑水平导轨MN 相切,导轨右端N 处于水平传送带理想连接,传送带长度L =4m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v =4.0m/s 运动.滑块B 、C 之间用细绳相连,其间有一压缩的轻弹簧,B 、C 与细绳、弹簧一起静止在导轨MN 上.一可视为质点的滑块A 从h =0.2m 高处由静止滑下,已知滑块A 、B 、C 质量均为m =2.0kg ,滑块A 与B 碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离.滑块C 脱离弹簧后以速度v C =2.0m/s 滑上传送带,并从右端滑出落至地面上的P 点.已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度g 取10m/s 2.(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有mg ma μ=C v v at =+212C x v t at =+代入数据可得3m x = 3m x L =<滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有2012A A m gh m v =01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++A 、B 碰撞后,弹簧伸开的过程系统能量守恒222A 1A 2111()()222P B B C C E m m v m m v m v ++=++代入数据可解得2.0J P E =(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速度为1v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有22()Cv v a L '-=- 解得42m/s Cv '= 以向右为正方向,A 、B 碰撞过程1()A m A B m v m m v '=+弹簧伸开过程12()()A B C C A B m m v m v m m v '''+=++22212111+()()+222p A B A B C C E m m v m m v m v '''+=+代入数据解得74228.14m v =+≈m/s .4.一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB 的底端等高对接,如图所示.已知小车质量M=3.0kg ,长L=2.06m ,圆弧轨道半径R=0.8m .现将一质量m=1.0kg 的小滑块,由轨道顶端A 点无初速释放,滑块滑到B 端后冲上小车.滑块与小车上表面间的动摩擦因数.(取g=10m/s 2)试求:(1)滑块到达B 端时,轨道对它支持力的大小; (2)小车运动1.5s 时,车右端距轨道B 端的距离;(3)滑块与车面间由于摩擦而产生的内能.【答案】(1)30 N (2)1 m (3)6 J 【解析】(1)滑块从A 端下滑到B 端,由动能定理得(1分)在B 点由牛顿第二定律得(2分) 解得轨道对滑块的支持力N (1分)(2)滑块滑上小车后,由牛顿第二定律对滑块:,得m/s2 (1分)对小车:,得m/s2 (1分)设经时间t后两者达到共同速度,则有(1分)解得s (1分)由于s<1.5s,故1s后小车和滑块一起匀速运动,速度v="1" m/s (1分)因此,1.5s时小车右端距轨道B端的距离为m (1分)(3)滑块相对小车滑动的距离为m (2分)所以产生的内能J (1分)5.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m6.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)0.32μ=(2)F=130N【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.7.如图所示,BC 225竖直放置的光滑细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失,小球能平滑地冲上粗糙斜面.(g=10m/s2)求:(1)小球从O点的正上方某处A点水平抛出的初速度v0为多少?(2)小球在圆管中运动时对圆管的压力是多少?(3)小球在CD斜面上运动的最大位移是多少?【答案】(1)2m/s ;(2)7.1N ;(3)0.35m. 【解析】 【详解】(1)小球从A 运动到B 为平抛运动, 水平方向:r sin45°=v 0t ,在B 点:tan45°=y v gt v v =, 解得:v 0=2m/s ;(2)小球到达在B 点的速度:22m/s cos 45v v ︒==,由题意可知:mg =0.5×10=5N=F ,重力与F 的合力为零,小球所受合力为圆管的外壁对它的弹力,该力不做功, 小球在管中做匀速圆周运动,管壁的弹力提供向心力,22(22)0.5N 7.1N225v F m r ==⨯= 由牛顿第三定律可知,小球对圆管的压力大小:7.1N F '=; (3)小球在CD 上滑行到最高点过程,由动能定理得:21sin 45?cos 45?02mg s mg s mv μ︒︒--=-解得:s ≈0.35m ;8.如图,与水平面夹角θ=37°的斜面和半径R =1.0m 的光滑圆轨道相切于B 点,且固定于竖直平面内。
高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析1.两个带等量正电的点电荷,固定在图中P、Q两点,MN为PQ连线的中垂线,交PQ于O点,A点为MN上的一点。
一带负电的试探电荷q,从A点由静止释放,只在静电力作用下运动.取无限远处的电势为零,则A.q由A向O的运动是匀加速直线运动B.q由A向O运动的过程电势能逐渐减小C.q运动到O点时的动能最大D.q运动到O点时电势能为零【答案】BC【解析】两等量正电荷周围部分电场线如右图所示,其中P、Q连线的中垂线MN上,从无穷远到O过程中电场强度先增大后减小,且方向始终指向无穷远方向.故试探电荷所受的电场力是变化的,q由A向O的运动做非匀加速直线运动,故A错误.电场力方向与AO方向一致,电场力做正功,电势能逐渐减小;故B正确.从A到O过程,电场力做正功,动能增大,从O到N过程中,电场力做负功,动能减小,故在O点试探电荷的动能最大,速度最大,故C正确.取无限远处的电势为零,从无穷远到O点,电场力做正功,电势能减小,则q运动到O点时电势能为负值,故D错误.【考点】考查了带电粒子在电场中的运动2.一汽车质量为2000kg,行驶时受到的阻力为车重的0.1倍。
若汽车以3000N的恒定牵引力在水平公路上从静止开始前进100m时关闭发动机。
求:(1)汽车前进100m时的速度;(2)汽车关闭发动机后还能滑行多远。
【答案】(1)v=10m/s(2)x=50m【解析】设汽车前进100m时的速度为v,则对汽车应用动能定理得:.......................① 4分代入数据解得:v=10m/s....... ..... ..② 1分设汽车关闭发动机后还能滑行的距离为x,则对汽车应用动能定理得:.......... ..... ..... ③ 4分代入数据解得:x=50m..... ..... ..... . ④ 1分【考点】考查了动能定理的综合应用3.中国著名篮球运动员姚明在一次投篮中对篮球做功为W,出手高度为h1,篮筐距地面高度为h2,球的质量为m。
高二物理动能定理试题答案及解析

高二物理动能定理试题答案及解析1.质量为m的物体从静止以的加速度竖直上升h,关于该过程下列说法中正确的是()A.物体的机械能增加B.物体的机械能减小C.重力对物体做功D.物体的动能增加【答案】D【解析】物体从静止以的加速度竖直上升h,重力做了,故重力势能增加为,故A、C选项错误;牛顿第二定律,解得,故F做的功为,故物体的机械能增加了,B选项错误;由动能定理知,解得物体的动能增加,故D选项正确。
【考点】牛顿第二定律动能定理重力做功与重力势能的关系机械能的电场加速后从中心进入一个平行板2.带电量为Q,质量为m的原子核由静止开始经电压为U1电容器,进入时速度和电容器中的场强方向垂直。
已知:电容器的极板长为L,极板间距为d,,重力不计,求:两极板的电压为U2(1)经过加速电场后的速度;(2)离开电容器电场时的偏转量。
【答案】(1);(2)【解析】试题分析: (1)粒子在加速电场加速后,由动能定理得速度为(2)进入偏转电场,粒子在平行于板面的方向上做匀速运动在垂直于板面的方向做匀加速直线运动,加速度因此离开电容器电场时的偏转。
【考点】动能定理,带电粒子在匀强电场中的运动3.如图所示,在点电荷Q的电场中,已知a、b两点在同一等势面上,c、d两点在同一等势面上,无穷远处电势为零。
甲、乙两个带粒子经过a点时动能相同,甲粒子的运动轨迹为acb,乙粒子的运动轨迹为adb.由此可以判定:A.甲粒子经过c点与乙粒子经过d点时的动能相等B.甲、乙两粒子带同种电荷C.甲粒子经过b点时的动能小于乙粒子经过b点时的动能D.甲粒子经过c点时的电势能小于乙粒子经过d点时的电势能【答案】 D【解析】试题分析: ac两点和ad两点之间的电势差相等,因为两电荷的电量大小未知,则无法比较电场力做功,根据动能定理,无法比较粒子在c点和d点的动能大小.故A错误;根据轨迹的弯曲知,乙电荷受到的斥力,甲电荷受到的是引力.所以两粒子的电性相反.故B错误;a到b,不管沿哪一路径,电场力做功为零,动能不变.故C错误;因为甲粒子受到的引力作用,电场力做正功,电势能减少,乙粒子受到的是斥力作用,电场力做负功,电势能增加,所以甲粒子经过c点时的电势能小于乙粒子经过d点时的电势能.故D正确;【考点】等势面;动能定理的应用;电势能4.如图所示,粗糙程度均匀的绝缘斜面下方O点处有一正点电荷,带负电的小物体以初速度从M点沿斜面上滑,到达N点时速度为零,然后下滑回到M点,此时速度为.若小物体电荷量保持不变,OM=ON,则 ( )A.小物体上升的最大高度为B.从N到M的过程中,小物体的电势能逐渐减小C.从M到N的过程中,电场力对小物体先做负功后做正功D.从N到M的过程中,小物体受到的摩擦力和电场力均是先减小后增大.【答案】A【解析】对小物体,从M到N再到M,由动能定理可知:,从M到N,由动能定理可知:,联立解得:,故选项A正确;从N到M,电场力对小球先做正功再做负功,电势能先减小再增大,故选项BC错误;从N到M,电场力先增大再减小,故选项D错误.【考点】本题考查动能定理的应用、摩擦力及电场力做功的特点,涉及能量变化的题目一般都要优先考虑动能定理的应用,并要求学生能明确几种特殊力做功的特点,如摩擦力、电场力、洛仑兹力等.5.如图所示,光滑绝缘杆竖直放置,它与以正点电荷Q为圆心的某一圆周交于B、C两点,质量为m,带电量为的有孔小球从杆上A点无初速下滑,已知q<<Q,AB=h,小球滑到B点时速度大小为,则小球从A运动到B的过程中,电场力做的功为:______________;A、C 两点间电势差为 ____________.【答案】;【解析】试题分析: 设小球由A到B电场力所做的功为WAB ,由动能定理得mgh+WAB=解得:WAB=由于B、C在以Q为圆心的圆周上,所以φB =φC,所以UAC=UAB==【考点】动能定理的应用,,电势能。
动能定理功能关系练习题142题含答案

动能定理练习稳固根底一、不定项选择题〔每题至少有一个选项〕1.以下关于运动物体所受合外力做功和动能变化的关系,以下说法中正确的选项是〔〕A.如果物体所受合外力为零,那么合外力对物体所的功一定为零;B.如果合外力对物体所做的功为零,那么合外力一定为零;C.物体在合外力作用下做变速运动,动能一定发生变化;D.物体的动能不变,所受合力一定为零。
2.以下说法正确的选项是〔〕A.某过程中外力的总功等于各力做功的代数之和;B.外力对物体做的总功等于物体动能的变化;C.在物体动能不变的过程中,动能定理不适用;D.动能定理只适用于物体受恒力作用而做加速运动的过程。
3.在光滑的地板上,用水平拉力分别使两个物体由静止获得一样的动能,那么可以肯定〔〕A.水平拉力相等 B.两物块质量相等C.两物块速度变化相等 D.水平拉力对两物块做功相等4.质点在恒力作用下从静止开场做直线运动,那么此质点任一时刻的动能〔〕A.与它通过的位移s成正比B.与它通过的位移s的平方成正比C.与它运动的时间t成正比D.与它运动的时间的平方成正比5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为〔〕A.s B.s/2 C.2/s D.s/4 6.两个物体A、B的质量之比m A∶m B=2∶1,二者动能一样,它们和水平桌面的动摩擦因数一样,那么二者在桌面上滑行到停顿所经过的距离之比为〔〕A.s A∶s B=2∶1 B.s A∶s B=1∶2 C.s A∶s B=4∶1 D.s A∶s B=1∶47.质量为m的金属块,当初速度为v0时,在水平桌面上滑行的最大距离为L,如果将金属块的质量增加到2m,初速度增大到2v0,在同一水平面上该金属块最多能滑行的距离为〔〕A.L B.2L C.4L D.8.一个人站在阳台上,从阳台边缘以一样的速率v0,分别把三个质量一样的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,那么比拟三球落地时的动能〔〕A.上抛球最大 B.下抛球最大 C.平抛球最大 D.三球一样大9.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g表示重力加速度,那么此过程中物块克制空气阻力所做的功等于〔 〕A .2022121mv mv mgh --B .mgh mv mv --2022121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,那么物体刚被抛出时,其重力势能与动能之比为〔 〕A .sin 2θB .cos 2θC .tan 2θD .cot 2θ11.将质量为1kg 的物体以20m/s 的速度竖直向上抛出。
5.动能 动能定理(含答案)

动能 动能定理要点一 动能的概念即学即用1.关于物体的动能,下列说法中正确的是( )A.物体速度变化,其动能一定变化B.物体所受的合外力不为零,其动能一定变化C.物体的动能变化,其运动状态一定发生改变D.物体的速度变化越大,其动能一定变化也越大 答案 C要点二 动能定理即学即用2.人骑自行车下坡,坡长l=500 m,坡高h=8 m,人和车总质量为100 kg,下坡时初速度为4 m/s,人不踏车的情况下,到达坡底时车速为10 m/s,g 取10 m/s 2,则下坡过程中阻力所做的功为 ( ) A.-4 000 J B.-3 800 J C.-5 000 J D.-4 200 J 答案 B题型1 动能及动能的变化【例1】质量为m=2 kg 的物体,在水平面上以v 1=6 m/s 的速度匀速向西运动,若有一个F=8 N 方向向北的恒力作用于物体,在t=2s内物体的动能增加了( )A.28 JB.64 JC.32 JD.36 J 答案 B题型2 应用动能定理的一般问题【例2】一辆车通过一根跨过定滑轮的轻绳PQ 提升井中质量为m 的物体,如图所示,绳的P 端拴在车后的挂钩上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车向左加速运动,沿水平方向从A 经过B 驶向C.设A 到B 的距离也为H,车过B 点时速度为v B .求车由A 移到B 的过程中,绳Q 端的拉力对物体做的功是多少? 答案 241)12(B m mgH v +- 题型3 情景建模【例3】如图所示,某滑板爱好者在离地h=1.8 m 高的平台上滑行,水平离开A 点后落在水平地面的B 点,其水平位移l 1=3 m,着地时由于存在能量损失,着地后速度变为v=4 m/s,并以此为初速度沿水平地面滑行l 2=8 m 后停止.已知人与滑板的总质量m=60 kg.求:(1)人与滑板在水平地面滑行时受到的平均阻力大小.(2)人与滑板离开平台时的水平初速度.(空气阻力忽略不计,g 取10 m/s 2) 答案 (1)60 N (2)5 m/s6.如图所示,在高1.5 m 的光滑平台上有一个质量为2 kg 的小球被一细线拴在墙上,球与墙之间有一根被压缩的轻质弹簧.当烧断细线时,小球被弹出,小球落地时的速度方向与水平方向成60°角,则弹簧被压缩时具有的弹性势能为(g =10 m/s 2)( ) A .10 J B .15 J C .20 J D .25 J7.(2013·阳江模拟)如图5-2-11所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面.设物体在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则从A 到C 的过程中弹簧弹力做功是( )A .mgh -12m v 2 B.12m v 2-mghC .-mghD .-(mgh +12m v 2)【动能定理及应用】8..质量m =1 kg 的物体,在与物体初速度方向相同的水平拉力的作用下,沿水平面运动过程中动能—位移的图像如图所示.在位移为4m 时撤去F ,物块仅在摩擦力的作用下运动.求:(g 取10m/s 2)(1)物体的初速度多大?(2)物体和平面间的动摩擦因数多大?(3)拉力F 的大小.9.(2013·湛江模拟)如图所示,用汽车通过定滑轮拉动水平平台上的货物,若货物的质量为m ,与平台间的动摩擦因数为μ,汽车从静止开始把货物从A 拉到B 的过程中,汽车从O 到达C 点处时速度为v ,若平台的高度为h ,滑轮的大小和摩擦不计,求这一过程中汽车对货物做的功.10.高台滑雪运动员经过一段弧长为s=10π3m的圆弧后,从圆弧上的O点水平飞出,圆弧半径R=10 m,他在圆弧上的O点受到的支持力为820 N.运动员连同滑雪板的总质量为50 kg,他落到了斜坡上的A点,斜坡与水平面的夹角θ=37°,如图所示.忽略空气阻力的影响,取重力加速度g=10 m/s2,求:(1)运动员离开O点时的速度大小;(2)运动员在圆弧轨道上克服摩擦力做的功;(3)运动员落到斜坡上的速度大小.(可用根号表示)11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理练习题(附答案)1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B :G 10J W mgh =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B : G F W W W ∑=+F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出.(1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理: 221122mgh mv mv =-20m/s v ∴=(2) m 由A 到B ,根据动能定理3: 22t 01122mgh W mv mv -=-1.95J W ∴=1 不能写成:G 10J W mgh ==. 在没有特别说明的情况下,GW 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2也可以简写成:“m :A B →:k W E ∑=∆”,其中k W E ∑=∆表示动能定理.3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.A3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v .(2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理: 221122mgH mv mv =-v ∴(2)变力6.(3) m 由B 到C ,根据动能定理: 2f 102mgh W mv +=-()2f 012W mv mg Hh ∴=--+(3) m 由B 到C :f cos180W f h =⋅⋅4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等.6 此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.v mv 'O A→A B →v t v v()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求: (1)撤去推力F 时的速度大小. (2)冰车运动的总路程s . 解:(1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-3.74m/s v ∴=(2) m 由1状态到3状态8:根据动能定理:1cos0cos18000Fs mgs μ+=-100m s ∴=6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数. 解: (1) m 由A 到C 9:根据动能定理: f 00mgR W +=- f 8J W mgR ∴=-=-(2) m 由B 到C :f cos180W mg x μ=⋅⋅78 也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下:m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-270m s ∴=则总位移12100m s s s =+=. 9也可以分段计算,计算过程略.fA0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求: (1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功. 解:(1) m 由B 到C :根据动能定理: 2B1cos18002mg l mv μ⋅⋅=-B 2m/s v ∴=(2) m 由A 到B :根据动能定理: 2f B 102mgR W mv +=-f 0.5J W ∴=-克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求证:hsμ=. 证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理:2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=-又1cos l s θ=、12s s s =+ 则11:1011 具体计算过程如下: 由1cos l s θ=,得:12cos180cos18000mgh mg s mgs μμ+⋅⋅+⋅=-()120mgh mg s s μ-⋅+=由12s s s =+,得:0mgh mgsμ-=A0h s μ-=即:h sμ=证毕.9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的B 点. 若该物体从斜面的顶端以初速度v 0沿斜面滑下,则停在平面上的C 点. 已知AB = BC ,求物体在斜面上克服摩擦力做的功. 解:设斜面长为l ,AB 和BC 之间的距离均为s ,物体在斜面上摩擦力做功为f W .m 由O 到B :根据动能定理:f 2cos18000mgh W f s ++⋅⋅=-m 由O 到C :根据动能定理:2f 2012cos18002mgh W f s mv ++⋅⋅=- 2f 012W mv mgh ∴=-克服摩擦力做功2f 012W W mgh mv ==-克f10、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求: (1)阻力的大小.(2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离. 解12:(1)汽车速度v 达最大m v 时,有F f =,故: m m P F v f v =⋅=⋅1000N f ∴= (2)汽车由静止到达最大速度的过程中:6F 1.210J W P t =⋅=⨯即:0h s μ-=12由于种种原因,此题给出的数据并不合适,但并不妨碍使用动能定理对其进行求解. f(2)汽车由静止到达最大速度的过程中,由动能定理:2F m 1cos18002W f l mv +⋅⋅=-800m l ∴=11.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
一小球自A 点起由静止开始沿轨道下滑。
已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。
求 (1)小球运动到B 点时的动能;(2)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大? (3)小球下滑到距水平轨道的高度为R 21时速度的大小和方向; 解:(1)m :A →B 过程:∵动能定理2B 102mgR mv =-2KB B 12E mv mgR ∴== ① (2) m :在圆弧B 点:∵牛二律2BB v N mg m R -= ②将①代入,解得 N B =3mg 在C 点:N C =mg(3) m :A →D :∵动能定理 211022D mgR mv =- D v ∴=30.12.固定的轨道ABC 如图所示,其中水平轨道AB 与半径为R /4的光滑圆弧轨道BC 相连接,AB 与圆弧相切于B 点。
质量为m 的小物块静止在水一平轨道上的P 点,它与水平轨道间的动摩擦因数为μ=0.25,PB =2R 。
用大小等于2mg 的水平恒力推动小物块,当小物块运动到B 点时,立即撤去推力(小物块可视为质点)(1)求小物块沿圆弧轨道上升后,可能达到的最大高度H ; (2)如果水平轨道AB 足够长,试确定小物块最终停在何处? 解:(1)13 m :P →B ,根据动能定理:13也可以整体求解,解法如下:m :B →C2200F R f R mgH ⋅-⋅-=- 其中:F =2mg ,f =μmg∴ 3.5H R =BCBR/ CD()211202F f R mv -=- 其中:F =2mg ,f =μmg∴ v 21=7Rgm :B →C ,根据动能定理:22211122mgR mv mv -=-∴ v 22=5Rgm :C 点竖直上抛,根据动能定理:22102mgh mv -=- ∴ h =2.5R∴ H=h +R =3.5R(2)物块从H 返回A 点,根据动能定理:mgH -μmgs =0-0 ∴ s =14R小物块最终停在B 右侧14R 处13.如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R 。
一质量为m 的小物块(视为质点)从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。
(g 为重力加速度)(1)要使物块能恰好通过圆轨道最高点,求物块初始位置相对于圆形轨道底部的高度h 多大; (2)要求物块能通过圆轨道最高点,且在最高点与轨道间的压力不能超过5mg 。
求物块初始位置相对于圆形轨道底部的高度h 的取值范围。
解:(1) m :A →B →C 过程:根据动能定理: 21(2)02mg h R mv -=- ① 物块能通过最高点,轨道压力N =0∵牛顿第二定律 2v mg m R= ②∴ h =2.5R(2)若在C 点对轨道压力达最大值,则 m :A’→B →C 过程:根据动能定理:2max 2mgh mgR mv '-= ③物块在最高点C ,轨道压力N =5mg ,∵牛顿第二定律2v mg N m R'+= ④∴ h =5R∴ h 的取值范围是:2.55R h R ≤≤14.倾角为θ=45°的斜面固定于地面,斜面顶端离地面的高度h 0=1m ,斜面底端有一垂直于斜而的固定挡板。