第三章讲义双极晶体管
合集下载
3-1 双极结型晶体管基础

发射区:掺 杂浓度较高
集电区:面 积较大
便于收集电子
C
集电极
B
基极
P N+ P++ E
发射极
基区:较薄,掺 杂浓度低
发射区:掺 杂浓度较高
集成电路中双极型NPN晶体管的截面图
E
C
N P N
B
均匀基区晶体管:基区掺杂为均匀分布。少子在基区主要
作扩散运动,又称为扩散晶体管。 缓变基区晶体管:基区掺杂近似为指数分布,少子在基区 主要作漂移运动,又称为漂移晶体管。
B
ICBO
RB EB
IBE
ICE N P N IE
E
24
IC=ICE+ICBO ICE C
IB=IBE -ICBOIBE
B IB
ICBO
RB EB
IBE
ICE N P N IE
EC
E
25
以 PNP 管为例。忽略势垒区产生复合电流, 处于放大状态 的晶体管内部的各电流成分如下图所示
C
B
IC IE
N+
P
0
NE(x)
NB(x)
xje xjc
NC
N
0 xje xjc
x
3.1.2 偏压与工作状态
加在各 PN 结上的电压为 C
C
集电极
集电结
VBE VB VE , VBC VB VC VEB VE VB , VCB VC VB
BJT是非线性元件,其工 作特性与其工作模式有关
IB
I E I pE I nE , I B I nE I nr , I C I pC I pE I pr I E I nE I nr
第三章双极晶体管2019124164733535

2019/11/7
半导体器件物理
28
中国科学技术大学物理系微电子专业
• 发射区连续性方程为
d2nE nE nE0 0
dx2
L2n E
q V E B
发射区少子浓度的边界条件 nE(xE)nE0e k T
发射区少子的分布
nE(LnE )nE0
n E (x ) n E 0 n E 0(e qE V k BT 1 )e (x x E )L nE
• 通过发射结的空穴电流密度为
IE pA qL p p D p B B B 0[e ( qE V k B T 1 )cW L tp B h B (e qC V k B T 1 )ch sW L p B c ] B
• 通过集电结的空穴电流密度为
IC p A qL p p D p B B B 0[e ( qE V k B T 1 )ch sW L p B c B (e qC V k B T 1 )cW L tp B h ] B
集电区少子的分布
nC(LnC)nC0
n C (x ) n C 0 n C 0(eqC V k BT 1 )e(x C x)L n C
通过集电结的电子电流密度为
2019/11/7
JnC JnC (x)xxCqL n D nn C C C 0(eqC V k BT 1 )
半导体器件物理
P-N-P均匀基区 晶体管的物理 结构、杂质分 布、电场分布 和平衡态能带 图
半导体器件物理
13
2019/11/7
中国科学技术大学物理系微电子专业
P-N-P均匀基区 晶体管正常偏 置条件下的的 物理结构、杂 质分布、电场 分布和平衡态 能带图
半导体器件物理
第三章 BJT双极型晶体管

第三章 双极型晶体管
中国计量学院光电学院
晶体管——transistor 它是转换电阻transfer resistor的缩写 晶体管就是一个多重结的半导体器件 通常晶体管会与其他电路器件整合在一起, 以获得电压、电流或是信号功率增益
双极型晶体管(bipolar transistor)
IC 0 I E ICBO
(10)
理想BJT的静态特性
何谓静态?
静态电流 电压特性 各端点的电流方程式
五点假设
意味什么?
(1)晶体管中各区域的浓度为均匀掺杂; (2)基区中的空穴漂移电流和集基极反向 饱和电流可以忽略; (3)载流子注入属于小注入; (4)耗尽区中没有产生-复合电流; (5)晶体管中无串联电阻。 用途:为推导理想晶体管电流、电压表达 式做准备!
从这个方程中可以看出,少数载流子分布趋近于一条直线。
那么整体PNP晶体管在放大模式下的少子分布究竟如何呢?
类似于基区的求解,可以求出发射区和集电区中的少子分布。
发射区和集电区中性区域的边界条件为:
nE ( x xE ) nE 0 e q VCB nC ( x xC ) nC 0 e
注意
载流子浓度 exp[(载流子能量) / kT ]
qVbi nn 0 n p 0 exp( ) kT qVbi p p 0 pn 0 exp( ) kT
热平衡时的PN结载流子浓度
基本上,假设在正向偏压的状况下,空穴由 发射区注入基区,然后这些空穴再以扩散的 方式穿过基区到达集基结,一旦我们确定了 少数载流子的分布(即N区中的空穴),就 可以由少数载流子的浓度梯度得出电流。
基区输运 系数
发射效率
中国计量学院光电学院
晶体管——transistor 它是转换电阻transfer resistor的缩写 晶体管就是一个多重结的半导体器件 通常晶体管会与其他电路器件整合在一起, 以获得电压、电流或是信号功率增益
双极型晶体管(bipolar transistor)
IC 0 I E ICBO
(10)
理想BJT的静态特性
何谓静态?
静态电流 电压特性 各端点的电流方程式
五点假设
意味什么?
(1)晶体管中各区域的浓度为均匀掺杂; (2)基区中的空穴漂移电流和集基极反向 饱和电流可以忽略; (3)载流子注入属于小注入; (4)耗尽区中没有产生-复合电流; (5)晶体管中无串联电阻。 用途:为推导理想晶体管电流、电压表达 式做准备!
从这个方程中可以看出,少数载流子分布趋近于一条直线。
那么整体PNP晶体管在放大模式下的少子分布究竟如何呢?
类似于基区的求解,可以求出发射区和集电区中的少子分布。
发射区和集电区中性区域的边界条件为:
nE ( x xE ) nE 0 e q VCB nC ( x xC ) nC 0 e
注意
载流子浓度 exp[(载流子能量) / kT ]
qVbi nn 0 n p 0 exp( ) kT qVbi p p 0 pn 0 exp( ) kT
热平衡时的PN结载流子浓度
基本上,假设在正向偏压的状况下,空穴由 发射区注入基区,然后这些空穴再以扩散的 方式穿过基区到达集基结,一旦我们确定了 少数载流子的分布(即N区中的空穴),就 可以由少数载流子的浓度梯度得出电流。
基区输运 系数
发射效率
第三章双极型晶体管

ICn
电子电流 电子流
上式等号右边第一项称为
发射效率,是入射空穴电
流与总发射极电流的比,
即:
I E•
I Ep IE
I Ep I Ep+I En
第二项称为基区输运系数,
是到达集电极的空穴电流量
与由发射极入射的空穴电流
量的比,即
T
I Cp I Ep
所以 0=T
发射区 (P )
}I EP
I En
基区 (n) I BB
(d)n-p-n双级型集体管的电路符号
图 4.2
+
VEC
-
E+
发射区 基区 集电区
P
n
P
+C
VEB
-B-
VCB
(a)理想一维p-n-p双级型集体管
IE E
+
+ VEC - IC - C
VEB
VBC
- + IB
B
(b)p-n-p双级型集体管的电路符号
-
VCE
+
E
发射区 基区 集电区
P
n
P
C
VBE
++ B
I En I BB
I B I E IC I En (I EpICp ) ICn
晶体管中有一项重要的参数
,称为共基电流增益,定义
为
0
I Cp IE
IB
空穴电流 和空穴流
图4.5
因此,得到
=
0
I
I Cp Ep+I
En
=
I Ep I Ep+I En
I Cp I Ep
}
集电区(P)
第三章BJT器件解析

* 基区自建电场 E的大小 ~
E = [( kT / q ) / pp(x)] ·[ dpp(x) / dx ] ≈ - [( kT / q ) / NB(x) ] ·[ dNB(x) / dx ] .
若杂质分布采用指数近似,则自建电场与位置无关:
E = - (kT/q)(η/W) = 常数, η称为电场因子. 23
相应地, 发射区中本征载流子浓度将由 ni2 变为
n i e 2 = ni2 exp[ΔEg / kT].
从而使得晶体管的注射效率↓(少子浓度↑所致) . ② Auger效应: Auger复合是电子与空穴直接复合、而将能量交给另一个自由 载流子的过程. N型半导体的Auger复合寿命τA ∝ 1/ n2 ; 在重掺杂时, τA 的数值很小. 在Si发射区掺杂浓度 >1019 cm-3 时, Auger复合寿命将小于SHR复合寿命 ( SHR复合寿命的典型值为10-7 s ). 则发射区少子寿命即由τA很小的 Auger过程决定; 从而使发射区的少子扩散长度↓, 注射效率↓.
W
∫ IVR = qA
[Δnp(x) / τn ] dx = IEnW2 / λLn2 (指数分布近似),
0
1/λ= [η- 1 + exp(-η) ] /η2 ≈ (η- 1)/ η2 ≈1 / η;
则输运系数为 β* = 1 – IVR / IEn = 1 - W2/ λLn2 .
③直流电流增益 ~ (掺杂浓度均是指平均值)
IB = IE - IC = (a11-a21){exp(qVBE/kT) - 1}
+ (a12-a22){exp(qVBC/kT) - 1},
* 可求得电流增益αo 和βo 与材料和结构参数之间的关系.
第三章-双极型晶体管的频率特性

p
ic
Ic/mA
10
I B 25A
负载线
频率响应
~ VEB
8
ic
~ ic
20
iB
~ iB
iB
n
6
4
工作点
15 10
前面讨论的是晶体管的静态特性 ( 直流 特性 ) ,没有涉及其交流特性,也就是 当一小信号重叠在直流值上的情况。小 信号意指交流电压和电流的峰值小于直 i 流的电压、电流值。 高频等效电路: 图 (a) 是以共射组态晶 p 体管所构成的放大器电路,在固定的 i n 直流输入电压 VEB 下,将会有直流基 p 极电流 IB 和直流集电极电流 IC 流过晶 V~ i 体管,这些电流代表图(b)中的工作点, V V 由供应电压 VCC 以及负载电阻 RL所决 定出的负载线,将以一 1/RL的斜率与 (a)连接成共射组态的双极晶体管 VCE轴相交于VCC。
fT 10
8
f 10
9
1010
频率 / Hz
另外,一截止频率fT(又称特征频率)定义为β的绝对值变为1时的频率, 将前式等号右边的值定为1,可得出
2 f 1 f ( 1 ) f f T 0 0 0 0
因此fT很接近但稍小于 f。
双极型晶体管的频率特性
c
Ic/ A
B
负载线
c
B
B
c
C
B
B
工作点
EB
输出电流
E
EB
CC
EC
CC
(a)连接成共射组态的双极晶体管
(b)晶体管电路的小信号工作状态
B
B
C ~ V
E B
C ~ V
ic
Ic/mA
10
I B 25A
负载线
频率响应
~ VEB
8
ic
~ ic
20
iB
~ iB
iB
n
6
4
工作点
15 10
前面讨论的是晶体管的静态特性 ( 直流 特性 ) ,没有涉及其交流特性,也就是 当一小信号重叠在直流值上的情况。小 信号意指交流电压和电流的峰值小于直 i 流的电压、电流值。 高频等效电路: 图 (a) 是以共射组态晶 p 体管所构成的放大器电路,在固定的 i n 直流输入电压 VEB 下,将会有直流基 p 极电流 IB 和直流集电极电流 IC 流过晶 V~ i 体管,这些电流代表图(b)中的工作点, V V 由供应电压 VCC 以及负载电阻 RL所决 定出的负载线,将以一 1/RL的斜率与 (a)连接成共射组态的双极晶体管 VCE轴相交于VCC。
fT 10
8
f 10
9
1010
频率 / Hz
另外,一截止频率fT(又称特征频率)定义为β的绝对值变为1时的频率, 将前式等号右边的值定为1,可得出
2 f 1 f ( 1 ) f f T 0 0 0 0
因此fT很接近但稍小于 f。
双极型晶体管的频率特性
c
Ic/ A
B
负载线
c
B
B
c
C
B
B
工作点
EB
输出电流
E
EB
CC
EC
CC
(a)连接成共射组态的双极晶体管
(b)晶体管电路的小信号工作状态
B
B
C ~ V
E B
C ~ V
第三章讲义双极型晶体管

发射区少子空穴寿命 p 随着俄歇复合的增加而降低。
A Cn1n02 NS, i 俄歇复合寿命
111
p T A
俄歇复合
通过复合中心复合
少子空穴寿命缩短使注入到发射区的空穴增加,发射效率↓。
3.基区表面复合
表面复合对基区输运系数的影响可表示为
0 *IneIIn rb eIsb1IIn rb eIIn sb e
3.3.4影响电流放大系数的因素
1. 发射结势垒复合对电流放大系数的影响
Ine
Ine
1
Ie IneIpeIre 1Ipe Ire
Ine Ine
考虑势垒复合
电流Ire后,小 电流下的电流
放大系数降低,
大电流下Ire可 以忽略。
2. 发射区重掺杂效应对电流放大系数的影响
发射区过重的掺杂不仅不能提高发射效率,反而使发射效率降低
E、得到共基极和共射极 电流放大系数
3.3 晶体管的直流电流增益
四、电流增益 (1)发射效率
1
1
1 pB N BWB 1 E WB
nE N EWE
B WE
其 中 平 均 杂 质 浓 度 :N B
1 WB
WB 0
N
B
x
dx
1 0
N E WE N WE E x dx
3.3 晶体管的直流电流增益
3.3 晶体管的直流电流增益
二、电流密度分布函数
jnBxqD L n n B B nB 0
eqV bekT1ch W L Bn Bx eqV bckT1ch L x nB shW BL nB
jn E jn B0 q D L n n B B n B 0 e q V b ek T 1 c th W L n B B e q V b ck T 1 c s c h W L n B B
第3章双极型晶体管及其基本放大电路

iC / mA4Βιβλιοθήκη 饱和区3放
100 μA 80 μA 60 μA
截止区——iC接近零的区 域,相当iB=0的曲线的下 方。此时,发射结反偏,
集电结反偏。
2
大
40 μA
放大区——iC平行于uCE
1
I CEO
O
区 20 μA
I B =0 μA
截止区
轴的区域,曲线基本平行 等距。 此时,发射结正
3 6 9 12 uCE / V 偏,集电结反偏,电压大
双极型晶体管的型号和主要参数
2. 晶体管的封装
小、中功率晶体管图片(金属圆壳封装)
小、中功率晶体管图片(塑封)
大功率晶体管图片
3.3 放大的概念和放大电路的性能指标
3.3.1 放大的概念
基本放大电路一般是指由晶体管与其它电路元件所 组成的放大电路。 1. 放大电路主要用于放大微弱信号,输出电压或电流在幅 度上得到了放大,输出信号的能量得到了加强。 2. 输出信号不能失真,即输出信号与输入信号之间在形状 上不能变样。
ICQ2
电流IBQ之比,定义:
1
ICQ ICEO ICQ
ICEO
O
I BQ
I BQ uCE CONST
Q IBQ
80 μA 60 μA
40 μA
20 μA
IB =0
3
6
9
12 uCE / V
输出特性曲线
②共基极组态直流电流放大系数
称为共基极直流电流放大系数。
ICQ ICEO ICQ
2.U(BR) EBO——e 集电极c-开mA+路+限时流电发阻 射结的击穿电压。 3.U(BR)CEO——c 基极b 开-e路mA集+V-+限电流电极阻和发射极间的击穿电压。 对路于的。U(B几R)个CER击表b穿示电Bbc压E-U间U在(mB(ABR接大R+)C)VEB+-有B限 V小OO-流电上电阻阻有,如U下(B关R)C系ES表示BE间是短
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( NE >> NB )
8
3.2 晶体管的放大原理
NPN晶体管的几种组态
共基极 共射极 共集电极
0 0
IC
I I
E C
IB
共基e 极
N
共b 发射极
P
共收集极 N c
晶体管的共集电极接法
9
3.2.1、晶体管中载流子的传输
以共基极为例:
WB
1、发射结的注入
2、基区的输运与 复合
Ine
Inc
3、集电极的收集
A、对发射区、基区、集电区分别建立扩散方程 B、利用波尔兹曼分布关系建立边界条件 C、解扩散方程得到各区少子分布函数 D、利用少子分布函数求出各区电流密度分布函数 E、由电流密度分布函数得到jne , jnc , jpe 。 F、求出发射效率和输运系数 G、得到共基极和共射极电流放大系数
20
以共基极连接为例,采用一维理想模型 发射结正向偏置,集电结反向偏置
IE IBIC
12
3.2.2、发射效率及基区输运系数 1、发射效率γ0
从发射结注入的电流有电子电流和空穴电流,即Ine和Ipe,但 只有正向注入的Ine中的大部分能达到集电区,构成IC的主要 部分,它显然对放大有贡献。因此从电流的传输和放大来看, Ine越大越好,Ipe越小越好。为了表示有效注入电流在总的发 射电流中所占的比例
发
发
集
集
射
发射区 射 基区 电 集电区
电
极
结
结
极
基极
npn晶体放大的机理是:发射区注入基区的电子绝大部分被集 电区收集成为集电极电流(发射结正偏,集电结)
1. 若基区宽度较大,Wb>Lnb,则注入到基区的电子(少子) 在到达集电区前就已经复合掉了,使大的正向电流只在左 边pn结中存在,右边pn结反偏,电流很小,两pn结互不相 干,没有放大作用。
精品jing
第三章双极晶体管
第 3 章 双极型晶体管
3.1 结构 3.2 放大原理 3.3 电流增益 3.4 特性参数 3.5 直流伏安特性 3.6 开关特性 3.7 小结
2
3.1 晶体管的基本结构及杂质分布
3.1.1晶体管的基本结构 由两个靠得很近的背靠背的PN结构成
c
b e
PNP
Ir
IE
IC
Ipe
ICBO
IB 10
各区少子分布
能带图
11
NPN晶体管的电流转换
Ine:发射结正向注入电子电流 Irb:基区复合电流
Icbo:集电结反向饱和电流
Ipe:发射结反向注入空穴电流 Inc:集电结电子电流
IE Ipe Ine ICInc Icbo IBIpeIrbIcbo
Ine Inc Irb
7
2. 发射结正偏时,发射区向基区注入电子的同时,基区也向
发射区注入空穴--由基极电流提供,但此电流不能形成集电 极电流,对放大作用没有贡献。故需要让发射区注入的电 子比基区注入的空穴多得多,即要求掺杂浓度的控制。
3.1.3、结构特点 (1)基区宽度远小于基区少子扩散长度
(WB << L) (2)发射区杂质浓度远大于基区杂质浓度
1.共基极直流电流放大系数
0IIC EIInE eIIn nceIIn C c 0
0
2.共射极直流电流放大系数 IC
0
IC IB
IC IE IC
IE 1 IC
0 10
IE
16
晶体管共基极电流没有电流放大作用,但可有电压 及功率放大作用。
共射极电路既可作为电流放大,也可作为电压放大 及功率放大。
WB
Ine
Inc
Ir
IE
IC
Ipe
ICBIBຫໍສະໝຸດ O21坐标:
发
发
集
集
射
发射区 射 基区 电 集电区
电
极
结
结
极
We
xe 0 Wb xc
Wc
基极
22
一、少数载流子分布
(1)基区“少子”电 子密度分布
nB(x)
0
WB
nb xnb0nb0eqVBEkT1shW sL bh n bx W b Ln nbb0eqVBCkT1shLxnb
17
晶体管放大三要素: ① Wb<<Lnb,实现不衰减的电流传输。 ②发射结为单边结,NE>>NB 。 ③发射结正向偏置,集电结反向偏置。
18
3.3 晶体管的直流电流增益
任务:导出α0、β0的定量关系式
0 0 0
0
0 10
0
1
1 I pe
I ne
0
1
I rb I ne
19
3.3.1 均匀基区晶体管的电流增益 均匀基区晶体管直流电流增益推导思路
25
3.3 晶体管的直流电流增益
二、电流密度分布函数
jnBxqD L n n B B nB 0
eqV bekT1ch W L Bn Bx eqV bckT1ch L x nB shW BL nB
jn E jn B0 q D L n n B B n B 0 e q V b ek T 1 c th W L n B B e q V b ck T 1 c s c h W L n B B
c
b e
NPN
3
3.1 晶体管的基本结构及杂质分布
3.1.2 BJT的杂质分布 1.锗合金管-均匀基区晶体管 特点: 三个区杂质均匀分布 2结为突变结
2.硅平面管-缓变基区晶体管 特点: E、B区杂质非均匀分布 2结为缓变结
4
5
6
3.1 晶体管的基本结构及杂质分布
“背靠背”的2个二极管有放大作用吗?
jn c jn B W B q D L n n B B n B 0 e q V b ek T 1 c s c h W L n B B e q V b ck T 1 c th W L n B B
26
23
3.3 晶体管的直流电流增益
一、少数载流子分布
(2)发射区少数载 流子分布
pE(x)
x
0
p Ex p E 0 p E 0e q V b ek T 1 e x L p E
24
3.3 晶体管的直流电流增益
一、少数载流子分布
(3)、集电区少数载 流子分布
pC(x)
0
x
p C x p C 0 p C 0e q V b ck T 1 e x L p C
13
0
Ine IE
Ine Ine Ipe
1 1Ipe
Ine
I pe I ne
,则 0
14
2、基区输运系数β* 为了说明传输过程中效率的高低
0IIn nce
IneIrb Ine
1Irb Ine
Irb Ine
,则0
3、集电区倍增因子 *
Ic 1
I nc
15
3.2.3、晶体管电流放大系数
8
3.2 晶体管的放大原理
NPN晶体管的几种组态
共基极 共射极 共集电极
0 0
IC
I I
E C
IB
共基e 极
N
共b 发射极
P
共收集极 N c
晶体管的共集电极接法
9
3.2.1、晶体管中载流子的传输
以共基极为例:
WB
1、发射结的注入
2、基区的输运与 复合
Ine
Inc
3、集电极的收集
A、对发射区、基区、集电区分别建立扩散方程 B、利用波尔兹曼分布关系建立边界条件 C、解扩散方程得到各区少子分布函数 D、利用少子分布函数求出各区电流密度分布函数 E、由电流密度分布函数得到jne , jnc , jpe 。 F、求出发射效率和输运系数 G、得到共基极和共射极电流放大系数
20
以共基极连接为例,采用一维理想模型 发射结正向偏置,集电结反向偏置
IE IBIC
12
3.2.2、发射效率及基区输运系数 1、发射效率γ0
从发射结注入的电流有电子电流和空穴电流,即Ine和Ipe,但 只有正向注入的Ine中的大部分能达到集电区,构成IC的主要 部分,它显然对放大有贡献。因此从电流的传输和放大来看, Ine越大越好,Ipe越小越好。为了表示有效注入电流在总的发 射电流中所占的比例
发
发
集
集
射
发射区 射 基区 电 集电区
电
极
结
结
极
基极
npn晶体放大的机理是:发射区注入基区的电子绝大部分被集 电区收集成为集电极电流(发射结正偏,集电结)
1. 若基区宽度较大,Wb>Lnb,则注入到基区的电子(少子) 在到达集电区前就已经复合掉了,使大的正向电流只在左 边pn结中存在,右边pn结反偏,电流很小,两pn结互不相 干,没有放大作用。
精品jing
第三章双极晶体管
第 3 章 双极型晶体管
3.1 结构 3.2 放大原理 3.3 电流增益 3.4 特性参数 3.5 直流伏安特性 3.6 开关特性 3.7 小结
2
3.1 晶体管的基本结构及杂质分布
3.1.1晶体管的基本结构 由两个靠得很近的背靠背的PN结构成
c
b e
PNP
Ir
IE
IC
Ipe
ICBO
IB 10
各区少子分布
能带图
11
NPN晶体管的电流转换
Ine:发射结正向注入电子电流 Irb:基区复合电流
Icbo:集电结反向饱和电流
Ipe:发射结反向注入空穴电流 Inc:集电结电子电流
IE Ipe Ine ICInc Icbo IBIpeIrbIcbo
Ine Inc Irb
7
2. 发射结正偏时,发射区向基区注入电子的同时,基区也向
发射区注入空穴--由基极电流提供,但此电流不能形成集电 极电流,对放大作用没有贡献。故需要让发射区注入的电 子比基区注入的空穴多得多,即要求掺杂浓度的控制。
3.1.3、结构特点 (1)基区宽度远小于基区少子扩散长度
(WB << L) (2)发射区杂质浓度远大于基区杂质浓度
1.共基极直流电流放大系数
0IIC EIInE eIIn nceIIn C c 0
0
2.共射极直流电流放大系数 IC
0
IC IB
IC IE IC
IE 1 IC
0 10
IE
16
晶体管共基极电流没有电流放大作用,但可有电压 及功率放大作用。
共射极电路既可作为电流放大,也可作为电压放大 及功率放大。
WB
Ine
Inc
Ir
IE
IC
Ipe
ICBIBຫໍສະໝຸດ O21坐标:
发
发
集
集
射
发射区 射 基区 电 集电区
电
极
结
结
极
We
xe 0 Wb xc
Wc
基极
22
一、少数载流子分布
(1)基区“少子”电 子密度分布
nB(x)
0
WB
nb xnb0nb0eqVBEkT1shW sL bh n bx W b Ln nbb0eqVBCkT1shLxnb
17
晶体管放大三要素: ① Wb<<Lnb,实现不衰减的电流传输。 ②发射结为单边结,NE>>NB 。 ③发射结正向偏置,集电结反向偏置。
18
3.3 晶体管的直流电流增益
任务:导出α0、β0的定量关系式
0 0 0
0
0 10
0
1
1 I pe
I ne
0
1
I rb I ne
19
3.3.1 均匀基区晶体管的电流增益 均匀基区晶体管直流电流增益推导思路
25
3.3 晶体管的直流电流增益
二、电流密度分布函数
jnBxqD L n n B B nB 0
eqV bekT1ch W L Bn Bx eqV bckT1ch L x nB shW BL nB
jn E jn B0 q D L n n B B n B 0 e q V b ek T 1 c th W L n B B e q V b ck T 1 c s c h W L n B B
c
b e
NPN
3
3.1 晶体管的基本结构及杂质分布
3.1.2 BJT的杂质分布 1.锗合金管-均匀基区晶体管 特点: 三个区杂质均匀分布 2结为突变结
2.硅平面管-缓变基区晶体管 特点: E、B区杂质非均匀分布 2结为缓变结
4
5
6
3.1 晶体管的基本结构及杂质分布
“背靠背”的2个二极管有放大作用吗?
jn c jn B W B q D L n n B B n B 0 e q V b ek T 1 c s c h W L n B B e q V b ck T 1 c th W L n B B
26
23
3.3 晶体管的直流电流增益
一、少数载流子分布
(2)发射区少数载 流子分布
pE(x)
x
0
p Ex p E 0 p E 0e q V b ek T 1 e x L p E
24
3.3 晶体管的直流电流增益
一、少数载流子分布
(3)、集电区少数载 流子分布
pC(x)
0
x
p C x p C 0 p C 0e q V b ck T 1 e x L p C
13
0
Ine IE
Ine Ine Ipe
1 1Ipe
Ine
I pe I ne
,则 0
14
2、基区输运系数β* 为了说明传输过程中效率的高低
0IIn nce
IneIrb Ine
1Irb Ine
Irb Ine
,则0
3、集电区倍增因子 *
Ic 1
I nc
15
3.2.3、晶体管电流放大系数