2007年清华大学自主招生保送生测试试题

合集下载

清华大学历年自主招生试题汇总

清华大学历年自主招生试题汇总

清华大学历年自主招生试题汇总以下是2014年清华“领军计划”部分面试题:1、怎么看待单独二孩政策?2、谈谈对节假日安排的看法,有什么建议?3、怎么看待社会公平?以下是2014年清华“自强计划”部分面试题:结构性参考题目:提问:在你的同龄人中,当有些同学在为上学、吃饭、治病乃至整个家庭的生计发愁时,另外一些同学则在享受美味的食品、穿着流行的服装、接受各种优质的教育培训。

你如何看待这一现象?你是否认为这是一种社会不公?追问:你心目中的社会公平是怎样的?是否能够实现?若能实现,简要阐述实现的方法;若不能实现,请说说为什么?自由提问参考题目:请讲一个你的经历中体现你“自强”的故事。

你对自己的大学生活有何规划?将来想从事何种职业?你认为自己的家乡至今仍然贫困的原因是有哪些?应该如何解决?你曾经遇到过的最大困难是什么?你是如何面对和解决的?考察点:主要考察学生的个人理想与社会理想,是否能够独立思考并勇于创新,是否能够采取积极的方式克服困难与挫折;是否能够保持积极向上的心态等。

以下是清华大学2013年自主招生复试考题:1.近期上海、南京、杭州等地连续出现“H7N9禽流感”感染病例引起关注,公众非常想知道这方面的相关信息。

假如你是一位新闻发言人,你认为公众需要什么样的信息?追问:假如你发布信息后,社会出现恐慌,那该怎么办?2.“人类一思考,上帝就发笑”。

请就人类社会发展与大自然的关系发表评论。

追问:基于你的评价,你打算在当下和未来做些什么?3.请以“我和诺贝尔奖的距离”为题发表一段2分钟的演讲,可准备1分钟。

4.除了当选的10位人物外,举出你认为应该入围“2013‘感动中国’的一位人物”,并阐述理由。

2008年清华大学自主招生考试题目选语文(此文与原考试选用的文章稍有出入)(语文试题应该算是完整版了):关于文学和它的寄主的故事朱大可关于文学死亡的话题,已经成为众人激烈争论的焦点。

这场遍及全球的争论,映射了文学所面临的生存危机。

2007年保送生英语试卷

2007年保送生英语试卷

2007年保送生英语试卷说明:I. 本卷考试时间80分钟,满分100分。

II. 本卷分为试题(共7页)和答卷(共3页),答案必须做在答题卷上。

试 题Ⅰ、单项选择(共15小题,计15分)从A 、B 、C 、D 四个选项中,选出可以填人空白处的最佳答案。

1. Edward, ________ university student from Europe, teaches us ______art in his spare time.A. an; /B. an; anC. a; /D. an ; the2. As soon as my manager returns, I ’ll tell him when ______ and see him.A. you will ring himB. will you ring himC. you ringD. do you ring3. Mr Smith, there is someone at the front desk ________ would like to speak with you.A.heB. whoC. whichD. whom4. I had to buy ______these books because I didn ’t know which one was the best.A.bothB. noneC. neitherD. all5. --Why didn ’t you come to the meeting?--I ________anything about it.A. are toldB. have not toldC. had not toldD. had not been told6. The girl must be your sister, ________ she?A. mustn ’tB. mustC. isn ’tD. doesn ’t7. There are four pairs of socks to ______, but the woman doesn’t know ______ to buy.A. choose from; whichB. choose from; whatC. choose; whichD. choose; what8. ________ time went on, our teacher ’s words proved true.A. AsB. whileC. WithD. When9. You ________ be tired —you ’ve only been walking for half an hour.A. mustn ’tB. won ’tC. can ’tD. may not10. It was the man ________ on the bed with his eyes open who _______ the book open onthe desk just now.A. lain; layB. lying; laidC. lay; layD. lying; lied11. Now some trains are running faster and faster, but they stop few times than usual________.A. in the wayB. by the wayC. on the wayD. in a way12. --Can the new railway station be finished as planned?--Sure, ________it completed in time, we ’ll work two more hours a day.A. havingB. haveC. to getD. having got13.-- I went to your house last night, but nobody was in.-- I’m so sorry. I was in the stadium, ________ a basketball match.A. watchB. watchedC. watchingD. having watched14.-- ________--Yes, a bit cold, though.A. Very cold, isn’t it?B. Bad weather, don’t you think?C. Cold weather, isn’t it?D. Nice day, isn’t it?15.--Have you decided which you’d like to buy, the black skirt or the pink skirt?--Of the two, the pink one is ________.A. nicestB. the nicerC. a nicerD. nicerⅡ、完形填空(共15小题,计15分)阅读下面短文,掌握其大意,然后从A、B、C、D四个选项中选出可以填入空白处的最佳答案。

2008-2010年清华大学自主招生试卷

2008-2010年清华大学自主招生试卷

2008年清华大学考题1.求()x e f x x=的单调区间及极值.2.设正三角形1T 边长为a ,1n T +是n T 的中点三角形,n A 为n T 除去1n T +后剩下三个三角形内切圆面积之和.求1lim nk n k A →∞=∑.3.已知某音响设备由五个部件组成,A 电视机,B 影碟机,C 线路,D 左声道和E 右声道,其中每个部件工作的概率如下图所示.能听到声音,当且仅当A 与B 中有一工作,C 工作,D 与E 中有一工作;且若D 和E 同时工作则有立体声效果.求:(1)能听到立体声效果的概率;(2)听不到声音的概率.4.(1)求三直线60x y+=,1 2y x=,0y=所围成三角形上的整点个数;(2)求方程组21260y xy xx y<⎧⎪⎪>⎨⎪+=⎪⎩的整数解个数.5.已知(1,1)A--,△ABC是正三角形,且B、C在双曲线1(0)xy x=>一支上.(1)求证B 、C 关于直线y x =对称;(2)求△ABC 的周长.6.对于集合2M R ⊆,称M 为开集,当且仅当0P M ∀∈,0r ∃>,使得20{}P R PP r M ∈<⊆.判断集合{(,)4250}x y x y +->与{(,)0,0}x y x y ≥>是否为开集,并证明你的结论.2009年清华大学自主招生数学试题第一天(共11题,艺术生做1-7,10-11,其他考生1-9题)1.求公差是8、由三个质数组成的数列。

2.证明:一个2n+1项的整数数列,它们全部相等的充分必要条件是满足条件p ,条件p 为任意取出2n 个数,都存在一种划分方法,使得两堆数每堆含有n 个数,并且这两堆数的和相等。

3.四面体ABCD,AB=CD,AC=BD,AD=BC 。

(1)求证:这个四面体的四个面都是锐角三角形。

(2)设底面为BCD ,设另外三个面与面BCD 所形成的二面角为α,β,γ。

清华大学自主招生考试面试试题集锦

清华大学自主招生考试面试试题集锦

理科: 1、你最崇拜的一个科学家?为什么? 2、班级里你最崇拜的一个同学?为什么? 3、你最喜欢的一个数学公式?为什么? 4、父亲和母亲哪一个对你的影响比较大?为什么? 5、公理和定理有什么不同? 6、“神六”发射的过程中,哪些现象能用物理原理解释? 7、火箭喷射过程中有什么化学反应? 8、台风过境哪些地区受到的影响最大?为什么? 9、杭州到上海的距离,光速需要多少时间? 10、如果你家里连续几天没人,怎么样才能让花盆里的花不被干死? 11、为什么三角形的面积是底乘以高除以2? 12、(面对一浙江考生)从北京到达浙江,光要行驶多长时间? 13、在电视上,新闻节目主持人和远方记者通话,为何有时会出现远方记者“反应迟钝”、“慢一拍”的情形? 文科: 1、你怎样理解鲁迅精神的? 2、鲁迅笔名是怎么来的? 3、你怎样理解巴金精神的? 4、巴金的笔名是怎么来的?(部分笔试试题) 【数学】 1、对定义域为R的f(x),有f(a,b)=a·f(b)+b·f(a),且|f(x)|≤1,求证:f(x)恒为零。

2、对于空间四边形ABCD,求AC+BD的最大值。

【物理】 1、德布罗意波是由著名物理学家德布罗意提出的,它告诉了一个物体质量、速度及其德布罗意波长的关系。

已知:电子ME=9.1×10-31kg,h =6.63×10-34,e=1.6×10-16,现一个点子经过150V加速后,求:(1)求其德布罗意波长,(2)此电子发出的波在何波段? 【英语】 作文:以“你理想中的父母与孩子关系”写一篇150字左右的作文。

  注:所有题目均为受访学生回忆文字,可能表述有差异。

■自主招生申请材料有哪些? 随着自主招生工作的推进,各校对学生申请材料的重视程度增加。

一般,自主招生申请材料除了申请表以外,需附上获奖证书复印件,由学生所在中学提供的申报大学保送生和自主招生中学推荐表(请校长或主管校长签名并盖章),学生高中三年历次期中和期末考试的原始成绩单,高三阶段提供每一次年级统一考试等的学生各种获奖证明。

历届自主招生考题

历届自主招生考题

2010年北京大学一、以下是一首绕口令式说唱,来源于一首流行网络歌曲的歌词。

请根据题目回答问题。

历年自主招生真题解析及模拟历史长河向前淌岸上睡着一只羊河里漂着一条狼狼要拿羊当口粮/羊要认狼当爹娘羊要救狼,狼要吃羊不知是那羊救狼/还是狼吃羊(1)请找出其中所有押韵的字(“韵脚”),并至少用“韵脚”中的四个字造一个单句。

(2)请找出所有的动词,并用其中笔画最少的两个写一句适合大学校园的宣传标语。

2009北大语文一、写出两个成语,并曲解它的意思(例:度日如年,日子过得很好,每天都像在过年)二、从语法角度分析下列病句错在何处:1、我们都有一个家,名字叫中国;2、素胚勾勒出青花笔锋浓转淡。

三、对联 (6分) 博雅塔前人博雅【评论】现在最流行的就是这句,目前最佳答案为“未名湖畔柳未名”,但是博雅二字均为形容词,未名二字中的名字则为使动用法,从词性来看,这个似乎也还不甚高明,但江郎才尽亦无佳对。

答北京大学2009自主招生考题博雅塔前人博雅答:报恩寺后人报恩四、文言文翻译(20分)一篇300字左右不加标点的文言文,翻译全文(20分) 书杜袭喻繁钦语后[1]·(清)林纾吴人之归,有绮其衣者[2],衣数十袭[3],届时而易之。

而特居于盗乡,盗涎而妇弗觉[4],犹日炫其华绣于丛莽之下[5],盗遂杀而取之。

盗不足论,而吾甚怪此妇知绮其衣,而不知所以置其身。

夫使托身于荐绅之家[6],健者门焉,严扃深居,盗乌得取?唯其濒盗居而复炫其装[7],此其所以死耳。

天下有才之士,不犹吴妇之绮其衣乎?托非其人,则与盗邻,盗贪利而耆杀[8],故炫能于乱邦,匪有全者。

杜袭喻繁钦曰:“子若见能不已[9],非吾徒也。

”钦卒用其言,以免于刘表之祸[10]。

呜呼!袭可谓善藏矣,钦亦可谓善听矣。

不尔,吾未见其不为吴妇也。

【评论】如果这是一篇不加标点的文言文,想必难度大增。

难怪古人的阅读速度非常之慢,需要先断句再理解……五、阅读理解一篇选自鲁迅《野草》的文章,要求指出很多意象的象征意义。

清华大学保送生面试题

清华大学保送生面试题

清华大学保送生面试题1、你最崇拜的一个科学家?为什么?2、班级里你最崇拜的一个同学?为什么?3、你最喜欢的一个数学公式?为什么?4、父亲和母亲哪一个对你的影响比较大?为什么?5、公理和定理有什么不同?6、“神六”发射的过程中,哪些现象能用物理原理解释?7、火箭喷射过程中有什么化学反应?8、台风过境哪些地区受到的影响最大?为什么?9、杭州到上海的距离,光速需要多少时间?10、如果你家里连续几天没人,怎么样才能让花盆里的花不被干死?11、为什么三角形的面积是底乘以高除以2?12、从北京到达浙江,光要行驶多长时间?13、在电视上,新闻节目主持人和远方记者通话,为何有时会出现远方记者“反应迟钝”、“慢一拍”的情形?北京大学保送生面试题1、你对大学生活的憧憬是什么?为何选择北大?2、如果你有一年的自由时间,你会做什么?3、给出一个最能让我们选你的理由。

4、人格的魅力形成于生活的历练中,又常常闪现于举手投足间。

一个谦和的微笑,一个挺拔的站姿……都足以显现你的态度和情感。

你认为自己最有特色的表情(或姿势、动作、口头禅……)是什么?请向素不相识的我们介绍你自己。

5、请为下一年度的申请者出一个陈述话题6、无论是在生活中还是在学术研究中,你都会面对许多所谓的“已知”。

正是在接纳并认同一些“已知”的基础上,我们才得以顺利地处理日常问题,进而开拓未知的领域;但另一方面,许多被我们称为“已知”的事物本身仍然是值得怀疑的,在怀疑与回溯“已知”的过程中又会发现许多未知……请描述你最自豪的“已知”和最想探求的“未知”。

7、中国首架载人航天飞船“神舟”五号发射成功。

杨利伟透过飞船,欣赏了地球景貌,拍摄了大量太空图片。

假如你有幸陪同杨利伟一起乘坐“神舟”五号进入太空,当你坐在太空舱中,俯视地球时,会有怎样的感想呢?你是否想说些什么呢?8、非典这场天灾,使我们的生活发生了诸多的变化,你有什么特殊的经历?你的感受是什么?给你的启示又是什么?9、请列举一个你最关注的社会问题或社会现象,并提出你对解决这个社会问题的建议。

07年清华大学自主招生开始网报 考生要有专长

07年清华大学自主招生开始网报 考生要有专长

本报讯 10月23日,记者从清华大学招生办了解到,清华大学2007年自主招生和保送生工作已正式开始,申请清华自主招生工作采取网上报名与书面报名相结合的方式,与以往不同的是今年申报者还需要在申请材料中加入千字个人陈述。

有专长成报名新条件清华大学自主招生对象除学习成绩优秀外,还需要有一专长。

需要符合以下条件之一:1.综合素质突出者。

2.在某方面(如科技创新、文学等)有突出特长和培养潜能者。

3.在外语方面具有突出的培养潜能且第一志愿报考清华英语和日语专业者。

4.综合素质突出且第一志愿报考清华国防生和定向生者。

5.在乒乓球、武术、击剑、网球、手球、棒球、棋类方面具有突出特长(运动成绩达到国家二级运动员标准)的学生。

需写千字陈述材料值得一提的是,今年在考生申请材料中必须有一份1000字至1500字的个人陈述,介绍性格特征、优缺点,并在陈述中规划大学生活。

具体陈述内容要求申报者写一次参与重要的活动或是取得的成绩,或是曾经遇到的困难,也可以写对申报者本人影响最大的事情或人物等内容介绍本人的性格、习惯、优点和缺点。

还可设想申报者以后在大学期间的学习、生活以及发展计划等。

招生分两部分清华大学自主招生的选拔将分为初选、冬令营复试两部分。

学校将根据申请材料从报名者中选定部分优秀保送生和自主招生候选人参加冬令营,其中体育特长生40名左右。

在考虑学业成绩、奥林匹克学科竞赛名次、获奖等因素后,将于11月25日在清华大学本科招生网上公布北京及其他省市复试考生名单。

复试阶段理工类考生笔试科目为数学、物理和英语,文史类为语文、数学、英语。

外语特长生需增加口语面试。

2007年清华大学将继续在“全国中学生物理、数学、信息学总决赛”现场和第六届“明天小小科学家”奖励活动现场开展招生录取工作。

自主招生人选“优惠”20分被清华大学认定的保送生人选,原则上可以在清华大学公布的招生专业中选报志愿,但清华将根据保送生人选在“冬令营”中的排名和专业志愿,合理安排专业。

清华自主招生试题整理(舒展)

清华自主招生试题整理(舒展)

清华自主招生试题整理(2006--2012)2012年清华等五校自主招生试题--通用基础测试一、选择题1.若P 为ABC ∆内部任一点(不包括边界),且()(2)0PB PA PB PA PC -+-=,则ABC ∆必为( )A.直角三角形B.等边三角形C.等腰直角三角形D.等腰三角形 2.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若MA MP ⊥,则P 点形成的轨迹的长度为( ) A.7 B.72C.3D.323.若以体积为54的正四面体的四个面的中心为顶点做一个四面体,则所作四面体的体积为( ) A.1B.2C.3D.44.某种型号的计算器上有一个特殊的按键,在计算器上显示正整数n 时按下这个按键,会等可能的将其替换为0,1,2,,1n - 中的任意一个数.如果初始时显示2011,反复按这个按键使得最终显示0,那么这个过程中,9,99,999都出现的概率是( ) A.4110 B.5110 C.6110 D.71105.已知,R αβ∈,直线1sin sin sin cos x y αβαβ+=++与1cos sin cos cos x y αβαβ+=++的交点在直线y x =-上,则cos sin c in s s o ααββ+++=( )A.0B.1C.1-D.2 6.设lg lg lg 111()121418x x xf x =+++++,则1()()f x f x +=( ) A.1 B.2 C.3 D.47.已知1cos 45θ=,则44sin cos θθ+=( )A.45B.35C.1D.45-8.若正四棱柱ABCD A B C D ''''-内接于一球,且1,'2AB AA ==,则点,A C 间的球面距离为( ) A.π4B.π2C.24π D.22π 9.若将满足,||3,||3x y x y <<<,且使得关于t 的方程33421()(3)0x y t x y t x y-+++=-没有实数根的点(,)x y 所成的集合记为M ,则由点集M 所确定的区域的面积为( ) A.814 B.834 C.815D.83510.已知椭圆22143x y +=的左,右焦点分别为12,F F ,过椭圆的右焦点作一条直线交椭圆于点,P Q ,则1F PQ∆的内切圆面积的最大值是( ) A.2516π B.925π C.1625π D.916π 二、解答题11.设2()(,)f x x bx c b c =++∈R .若||2x ≥时,()0f x ≥,且()f x 在区间(2,3]上的最大值为1,求22b c +的最大值和最小值.12.已知椭圆C :22221x y a b+=(0a b >>),其离心率为45,两准线之间的距离为252.(1)求,a b 之值;(2)设点A 坐标为(6,0),B 为椭圆C 上的动点,以A 为直角顶点,作等腰直角ABP ∆(字母,,A B P 按顺时针方向排列),求P 点的轨迹方程.13.已知数列{}n a 中的相邻两项212,k k a a -是关于x 的方程2(32)320k x k x k -++⋅=的两个根. (1)求数列{}n a 的前2n 项和2n S .(2)记1|sin |()(3)2sin n f n n =+,(2)(3)(4)()123456212(1)(1)(1)(1)f f f f n n n nT a a a a a a a a -----=++++ ,求证:15624n T ≤≤. 14.已知椭圆22221x y a b +=过定点(1,0)A ,且焦点在x 轴上,椭圆与曲线y x =的交点为,B C .现有以A 为焦点,过,B C 且开口向左的抛物线,其顶点坐标为(,0)M m ,当椭圆离心率满足2213e <<时,求实数m 的取值范围.15.已知从“神八”飞船带回的某种植物种子每粒成功发芽的概率都为13,某植物研究所进行该种子的发芽实验,每次实验种一料种子,每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值 (1)求随机变量ξ的数学期望E ξ;(2)记“关于x 的不等式210x x ξξ-+>的解集是实数集R ”为事件A ,求事件A 发生的概率()P A .2012年清华大学保送生考试试题一、填空题1.若复数z 为虚数,且||1z =,Re ((12))1z i ⋅-=,则z =____________.2.在数列{}n a 中,11a =,12n n a a +=+.若数列11{}n n a a +的前n 项和为1837,则n =____________.3.现有6人会英语,4人会日语,2人都会(共12人),从其中选出3人做翻译,要求两种语言都有人做翻译,则符合条件的选法种数为____________.4.有一人进行投篮训练,投篮5次,失误一次扣1分,进一次得1分,连进2次得3分,连进3次得5分.若投篮的命中率为25,则投篮3次恰好得2分的概率为____________. 5.不定方程1111x y z++=()x y z ≤≤的解(,,)x y z 的组数为____________. 6.某几何体的三视图如右图所示,用,,αβγ分别表示主视图、左视图、俯视图,设,,S S S αβγ是实际几何体中能看到的面积,则,,S S S αβγ从小到大的顺序为____________.二、解答题 7.抛物线212y x =与直线l :4y x =+所围成区域中有一个矩形ABCD ,且点,A B 在抛物线上,点D 在直线l 上,其中点B 在y 轴右侧,且||2AB t =(0)t >.(1)当AB 与x 轴平行时,求矩形ABCD 面积()S t 的函数关系式; (2)当边CD 在直线l 上时,求矩形ABCD 面积的最大值. 8.已知函数3()2cos (sin 2)sin 32f x x x x =⋅+-,且[0,2]x π∈. (1)求函数()f x 的最大值和最小值; (2)求方程()3f x =的解.9.已知函数1()ln x e f x x-=,且数列{}n a 满足:11a =,1()n n a f a +=.(1)求证:10xxx e e ⋅-+≥恒成立; (2)求函数()f x 的单调区间;(3)求证:数列{}n a 单调递减,且0n a >恒成立.10.在OAB ∆内(含边界),其中O 为坐标原点,点A ,B 分别在在x 轴,y 轴的正半轴上,且2OA OB ==. (1)用方程或不等式表示OAB ∆围成的区域;(2)求证:在OAB ∆内的任意11个点,总可以分成两组,一组中各点的横坐标之和不大于6,另一组中各点的纵坐标之和不大于6.443俯视图左视图主视图γβα2011年清华等五校自主招生试题1.设*n N ∈,15n ≥.集合A ,B 都是{1,2,,}I n =⋅⋅⋅的真子集,A B =∅ ,A B I = .证明:集合A 或B 中,必有两个不同的数,它们的和为完全平方数.2.设函数2()(0)f x ax bx x a =++>,且方程()f x x =的两实数根是1x 和2x ,且10x >,211x x a->,又10t x <<.试比较()f t 与1x 的大小.3.求函数2(){|1|,|5|}f x max x x =+-的最小值,并求出相应的x 的值.4.已知()f x 是定义在R 上的不恒为0的函数,且对于任意的,a b R ∈,有()()()f a b a f b b f a ⋅=⋅+⋅. (1)求(0),(1)f f 的值;(2)判定函数()f x 的奇偶性,并证明你的结论; (3)若(2)2f =,(2)n n f u n-=,求数列{}n u 的前n 项和n S .5.已知关于x 的方程222(1)(1)ax a x +=-,1a >.证明方程的正跟比1小,负根比1-大.6.设a ,b 是两个正数,且a b <.当[,]x a b ∈时,246y x x =-+的最小值为a ,最大值为b ,求a ,b 值.7.某生产队想筑一面积为1442m 的长方形围栏,围栏一边靠墙.现有铁丝网50m ,筑成这样的围栏最少要多少铁丝网?已有的墙最多利用多长?最少利用多长?8.在正方形ABCD 中,过顶点D 作对角线CA 的平行线DE ,若CE CA =,且直线CE 交边DA 于点F .求证:AE AF =.9.设边长为,,a b c 的ABC ∆的重心为G ,外心为O ,外接圆半径为r ,||OG d =,求证:222229a b c r d ++=-. 10.设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段弧,其弧长比为3:1,在满足上述条件的圆中,求圆心到直线:20l x y -=的距离最小的圆的方程.11.以A 为圆心,以2cos (0)2πθθ<<为半径的圆外有一点B . 已知2sin AB θ=,设过B 且与圆A 外切于点C 的圆的圆心为M .(1)当θ取某个值时,说明点M 的轨迹P 是什么曲线?(2)点M 是轨迹P 上的动点,点N 是圆A 上的动点,记MN 的最小值为()f θ.求()f θ的取值范围. 12.设数列{}n a 的前n 项和为n S ,点*(,)()nS n n N n∈均在函数32y x =-的图像上. (1)求数列{}n a 的通项公式; (2)设13n n n b a a +=⋅,n T 数列{}n b 的前n 项和,求最小正整数m ,使得20n mT <对所有*n N ∈都成立.13.已知函数()24f x x =-+,12()()()n nS f f f n n n=++⋅⋅⋅+.若不等式11n n n n a a S S ++<恒成立,求实数a 的取值范围.2010年清华等五校自主招生试题--通用基础测试一、选择题 1.设复数2()1a i w i+=+,其中a 为实数,若w 的实部为2,则w 的虚部为( ) (A)32- (B)12- (C)12 (D)322.设向量,a b 满足||||1a b == ,a b m ⋅= ,则||a tb + ()t R ∈的最小值为( )(A)2 (B)21m + (C)1 (D)21m - 3.无试题 4.无试题5.在ABC ∆中,若三边长,,a b c 满足3a c b +=,则tantan 22A C=( ) (A)15 (B)14 (C)12 (D)236.如图,ABC ∆的两条高线,AD BE 交于H ,其外接圆圆心为O ,过O 作OF 垂直BC 于F ,OH 与AF 相交于点G ,则OFG ∆与GAH ∆面积之比为( )(A )1:4 (B)1:3 (C)2:5 (D)1:27.设()e (0)ax f x a =>.过点(,0)P a 且平行于y 轴的直线与曲线:()C y f x =的交点为Q ,曲线C 过点Q 的切线交x 轴于点R ,则PQR ∆的面积的最小值是( )(A)1 (B)2e2(C)e 2 (D)2e 48.设双曲线2212:(2,0)4x y C k a k a -=>>,椭圆2222:14x y C a+=.若2C 的短轴长与1C 的实轴长的比值等于2C 的离心率,则1C 在2C 的一条准线上截得线段的长为( )(A)22k + (B)2 (C)44k + (D)49.欲将正六边形的各边和各条对角线都染为n 种颜色之一,使得以正六边形的任何三个顶点作为顶点的三角形有三种不同颜色的边,并且不同的三角形使用不同的三色组合,则n 的最小值为( )(A)6 (B)7 (C)8 (D)910.设定点A B C D 、、、是以O 点为中心的正四面体的顶点,用σ表示空间以直线OA 为轴满足条件()B C σ=的旋转,用τ表示空间关于OCD 所在平面的镜面反射,设l 为过AB 中点与CD 中点的直线,用ω表示空间以l 为轴的180°旋转.设στ 表示变换的复合,先作τ,再作σ.则ω可以表示为( )(A)στστσ (B)στστστ (C)τστστ (D)στσστσ 二、解答题11.在ABC ∆中,已知22sin cos212A BC ++=,外接圆半径2R =. (1)求角C 的大小; (2)求ABC ∆面积的最大值.12.设A B C D 、、、为抛物线24x y =上不同的四点,,A D 关于该抛物线的对称轴对称,BC 平行于该抛物线在点D 处的切线l .设D 到直线AB ,直线AC 的距离分别为12,d d ,已知122d d AD +=.(1)判断ABC ∆是锐角三角形、直角三角形、钝角三角形中的哪一种三角形,并说明理由; (2)若ABC ∆的面积为240,求点A 的坐标及直线BC 的方程. 13.(1)正四棱锥的体积23V =,求正四棱锥的表面积的最小值; (2)一般地,设正n 棱锥的体积V 为定值,试给出不依赖于n 的一个充分必要条件,使得正n 棱锥的表面积取得最小值.14.假定亲本总体中三种基因型式:,,AA Aa aa 的比例为:2:u v w (0,0,0,21)u v w u v w >>>++=且数量充分多,参与交配的亲本是该总体中随机的两个. (1)求子一代中,三种基因型式的比例;(2)子二代的三种基因型式的比例与子一代的三种基因型式的比例相同吗?并说明理由. 15.设函数()1x m f x x +=+,且存在函数()s t at b ϕ==+1(,0)2t a >≠满足2121()t s f t s-+=. (1)证明:存在函数()(0),t s cs d s ψ==+>满足2121()s t f s t+-=; (2)设113,(),1,2,.n n x x f x n +=== 证明:1123n n x --≤. 2009年清华大学保送生暨自主招生北京冬令营1.有限条抛物线(线和线的内部)能够覆盖整个平面吗?证明你的结论.2.请找出一个含有323+的整系数多项式.3.求0.4 1.2|22|i i e e ++的模.4.现有一数字游戏:有1到100的数,两个人轮流写.设已经写下的数为123,,,,n a a a a .若一个数x 能表示 成112233n n x x a x a x a x a =++++ (123,,,,n x x x x 为非负整数),则这个数不能够再被写.(如若3,5已被写,则83151=⨯+⨯不能再写,133152=⨯+⨯,93350=⨯+⨯也不能再被写).现在甲和乙玩这个游戏,已知5,6已经被写,现在轮到甲写,问:谁有必胜策略?5.一条跑马比赛最多只能有八匹马参加,假设同一匹马参加每一场比赛的表现都是一样的.问:可以有不多 于50场比赛,完全将64匹马的实力顺序排序吗?6.现有100个集装箱,每个集装箱装2个物品.现在将集装箱的物品全部拆卸,并且所有物品被打乱顺序.问:最坏情况下,需要多少个集装箱再次把所有物品装好?7.现有一游戏:图上有若干个点和若干条线,甲提供若干个硬币,乙可以任意将这些硬币全部摆放在点上, 并且指定一个目标定点P .现定义操作:从一个至少有两个硬币的点取走2个硬币,在它一个相邻的点上放 回一个硬币.在指定的图下,甲最少提供多少个硬币,可以保证经过若干次操作,一定能使目标顶点P 至少 有一枚硬币?(1)图是一个包含5个点的线段;(2)图是一个包含7个点的圈.2009年清华大学自主招生数学试题(理科)1.设5151+-的整数部分为a ,小数部分为b .(1)求,a b ; (2)求222ab a b ++; (3)求2lim()n n b b b →∞+++ .2.(1)已知,x y 为实数,且1x y +=,求证:对于任意正整数n 都有222112n n n x y -+≥.(2)已知,,a b c 为正实数,求证:3a b cxy z++≥,其中,,x y z 为,,a b c 的一种排列. 3.请写出所有三个数均为质数,且公差为8的等差数列,并证明你的结论.4.已知椭圆22221x y a b+=,过椭圆左顶点(,0)A a -的直线L 与椭圆交于Q ,与y 轴交于R ,过原点与L 平行的直线与椭圆交于P ,求证:AQ ,2OP ,AR 成等比数列.5.已知sin cos 1t t +=,设cos sin s t i t =+,求2()1n f s s s s =+++ .6.随机挑选一个三位数m , (1)求m 含有因子5的概率; (2)求m 中恰有两个数码相等的概率.7.四面体ABCD 中,AB CD =,AC BD =,AD BC =, (1)求证:四面体每个面的三角形为锐角三角形;(2)设三个面与底面BCD 所成的角分别为,,αβγ,求证:cos cos cos 1αβγ++=. 8.证明:当,p q 均为奇数时,曲线222y x px q =-+与x 轴的交点横坐标为无理数.9.设1221,,,n a a a + 均为整数,性质P 为:对1221,,,n a a a + 中任意2n 个数,存在一种分法可将其分为两组,每组n 个数,使得两组所有元素的和相等,求证:1221,,,n a a a + 全部相等当且仅当1221,,,n a a a + 具有性质P .2009年清华大学自主招生数学试题(文科)1.已知数列{}n a 满足(1)n S na n n =+-, (1)求证:{}n a 是等差数列; (2)求(,)nn S a n所在的直线方程. 2.把12名职员(其中三名为男性)被平均分配到三个部门, (1)求此三名男性被分别分到不同部门的概率; (2)求此三名男性被分到同一部门的概率;(3)若有一男性被分到指定部门,求其他两人被分到其他不同部门的概率. 3.一元三次函数()f x 的三次项数为3a,()90f x x +<的解集为(1,2). (1)若()70f x a +=,求()f x 的解析式; (2)若()f x 在R 上单调增,求a 的范围. 4.已知22PM PN -=,(2,0)M -,(2,0)N ,(1)求点P 的轨迹W ; (2)直线(2)y k x =-与W 交于点A ,B ,求OAB S ∆. 5.设12nx x x a n++=, 12231()()()()()()n n n S x a x a x a x a x a x a -=--+--++-- .(1)求证:30S ≤. (2)求4S 的最值,并给出此时1x ,2x ,3x ,4x 满足的条件. (3)若50S <,求1x ,2x ,3x ,4x ,5x 不符合时的条件.2008年清华大学自主招生试题1.已知,,a b c 都是有理数,a b c ++也是有理数,证明:,,a b c 都是有理数.2.(1)一个四面体,证明:至少存在一个顶点,从其出发的三条棱组成一个三角形; (2)四面体一个顶点处的三个角分别是,,arctan 223ππ,求3π的面和arctan2的面所成的二面角.3.求正整数区间[],()m n m n <中,不能被3整除的整数之和.4.已知sin cos 1sin 2ααα+=+,求α的取值范围.5.若20lim ()(0)1,(2)()x f x f f x f x x →==-=,求()f x .6.证明:以原点为中心的面积大于4的矩形中,至少还有两个格点.2007年清华大学自主招生试题1.求函数()xe f x x=的单调区间及极值.2.设正三角形1T 的边长为a ,1n T +是n T 的中点三角形,n A 为n T 除去1n T +后剩下的三个三角形内切圆面积之和.求1lim nk n k A →∞=∑.3.已知某音响设备由五个部件组成,A 电视机,B 影碟机,C 线路,D 左声道和E 右声道,其中每个部件工作的概率如下图所示.能听到声音,当且仅当A 与B 中有一工作,C 工作,D 与E 中有一工作;且若D 和E 同时工作则有立体声效果.求:(1)能听到立体声效果的概率; (2)听不到声音的概率. 4.(1)求三直线60x y +=,12y x =,0y =所围成三角形内的整点个数; (2)求满足21260y x y x x y <⎧⎪⎪>⎨⎪+=⎪⎩的整数解个数.5.已知正三角形ABC ∆的顶点,B C 在双曲线1(0)xy x =>的一支上,且点A 的坐标为(1,1)A --. (1)求证:点,B C 关于直线y x =对称; (2)求ABC ∆的周长.6.对于集合2M R ⊆,称M 为开集,当且仅当0P M ∀∈,0r ∃>,使得20{}P R PP r M ∈<⊆.判断集合{(,)4250}x y x y +->与{(,)0,0}x y x y ≥>是否为开集,并证明你的结论. 2006年清华大学自主招生试题1.求最小正整数n ,使得11()223nI i =+为纯虚数,并求出I .2.已知a b 、为非负数,44,1M a b a b =++=,求M 的最值.3.已知sin sin cos θαθ、、为等差数列,sin sin cos θβθ、、为等比数列,求1cos2cos22αβ-的值. 4.求由正整数组成的集合S ,使S 中的元素之和等于元素之积.5.随机取多少个整数,才能有0.9以上的概率使得这些数中至少有一个偶数.6.抛物线2y x =上点P (非原点)的切线分别交,x y 轴于,Q R ,求PQ PR.7.已知函数()f x 满足:对任意的实数,a b 都有()()()f a b a f b b f a ⋅=⋅+⋅,且|()|1f x ≤,求证:()f x 恒为零.(可用以下结论:若lim ()0,()x g x f x M →∞=≤,M 为一常数,那么lim(()())0x f x g x →∞⋅=.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年清华大学自主招生保送生测试数学试题 第 页 1 2007年清华大学自主招生保送生测试
数学试题
1、 求()e x
f x x
=的单调区间及极值. 2、 设正三角形1T 边长为a ,1n T +是n T 的中点三角形,n A 为n T 除去1n T +后剩下三个三角形内
切圆面积之和.求1lim n
k n k A →∞=∑. 3、 已知某音响设备由五个部件组成,A 电视机,B 影碟机,C 线路,D 左声道和E 右声道,
其中每个部件工作的概率如下图所示.能听到声音,当且仅当A 与B 中有一工作,C 工作,D 与E 中有一工作;且若D 和E 同时工作则有立体声效果.
求:(I )能听到立体声效果的概率;
(II )听不到声音的概率.
4、 (I )求三直线60x y +=,12
y x =,0y =所围成三角形上的整点个数; (II )求方程组21260
y x y x x y <⎧⎪⎪>⎨⎪+=⎪⎩的整数解个数. 5、 已知()1,1A --,ABC △是正三角形,且B 、C 在双曲线1xy =(0x >)的一支上.
(I )求证B 、C 关于直线y x =对称;
(II )求ABC △的周长.
6、 对于集合2M ⊆R ,当且仅当0P M ∀∈,0r ∃>,使得{}
20P PP r M ∈<⊆R 时称M 为
开集,.判断集合(){},|4250x y x y +->与(){},|,0x y x y >≥0是否为开集,并证明你的结论.。

相关文档
最新文档