生活中的博弈论例子
生活中的博弈

生活中的博弈在我看来,日常生活中的一切,均可从博弈论得到解释。
因为生活的本质,就是在进行一场游戏。
例子一:夫妻吵架就是一场博弈。
夫妻双方都有两种策略,强硬或软弱。
博弈的可能结果有四种组合:夫强硬妻强硬、夫强硬妻软弱、夫软弱妻强硬、夫软弱妻软弱。
丈夫强硬软弱强硬Array妻子软弱由上表我们可以看出,夫软弱妻软弱是婚姻最稳定的一种,因为互相都不愿让对方受到伤害或感到难过,常常情愿自己让步。
夫强硬妻强硬是婚姻最不稳定的一种,大多数结局是负气离婚。
夫强硬妻软弱和妻强硬夫软弱是最常见的一种,许多夫妻吵架都是这样,最后终归是一方让步,不是丈夫撤退到院子里点根烟,就是妻子避让到卧室里嚎啕大哭。
例子二:单人博弈。
某天早上起来,我们发现自己咳嗽了,游戏开始了。
在这场博弈中并非只有自己一个人,还有一个叫做“自然”的“人”,我们在同它进行游戏。
如果把“自然”理解为无所不能的上帝,上帝现在有两种策略,让我们生病或不生病。
当我们咳嗽了,我们就不得不根据自己咳嗽的信息判断上帝的策略,然后采取对应的策略。
上帝采取让我们生病的策略,我们就要采取吃药的策略来对付;上帝采取让我们不生病的策略,我们就采取不予理睬的策略。
看,这不就是一场我们和上帝进行博弈的游戏吗?不但生活中许多事情可以看作是一场博弈,整个人生也是一场博弈。
这个博弈中的“局中人”一个是我们自己,另一个叫做“命运”。
我们和命运之间在展开一场以一生时间为限的游戏。
谁输谁赢,取决于我们的策略和行动。
贝多芬说“我要扼住命运的咽喉”,他成功了。
人生是一场游戏——在这个游戏中,我们以一生作注,和命运进行着一场豪赌,要么赢得痛快淋漓,要么输得一败涂地。
我觉得,不论最后的结果如何,人都应该争取。
很多时候我们也需要一种胆识,敢于面对命运的胆识。
我们有理由相信,自己会成为游戏的胜利者。
生活中的博弈论例子

生活中的博弈论例子
博弈无时不在,无处不在,日常生活中的一切,均可从博弈得到解释,大到美日,小到今天早上你在纠结是否要睡多五分钟。
我举以下几个例子来体现在生活中的博弈论。
例如:两个人走在同一条路上相遇,可能有一方赶时间,干脆不让路,继续走,心想对方应该会让路,另一方遇到此情况的默认方式是让路,最终两人顺利通过。
也可能双方都不让路或同时让路,最后都不得不再进行一次选择,选择让还是不让,无疑最终都浪费了双方的时间。
例如:在上下班交通高峰中,大家都着急上班为了不迟到,大家都为了早点回家早点休息,就有选择在正常行驶中换道超车的人,当大家都不愿意自己吃亏,于是乎会有越来越多的人超车,从而造成交通拥堵,最后的局面是每个人都要等,每个人都要延迟自己在路上的时间,大家都吃亏。
例如:在篮球比赛中的最后十秒钟,A队落后B队三分,A队的教练有两个选择:快速打进更有把握的两分,犯规,进行下一回合的选择;通过不断的绕掩护和跑空位,投难度更高的三分绝平比赛进入加时。
同样的,B队的教练也有两个选择:严防外线,不让对方有轻易的三分出手机会,让对方进两分,通过罚球维持分差把时间继续缩小;犯规,通过开球进一步缩小比赛时间,最好是耗尽时间。
最终的结果我们都不敢绝对有把握相信哪一方会赢,但在期间的精彩博弈值得我们回味。
得与失是我们日常生活中每天都要面对的博弈,什么事该做,什么事不该做,什么利益必须争取,什么利益敬而远之,这些都需要我们深思熟虑后做出正确的选择。
智猪博弈生活中的例子

智猪博弈生活中的例子
1. 在职场上不就经常有智猪博弈吗?就像有些老员工仗着资历深,把麻烦的工作都推给新员工,自己坐享其成,这多像大猪等着小猪去按按钮啊!
2. 想想看在家庭里,有时候是不是也会有这种情况?比如父母总是让孩子去跑腿干各种小事,自己却在那休息,这难道不是智猪博弈的体现吗?
3. 在学校里呀,小组作业的时候,是不是总有那么些人不怎么做事,却能跟着拿好成绩,这不就像智猪博弈里偷懒的大猪吗?比如那个总是找借口不做事的小明!
4. 乘坐公共交通的时候,有的人就不愿主动往后走,都堵在车门口,等着别人动,这不也是智猪博弈吗?大家都不想当那个费力走向车厢后面的“小猪”啊!
5. 购物排队的时候,偶尔就会有人插队,他们就是想不付出等待的时间成本就获得好处,这和智猪博弈里想不劳而获的大猪有啥区别?就像那次遇到的那个插队的人,真让人恼火!
6. 朋友之间也会有啊,一起出去玩,总有人不想规划路线,等着别人安排好一切,自己享受现成的,这不是另一种形式的智猪博弈吗?就像那次和朋友们出去,老张就是啥都不管,只管跟着玩!
总之,生活中智猪博弈的例子太多啦,我们得学会应对,不能总当那个吃亏的“小猪”呀!。
博弈论的例子

博弈论的例子
1. 下棋不就是典型的博弈论例子嘛!就像你和朋友下棋,每一步都要思考怎么才能赢,这不就是在算计和对方的较量吗?
2. 还有在拍卖会上,大家互相竞价,这简直就是一场激烈的博弈啊!每个人都在权衡自己的出价,试图用最合适的价格得到想要的东西,难道不是吗?
3. 股票市场不也一样嘛!投资者们都在根据各种信息做出决策,和其他投资者进行无形的博弈,哎呀呀,那可真是惊心动魄呢!
4. 选举不也是一种博弈呀!候选人都在争取选民的支持,各种策略手段都用上了,这竞争可太激烈了!
5. 谈恋爱有时候也像博弈论呢!双方都在试探彼此的心意,决定自己要付出多少,这可不是一场微妙的较量嘛!
6. 商业谈判更是博弈论的舞台呀!双方为了达成对自己有利的协议,不断讨价还价,就像一场没有硝烟的战争,厉害吧!
我觉得博弈论在我们生活中无处不在,它让我们更清楚地看到各种互动中的策略和竞争,真的很有意思呢!。
现实博弈的案例

现实博弈的案例哎呀,简单来说啊,就是在咱们日常生活里发生的那些互相较量、互相算计的事儿。
就像咱们在学校里抢那为数不多的奖学金名额,这就是一种现实博弈啊。
1. 奖学金争夺的博弈咱们都知道啊,奖学金是个好东西,又能得钱又能写在简历上。
每个想拿奖学金的同学啊,那可都是暗暗较着劲呢。
有的同学就会拼命学习,每天泡在图书馆,把课余时间都用来复习、预习。
这时候啊,他就像是在博弈里选择了最努力的那个策略。
可还有些同学呢,他们不仅学习,还会积极参加各种活动,想着多拿点加分项。
这就像是多了几个筹码,在这场博弈里,大家都想让自己的优势最大化。
你看啊,这就是现实生活中的博弈,每个人都根据自己的情况做出选择,希望最后能赢得那笔奖学金。
2. 找工作时候的博弈等咱们快毕业的时候,找工作又是一场大博弈。
公司想要找到最适合的员工,给最少的工资,而咱们求职者呢,想找个工资高、福利好、还轻松的工作。
这就像是两个对手在互相试探。
比如说啊,有的公司会在招聘信息里写得特别好,把自己包装得跟朵花似的,吸引咱们去面试。
咱们求职者呢,也会在简历上把自己的优点放大,甚至还会提前准备好各种应对面试官问题的答案。
面试的时候啊,那就是博弈的高潮。
面试官会各种提问,想要找出咱们的弱点,咱们就得巧妙应对,把自己的实力展现出来,还不能显得太自负。
这整个过程啊,就是一场精彩的现实博弈。
3. 宿舍里的小博弈再说说宿舍里的事儿吧。
宿舍就那么大地方,大家都想有个好的生活环境。
有的人爱干净,想让宿舍一尘不染,可有的人就比较邋遢。
这时候啊,爱干净的同学就会想办法让邋遢的同学也注意卫生,可能会用比较委婉的方式,像给邋遢的同学买个小垃圾桶放在床边,或者是经常提醒大家一起打扫卫生。
邋遢的同学呢,可能一开始不太在意,但在大家的影响下,也会慢慢改变。
这也是一种博弈啊,大家都在为了自己想要的宿舍环境而努力。
4. 商场里的博弈去商场买东西也是。
咱们消费者想花最少的钱买到最好的东西,商家呢,想赚最多的钱。
生活中的博弈论案例

生活中的博弈论案例一、超市大减价的“抢购博弈”咱就说超市搞大减价的时候吧。
你和其他一群顾客就像是博弈的参与者。
比如说,超市限量供应一种超便宜的优质大米,每个人都想买到。
你要是去晚了,就没了。
这时候就有几种策略。
从你的角度看呢,如果大多数人都觉得早上超市一开门就去抢购太疯狂,那你选择早去,就能抢到大米。
可要是大家都这么想,都早去,那你就得面临激烈的竞争,可能得排老长的队,还不一定能抢到。
反过来,如果你觉得晚一点去,避开高峰,也许其他人都把大米抢光了,你就啥也得不到。
但是万一其他人也这么想,都没早去,那你晚去就轻松买到了。
这里面就存在一种博弈。
每个顾客都在猜测其他顾客的行为,然后来决定自己到底是早去还是晚去。
就像一场没有硝烟的战争,大家都在权衡利弊,看怎么才能让自己得到那袋便宜的大米。
二、宿舍里的卫生值日博弈。
宿舍的卫生值日也是个典型例子。
一个宿舍有几个人,比如说四个人吧。
每个人都希望宿舍干净整洁,但是又不想自己太辛苦打扫卫生。
假如没有明确的规则或者监督机制。
就有这么几种情况。
一种是有个人特别爱干净,每次不管轮到谁值日,他看宿舍脏了就忍不住打扫。
那其他三个人就会发现,自己不打扫也没关系啊,反正有人会弄干净。
这时候那三个人就选择了“偷懒”这个策略,而爱干净的那个人就是“积极打扫”策略。
可是如果这个爱干净的人某天也想通了,不想总是自己吃亏,那他也不打扫了。
这时候宿舍就会变得越来越脏,直到大家都受不了了。
还有一种情况就是大家都互相观望。
你想啊,甲在想,乙怎么还不打扫,乙在等丙先动手,丙又觉得甲应该先开始,结果谁都不打扫,宿舍卫生就成了大问题。
这就是宿舍卫生值日里的博弈,每个人都在算计着自己的付出和收益,是做个勤劳的舍友还是偷懒的舍友呢。
三、情侣之间的“看电影博弈”情侣嘛,周末想去看电影。
男的可能想看动作大片,充满爆炸和追逐的那种,觉得特别刺激。
女的呢,可能更想看浪漫的爱情片,能让自己感动得稀里哗啦的。
这时候就开始博弈了。
十大博弈论经典案例

十大博弈论经典案例1.《囚徒困境》。
囚徒困境是博弈论中最著名的案例之一。
在这个案例中,两名囚犯被捕,但检察官没有足够的证据来判定他们犯罪。
如果两名囚犯都沉默,他们将被判处较轻的刑罚;如果其中一人选择交代,而另一人保持沉默,那么交代的囚犯将获得豁免,而另一人将被判处重刑;如果两人都交代,他们将被判处较重的刑罚。
在这种情况下,每个囚犯都面临着一个困境,无论对方选择什么,自己都会受到损失。
2.《合作博弈》。
合作博弈是指参与者之间可以进行合作的博弈。
在合作博弈中,参与者可以通过合作来获得更好的结果。
例如,两家公司可以通过合作来共同开发新产品,从而获得更大的利润。
合作博弈强调参与者之间的合作和协调,以实现共同的利益。
3.《竞争博弈》。
竞争博弈是指参与者之间存在竞争关系的博弈。
在竞争博弈中,参与者的利益往往是相互对立的。
例如,两家公司在市场上竞争销售同一种产品,它们的利润往往是相互竞争的。
竞争博弈强调参与者之间的竞争和对抗,以争取最大的利益。
4.《博弈的策略》。
在博弈中,参与者可以选择不同的策略来影响结果。
策略是参与者在博弈中可以采取的行动。
不同的策略选择会导致不同的结果,而博弈论就是研究参与者如何选择最优策略以达到最大利益的学科。
5.《信息不对称博弈》。
信息不对称博弈是指参与者在博弈中拥有不同的信息。
在这种情况下,有一方可能掌握更多的信息,从而在博弈中占据优势。
信息不对称博弈强调信息的重要性,以及如何在信息不对称的情况下做出最优决策。
6.《博弈的均衡》。
博弈的均衡是指在博弈中参与者达到一种稳定状态的结果。
在这种状态下,参与者不会再改变自己的策略,因为任何单方面的改变都不会给自己带来更好的结果。
博弈的均衡是博弈论中非常重要的概念,它可以帮助我们预测参与者的行为和结果。
7.《博弈的合作与对抗》。
在博弈中,合作和对抗是两种常见的行为方式。
合作可以带来共同的利益,而对抗则是为了争取最大的利益。
在实际的博弈中,参与者往往需要权衡合作和对抗之间的关系,以达到最优的结果。
智猪博弈在生活中的例子

智猪博弈在生活中的例子以下是 7 条关于智猪博弈在生活中的例子:1. 在职场中,老员工就像是大猪,啥活都抢着干,努力为公司创造价值,而新员工可能就像小猪,偶尔偷偷懒,享受着大猪的成果,这难道不是一种智猪博弈吗?比如有个项目,经验丰富的老张忙前忙后,新人小李就在旁边打打下手,最后成果出来了,两人都有份。
2. 在家庭里也有智猪博弈呀!父母就好比大猪,总是操心家里的各种事情,而孩子有时候就像小猪,坐享其成。
就说吃饭的时候吧,妈妈在厨房忙得热火朝天做饭菜,爸爸在摆碗筷,孩子却在那等着吃现成的,这不是妥妥的智猪博弈嘛!3. 想想看学校里,那些积极回答问题的学霸是不是像大猪呀,努力表现自己,而有些不太爱表现的同学就像小猪,跟着享受良好的学习氛围。
像课堂上老师提问,学霸立马举手回答,其他同学就静静听着,这多像智猪博弈呀!4. 逛街买东西的时候也有哇!你看那些会砍价的人就像大猪,努力争取到最优惠的价格,而旁边不太会砍价的人不就像小猪嘛,等着别人砍下来的实惠。
比如在小店里,一个厉害的顾客把价格砍下来了,旁边其他顾客也同样享受了这个低价,这不就是智猪博弈嘛!5. 在社交场合中也能看到智猪博弈呢!有些人特别会活跃气氛,像大猪一样带动全场,而有些人就只是跟随享受欢乐的氛围,这不就是智猪博弈嘛!例如聚会上,有的人一直在讲笑话、组织游戏,其他人就开心地参与,多形象呀!6. 投资理财中不也有吗?那些专业的投资者使劲研究市场,像大猪一样努力找机会,而普通投资者可能就跟着喝点汤。
就像是在股市里,厉害的投资者选对了股票大涨,其他跟风的小投资者也能有点收益,这不是明显的智猪博弈吗?7. 甚至在健身的时候也存在智猪博弈哟!那个总是带着大家一起锻炼,督促大家的人就像大猪,其他人就像小猪等着被带动。
比如健身房里有个健身达人,总是热情地教大家动作,其他人跟着学,这不就是智猪博弈嘛!我的观点结论就是:智猪博弈在生活中真是无处不在啊,我们要善于发现和利用,让自己处在更有利的位置呀!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生活中的博弈论有那些例子那讲工作上的事假如你做的策划被上司偷了那你是要向更高级的领导告状还是忍受这也算一个博弈论问题你要是告状,也许能够伸冤,但也会若到上司他可能会给你下绊子但不上诉他也许会再偷,你的工作就白废了还有物价方面假如几个店铺联合起来自然能够把东西卖的比较贵但只要其中一个降价其他店的客人就会全跑到那家去那另外几家也会被迫降价店铺联合本来是最好的赚钱方法但店铺间一般是敌对关系为防备有人订低价,引走客人所有的店铺都会尽可能低价其实我们学校门口的网吧刚上演了一出这个好戏真是有感触啊!!!!!弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一样,都是从复杂的现象中抽象出基本的元素,对这些元素构成的数学模型进行分析,而后逐步引入对其形势产影响的其他因素,从而分析其结果。
基于不同抽象水平,形成三种博弈表述方式,标准型、扩展型和特征函数型利用这三种表述形式,可以研究形形色色的问题。
因此,它被称为“社会科学的数学”从理论上讲,博弈论是研究理性的行动者相互作用的形式理论,而实际上正深入到经济学、政治学、社会学等等,被各门社会科学所应用。
1.博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博奕论是个非常重要的理论概念。
什么是博弈论?古语有云,世事如棋。
生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。
博弈论是研究棋手们“出棋” 着数中理性化、逻辑化的部分,并将其系统化为一门科学。
换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。
事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。
数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、体系研究其规律及变化。
这可不是件容易的事情,以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法…面对如许重重迷雾,博弈论怎样着手分析解决问题,怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢?现代博弈理论由匈牙利大数学家冯·诺伊曼于20世纪20年代开始创立,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《博弈论与经济行为》,标志着现代系统博弈理论的初步形成。
对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈--好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。
在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解” 或“平衡” ,也就是对参与双方来说都最“合理” 、最优的具体策略?怎样才是“合理” ?应用传统决定论中的“最小最大” 准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对於每一个二人零和博弈,都能够找到一个“最小最大解” 。
通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。
当然,其隐含的意义在於,这套最优策略并不依赖于对手在博弈中的操作。
用通俗的话说,这个著名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望,做最坏的打算” 。
2.在经济学中,“智猪博弈”(Pigs’payoffs)是一个著名博弈论例子。
这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。
猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。
对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。
反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。
规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。
如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗?试试看。
改变方案一:减量方案。
投食仅原来的一半分量。
结果是小猪大猪都不去踩踏板了。
小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。
谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。
投食为原来的一倍分量。
结果是小猪、大猪都会去踩踏板。
谁想吃,谁就会去踩踏板。
反正对方不会一次把食物吃完。
小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。
改变方案三:减量加移位方案。
投食仅原来的一半分量,但同时将投食口移到踏板附近。
结果呢,小猪和大猪都在拼命地抢着踩踏板。
等待者不得食,而多劳者多得。
每次的收获刚好消费完。
对于游戏设计者,这是一个最好的方案。
成本不高,但收获最大。
原版的“智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。
但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。
为使资源最有效配置,规则的设计者是不愿看见有人搭便车的,政府如此,公司的老板也是如此。
而能否完全杜绝“搭便车”现象,就要看游戏规则的核心指标设置是否合适了。
比如,公司的激励制度设计,奖励力度太大,又是持股,又是期权,公司职员个个都成了百万富翁,成本高不说,员工的积极性并不一定很高。
这相当于“智猪博弈”增量方案所描述的情形。
但是如果奖励力度不大,而且见者有份(不劳动的“小猪”也有),一度十分努力的大猪也不会有动力了----就象“智猪博弈”减量方案一所描述的情形。
最好的激励机制设计就象改变方案三----减量加移位的办法,奖励并非人人有份,而是直接针对个人(如业务按比例提成),既节约了成本(对公司而言),又消除了“搭便车”现象,能实现有效的激励。
许多人并未读过“智猪博弈”的故事,但是却在自觉地使用小猪的策略。
股市上等待庄家抬轿的散户;等待产业市场中出现具有赢利能力新产品、继而大举仿制牟取暴利的游资;公司里不创造效益但分享成果的人,等等。
因此,对于制订各种经济管理的游戏规则的人,必须深谙“智猪博弈”指标改变的个中道理。
3.背景知识:纳什博弈论的原理与应用1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。
他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。
从而揭示了博弈均衡与经济均衡的内在联系。
纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。
然而,纳什天才的发现却遭到冯·诺依曼的断然否定,在此之前他还受到爱因斯坦的冷遇。
但是骨子里挑战权威、藐视权威的本性,使纳什坚持了自己的观点,终成一代大师。
要不是30多年的严重精神病折磨,恐怕他早已站在诺贝尔奖的领奖台上了,而且也绝不会与其他人分享这一殊荣。
纳什是一个非常天才的数学家,他的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。
然而,他的天才发现———非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。
1948年纳什到普林斯顿大学读数学系的博士。
那一年他还不到20岁。
当时普林斯顿可谓人杰地灵,大师如云。
爱因斯坦、冯·诺依曼、列夫谢茨(数学系主任)、阿尔伯特·塔克、阿伦佐·切奇、哈罗德·库恩、诺尔曼·斯蒂恩罗德、埃尔夫·福克斯……等全都在这里。
博弈论主要是由冯·诺依曼(1903—1957)创所立的。
他是一位出生于匈牙利的天才的数学家。
他不仅创立了经济博弈论,而且发明了计算机。
早在20世纪初,塞梅鲁(Zermelo)、鲍罗(Borel)和冯·诺伊曼已经开始研究博弈的准确的数学表达,直到1939年,冯·诺依曼遇到经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern),并与其合作才使博弈论进入经济学的广阔领域。
1944年他与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。
尽管对具有博弈性质的问题的研究可以追溯到19世纪甚至更早。
例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。
冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。
合作型博弈在20世纪50年代达到了巅峰期。
然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。
正是在这个时候,非合作博弈———“纳什均衡”应运而生了,它标志着博弈论的新时代的开始!纳什不是一个按部就班的学生,他经常旷课。
据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。
斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。
于是,又走人了。
然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。
纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。
1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。