历年中考数学图形的变换题

合集下载

数学中考图形变换题选择题

数学中考图形变换题选择题

数学中考图形变换题选择题1. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体2. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换3. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体4. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换5. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体6. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换7. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体8. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换9. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体10. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换11. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体12. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换13. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体14. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换15. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体C. 圆柱体D. 圆锥体16. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换17. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体18. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换19. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体20. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换21. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体22. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换23. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体24. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换25. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体26. 下列变换中,属于轴对称变换的是()A. 平移变换C. 反射变换D. 放大变换27. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体28. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换29. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体30. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换31. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体32. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换33. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体34. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换35. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体36. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换37. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体38. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换39. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体40. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换41. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体42. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换43. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体44. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换45. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体46. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换47. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体48. 下列变换中,属于轴对称变换的是()A. 平移变换C. 反射变换D. 放大变换49. 下列图形中,经过变换后能够得到正方体的图形是()A. 球体B. 长方体C. 圆柱体D. 圆锥体50. 下列变换中,属于轴对称变换的是()A. 平移变换B. 旋转变换C. 反射变换D. 放大变换。

江苏省苏州市2001-2012年中考数学试题分类解析专题4:图形的变换

江苏省苏州市2001-2012年中考数学试题分类解析专题4:图形的变换

2001-2012年江苏苏州中考数学试题分类解析汇编(12专题)专题4:图形的变换锦元数学工作室 编辑一、选择题1. (江苏省2009年3分)如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是【 】A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格 【答案】D 。

【考点】平移的性质。

【分析】根据图形,对比图①与图②中位置关系可知:平移是先向下平移3格,再向右平移2格。

故选D 。

2.(江苏省苏州市2005年3分)下图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是【 】A .︒90B .︒60C .︒45D .︒30 【答案】C 。

【考点】旋转的性质。

【分析】根据旋转的性质,观察图形,中心角是由8个度数相等的角组成,结合周角是360°求得每次旋转的度数:∵中心角是由8个度数相等的角组成,∴每次旋转的度数可以为360°÷8=45°。

故选C。

3. (江苏省苏州市2006年3分)下列图形中,旋转600后可以和原图形重合的是【】A.正六边形B.正五边形C.正方形D.正三角形【答案】A。

【考点】旋转对称图形。

【分析】求出各图的中心角,度数为60°的即为正确答案:A、正六边形旋转的最小角度是3606︒=60°;B、正五边形的旋转最小角是3605︒=72°;C、正方形的旋转最小角是3604︒=90°;D、正三角形的旋转最小角是3603︒=120°。

故选A。

4. (江苏省苏州市2006年3分)对左下方的几何体变换位置或视角,则可以得到的几何体是【】A. B. C. D. 【答案】B。

【考点】几何变换的类型。

【分析】我们在观察物体时,无论什么角的观察物体,物体的形状都不会发生改变,本题中,只有B的几何体和题目中的几何体一致。

专题17图形的变换(共50题)-2020年中考数学真题分项汇编【全国通用】

专题17图形的变换(共50题)-2020年中考数学真题分项汇编【全国通用】

2020年中考数学真题分项汇编(全国通用)专题17图形的变换(共50题)一.选择题(共20小题)1.(2020•广东)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)2.(2020•乐山)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B.C.D.3.(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A.B.C.D.4.(2020•菏泽)在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为()A.(0,﹣2)B.(0,2)C.(﹣6,2)D.(﹣6,﹣2)5.(2020•青岛)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE =5,BF=3,则AO的长为()A .√5B .32√5C .2√5D .4√56.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .67.(2020•广东)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )A .1B .√2C .√3D .28.(2020•内江)如图,矩形ABCD 中,BD 为对角线,将矩形ABCD 沿BE 、BF 所在直线折叠,使点A 落在BD 上的点M 处,点C 落在BD 上的点N 处,连结EF .已知AB =3,BC =4,则EF 的长为( )A .3B .5C .5√136D .√139.(2020•哈尔滨)如图,在Rt △ABC 中,∠BAC =90°,∠B =50°,AD ⊥BC ,垂足为D ,△ADB 与△ADB '关于直线AD 对称,点B 的对称点是点B ',则∠CAB '的度数为( )A .10°B .20°C .30°D .40°10.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A .12√3B .13√3C .14√3D .15√311.(2020•孝感)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( )A .54B .154 C .4 D .92 12.(2020•河北)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉洪的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是( )A .嘉淇推理严谨,不必补充B .应补充:且AB =CDC .应补充:且AB ∥CDD .应补充:且OA =OC13.(2020•天津)如图,在△ABC 中,∠ACB =90°,将△ABC 绕点C 顺时针旋转得到△DEC ,使点B 的对应点E 恰好落在边AC 上,点A 的对应点为D ,延长DE 交AB 于点F ,则下列结论一定正确的是( )A .AC =DEB .BC =EF C .∠AEF =∠D D .AB ⊥DF14.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A .(2,3)B .(﹣3,2)C .(﹣3,﹣2)D .(﹣2,﹣3)15.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .α2B .23αC .αD .180°﹣α16.(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是( )A .B .C.D.17.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)18.(2020•齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°19.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A .(−√3,3)B .(﹣3,√3)C .(−√3,2+√3)D .(﹣1,2+√3)20.(2020•苏州)如图,在△ABC 中,∠BAC =108°,将△ABC 绕点A 按逆时针方向旋转得到△AB 'C '.若点B '恰好落在BC 边上,且AB '=CB ',则∠C '的度数为( )A .18°B .20°C .24°D .28°二.填空题(共23小题)21.(2020•天水)如图,在边长为6的正方形ABCD 内作∠EAF =45°,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将△ADF 绕点A 顺时针旋转90°得到△ABG .若DF =3,则BE 的长为 .22.(2020•衡阳)如图,在平面直角坐标系中,点P 1的坐标为(√22,√22),将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;又将线段OP 2绕点O 按顺时针方向旋转45°,长度伸长为OP 2的2倍,得到线段OP 3;如此下去,得到线段OP 4,OP 5,…,OP n (n 为正整数),则点P 2020的坐标是 .23.(2020•滨州)如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2√3、√2、4,则正方形ABCD的面积为.24.(2020•泰安)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为.25.(2020•台州)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD 的面积为.(用含a,b的代数式表示)26.(2020•金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.27.(2020•武威)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为.28.(2020•襄阳)如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若BF•AD=15,tan∠BNF=√52,则矩形ABCD的面积为.29.(2020•牡丹江)如图,在Rt△ABC中,∠C=90°,点E在AC边上.将∠A沿直线BE翻折,点A落在点A'处,连接A'B,交AC于点F.若A'E⊥AE,cos A=45,则A′FBF=.30.(2020•武汉)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.31.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为.32.(2020•黑龙江)如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC、GC.求EC+GC的最小值为.33.(2020•凉山州)如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将△EBF沿EF对折后,点B落在点P处,则点P到点D的最短距离为.34.(2020•黑龙江)在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=35a,连接AE,将△ABE沿AE折叠.若点B的对应点B′落在矩形ABCD的边上,则折痕的长为.35.(2020•达州)如图,点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,则a+b=.36.(2020•德州)如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是 .37.(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究:(1)∠P AQ 的大小为 °;(2)当四边形APCD 是平行四边形时,ABQR 的值为 .38.(2020•甘孜州)如图,有一张长方形纸片ABCD ,AB =8cm ,BC =10cm ,点E 为CD 上一点,将纸片沿AE 折叠,BC 的对应边B ′C ′恰好经过点D ,则线段DE 的长为 cm .39.(2020•聊城)如图,在直角坐标系中,点A (1,1),B (3,3)是第一象限角平分线上的两点,点C 的纵坐标为1,且CA =CB ,在y 轴上取一点D ,连接AC ,BC ,AD ,BD ,使得四边形ACBD 的周长最小,这个最小周长的值为 .40.(2020•黑龙江)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.41.(2020•常德)如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为.42.(2020•铜仁市)如图,在矩形ABCD中,AD=4,将∠A向内翻折,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=.43.(2020•杭州)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.三.解答题(共7小题)44.(2020•绥化)如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O均为格点(每个小正方形的顶点叫做格点).(1)作点A关于点O的对称点A1;(2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线段A1B1;(3)连接AB1,求出四边形ABA1B1的面积.45.(2020•黔西南州)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.46.(2020•达州)如图,△ABC中,BC=2AB,D、E分别是边BC、AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=3,AD+BF=8,求四边形ABDF的面积S.47.(2020•黑龙江)如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)BE与MN的数量关系是.(2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.48.(2020•武威)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.49.(2020•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√22AD;(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG 与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使P A+PB+PC的值最小.当P A+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.50.(2020•湖州)已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=12AC;(2)变式求异如图2,若∠C=90°,m=6√2,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.。

2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解

2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解

2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(试题部分)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A .B .C .D .7.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D .10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A .B .C .D .12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A .B .C .D .13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .24.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x =>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .25.(2024·黑龙江绥化·中考真题)如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠= .26.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为 .27.(2024·内蒙古呼伦贝尔·中考真题)如图,点()0,2A −,()1,0B ,将线段AB 平移得到线段DC ,若90ABC ∠=︒,2BC AB =,则点D 的坐标是 .28.(2024·浙江·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与A B ''关于过点O 的直线l 对称,点B 的对应点B '在线段OC 上,A B ''交CD 于点E ,则B CE '与四边形OB ED '的面积比为29.(2024·江苏苏州·中考真题)如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .三、解答题30.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________. 31.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm 的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)32.(2024·吉林长春·中考真题)图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作四边形ABCD ,使其是轴对称图形且点C 、D 均在格点上.(1)在图①中,四边形ABCD 面积为2;(2)在图②中,四边形ABCD 面积为3;(3)在图③中,四边形ABCD 面积为4.33.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A −,()2,3B −,()5,2C −.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π) 34.(2024·吉林·中考真题)图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.35.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围; ②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可). 36.(2024·北京·中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于O 的弦AB 和不在直线AB 上的点C ,给出如下定义:若点C 关于直线AB 的对称点C '在O 上或其内部,且ACB α∠=,则称点C 是弦AB 的“α可及点”.(1)如图,点()0,1A ,()1,0B .①在点()12,0C ,()21,2C ,31,02C ⎛⎫ ⎪⎝⎭中,点___________是弦AB 的“α可及点”,其中α=____________︒;②若点D 是弦AB 的“90︒可及点”,则点D 的横坐标的最大值为__________;(2)已知P 是直线y =且存在O 的弦MN ,使得点P 是弦MN 的“60︒可及点”.记点P 的横坐标为t ,直接写出t 的取值范围.2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(答案详解)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查轴对称图形,掌握轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形是解题的关键.【详解】解:A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选C.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】本题考查了中心对称图形与轴对称图形的概念,正确掌握中心对称图形与轴对称图形定义是解题关键.中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重台,这样的图形叫做轴对称图形.根据定义依次对各个选项进行判断即可.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.【答案】A【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A.该标点符号是轴对称图形,故此选项符合题意;B.该标点符号不是轴对称图形,故此选项不符合题意;C.该标点符号不是轴对称图形,故此选项不符合题意;D.该标点符号不是轴对称图形,故此选项不符合题意.故选:A.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm【答案】A【分析】本题考查平移的性质,利用平移的性质将阴影部分的周长转化为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,由此解答即可.【详解】解:由图可得:阴影部分的周长为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,∴阴影图形的周长是:480280220440cm⨯+⨯−⨯=,故选:A.6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A.B.C.D.【答案】A【分析】本题主要考查了轴对称图形,根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.【详解】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C. 不是轴对称图形,故此选项不符合题意;D. 不是轴对称图形,故此选项不符合题意;故选:A.7.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键. 根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形【答案】A【分析】本题考查了命题与定理的知识,多边形外角性质,菱形性质及轴对称图形的特点,解题的关键是掌握这些基础知识点.【详解】解:A 、两点之间,线段最短,正确,是真命题,符合题意;B 、菱形的对角线互相垂直,不一定相等,选项错误,是假命题,不符合题意;C 、正五边形的外角和为360︒,选项错误,是假命题,不符合题意;D 、直角三角形不一定是轴对称图形,只有等腰直角三角形是轴对称图形,选项错误,是假命题,不符合题意;故选:A .9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D . 【答案】B【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A.不是轴对称图形,不符合题意;B.是轴对称图形,符合题意;C.不是轴对称图形,不符合题意;D.不是轴对称图形,不符合题意;故选:B.10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的定义是解题的关键.【详解】解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形,也是中心对称图形,故符合题意;C、不是轴对称图形,也不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B.11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A.B.C.D.【答案】B【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A.图案不成轴对称,故不符合题意;B.图案成轴对称,故符合题意;C.图案不成轴对称,故不符合题意;D.图案不成轴对称,故不符合题意;故你:B.13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B 、既是轴对称图形又是中心对称图形,故B 选项符合题意;C 、是轴对称图形,不是中心对称图形,故C 选项不合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:B .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D . 【答案】C【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−【答案】A【分析】本题考查了一次函数与坐标轴的交点坐标,点的对称,属于简单题,求交点坐标是解题关键.16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒ 由对称的性质得OAB ODC ≌,由全等三角形的性质即可判断;OH ,可得 GOD ∠=,即可判断;掌握轴对称的性质是解题的关键.A.OE OF ⊥,90︒,点的中点,OAB 与ODC 都是等腰三角形,由对称得OAB ODC ≌,F 分别是底边AB ,,结论正确,故不符合题意;O 作GM OH ⊥,90GOD DOH ∴∠+∠=︒,90BOH DOH ∠+∠=︒,GOD BOH ∴∠=∠,由对称得GOD COH ∴∠=∠,同理可证AOD ∠∴故选:B 17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q −,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98−+−,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .【答案】()3,4【分析】本题考查了坐标与图形变化-平移.利用点平移的坐标规律,把A 点的横坐标加2,纵坐标加3即可得到点B 的坐标. 【详解】解:∵点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B , ∴点B 的坐标为()12,13++,即()3,4.故答案为:()3,4.19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .【答案】()1,4【分析】本题考查坐标与图形,三角形全等的性质.利用数形结合的思想是解题的关键.根据点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,画出图形,结合图形的对称性可直接得出()1,4D .【详解】解:∵点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,∴AD BC =,AC BD =,∴可画图形如下,由图可知点C 、D 关于线段AB 的垂直平分线2x =对称,则()1,4D .故答案为:()1,4.20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .【答案】3【分析】本题考查了折叠的性质和勾股定理,熟练掌握勾股定理是解题的关键. 设CE x =,则8AE BE x ==−,根据勾股定理求解即可.【详解】解:由折叠的性质,得AE BE =,设CE x =,则8AE BE x ==−,由勾股定理,得222BC CE BE +=,∴()22248x x +=−,解得3x =.故答案为:3.21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .出A EF A B C ''''∽,根据对应边上的中线比等于相似比,利用面积公式进行求解即可.【详解】解:∵等腰ABC 中,30ABC ∠=︒,AD 为中线,AD BC ⊥,BD CD =,∵将ABC 沿其底边中线,C BC B '∥∴A EF A B C ''''∽,EF A D B C A G'=''', 13AA AD '=,3223DA AD A G '='=2EF A D '22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .∵4AB =,30ABC ∠=︒,在ABCD Y ∴122AH AB ==,AD BC ∥,∴24AA AH '==,AA AD '⊥,∵5AD =,23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .【答案】()3,10【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=︒,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,。

历年中考数学图形的变换题汇总

历年中考数学图形的变换题汇总

历年中考数学图形的变换题汇总一、选择题1. (北京4分)下列图形中,即是中心对称又是轴对称图形的是A、等边三角形B、平行四边形C、梯形D、矩形【答案】D。

【考点】中心对称和轴对称图形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

从而有A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确。

故选D。

2.(天津3分)下列汽车标志中,可以看作是中心对称图形的是【答案】A。

【考点】中心对称图形。

【分析】根据在平面内,一个图形绕某个点旋转180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形的定义,直接得出结果。

3.(天津3分)下图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是【答案】A。

【考点】几何体的三视图。

【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观察原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。

故选A。

4.(河北省2分)将图1围成图2的正方体,则图1中的红心标志所在的正方形是正方体中的A、面CDHEB、面BCEFC、面ABFGD、面ADHG【答案】A。

【考点】展开图折叠成几何体。

【分析】由图1中的红心标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE。

故选A。

5.(山西省2分)将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是【答案】A。

【考点】剪纸问题。

【分析】严格按照图中的顺序先向上再向右对折,从左下方角剪去一个直角三角形,展开得到结论。

中考数学《图形的变换》总复习训练含答案解析

中考数学《图形的变换》总复习训练含答案解析

图形的变换一、选择题1.以下几何图形中,必定是轴对称图形的有()A.2个B.3个C.4个D.5个2.有一个四平分转盘,在它的上、右、下、左的地点分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下地点的两个字牌对换,同时将位于左右位置的两个字牌对换,再将转盘顺时针旋转90°,则达成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则达成第9次变换后,“众”字位于转盘的地点是()A.上B.下C.左D.右3.以下图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形C.正三角形D.矩形4.如图①~④是四种正多边形的瓷砖图案.此中,是轴对称图形但不是中心对称的图形为()A.①③B.①④C.②③D.②④5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()第1页(共19页)A.110°B.115°C.120°D.130°6.下边四张扑克牌中,图案属于中心对称图形的是图中的()A.B.C.D.7.下边的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.8.将如下图的图案按顺时针方向旋转90°后能够获得的图案是()A.B.C.D.9.若将图中的每个字母都当作独立的图案,则这七个图案中是中心对称图形的有()A.1个B.2个C.3个D.4个10.以下图形中,是轴对称图形的是()A.B.C.D.11.下边的图形中,是中心对称图形的是()第2页(共19页)A.B.C.D.二、填空题12.如图,点G是△ABC的重心,CG的延伸线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°获得△BDE,则DE=cm,△ABC的面积=cm2.13.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为.14.将线段AB平移1cm,获得线段A′,B′则点A到点A′的距离是cm.三、解答题15.如图,方格纸中的每个小正方形的边长均为1.(1)察看图1、2中所画的“L型”图形,而后各补画一个小正方形,使图1中所成的图形是轴对称图形,图2中所成的图形是中心对称图形;(2)补画后,图1、2中的图形是否是正方体的表面睁开图?(填“是”或“不是”)16.如图,在平面直角坐标系中,△ABC和△A1B1C1对于点E成中心对称.1)画出对称中心E,并写出点E、A、C的坐标;2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P(2a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;第3页(共19页)(3)判断△A2B2C2和△A1B1C1的地点关系.(直接写出结果)17.在一平直河岸l同侧有A,B两个乡村,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个乡村供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的表示图,设该方案中管道长度为d1,且d1=PB+BA(km)(此中BP⊥l于点p);图2是方案二的表示图,设该方案中管道长度为d2,且d2=PA+PB(km)(此中点A'与点A对于I对称,A′B与l交于点P.察看计算:(1)在方案一中,d1= km(用含a的式子表示);2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的协助线,请你按小宇同学的思路计算,d2= km(用含a的式子表示).研究概括(1)①当a=4时,比较大小:d1()d2(填“>”、“=或”“<”);②当a=6时,比较大小:d1()d2(填“>”、“=或”“<”);(2)请你参照右侧方框中的方法指导,就a(当a>1时)的全部取值状况进行剖析,要使铺设的管道长度较短,应选择方案一仍是方案二?第4页(共19页)第5页(共19页)图形的变换参照答案与试题分析一、选择题1.以下几何图形中,必定是轴对称图形的有()A.2个B.3个C.4个D.5个【考点】轴对称图形.【剖析】对于某条直线对称的图形叫轴对称图形.【解答】解:全部图形沿某条直线折叠后直线两旁的部分能够完整重合,那么必定是轴对称图形的有5个,应选D.【评论】轴对称图形的判断方法:假如一个图形沿一条直线折叠后,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形.2.有一个四平分转盘,在它的上、右、下、左的地点分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下地点的两个字牌对换,同时将位于左右位置的两个字牌对换,再将转盘顺时针旋转90°,则达成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则达成第9次变换后,“众”字位于转盘的地点是()A.上B.下C.左D.右【考点】旋转的性质.【专题】压轴题;操作型;规律型.第6页(共19页)【剖析】依据题意可知每一次变换后相当于逆时针旋转了90°,经过4次变换后会回到原始地点,因此按上述规则达成第9次变换后,相当于第一次变化后的位置关系,剖析比较可得答案.【解答】解:依据题意可知每一次变换后相当于逆时针旋转了90度,经过4次变换后会回到原始地点,因此按上述规则达成第9次变换后,“众”字位于转盘的地点是应当是第一次变换后的地点即在左侧,比较可得C切合要求.应选C.【评论】本题考察旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三因素:①定点为旋转中心;②旋转方向;③旋转角度.重点是找到旋转的方向和角度.3.以下图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形C.正三角形D.矩形【考点】中心对称图形;轴对称图形.【剖析】依据轴对称图形与中心对称图形的观点和等腰梯形、平行四边形、正三角形、矩形的性质解答.【解答】解:A、是轴对称图形,不是中心对称图形,不切合题意;B、不是轴对称图形,是中心对称图形,不切合题意;C、是轴对称图形,不是中心对称图形,不切合题意;D、是轴对称图形,也是中心对称图形,切合题意.应选D.【评论】掌握中心对称图形与轴对称图形的观点.假如一个图形沿着一条直线对折后两部分完整重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.假如一个图形绕某一点旋转180°后能够与自己重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.第7页(共19页)4.如图①~④是四种正多边形的瓷砖图案.此中,是轴对称图形但不是中心对称的图形为()A.①③B.①④C.②③D.②④【考点】中心对称图形;轴对称图形.【剖析】依据轴对称图形与中心对称图形的观点和各图的特色求解.【解答】解:①、是轴对称图形,不是中心对称图形;②、是轴对称图形,也是中心对称图形;③、是轴对称图形,不是中心对称图形;④、是轴对称图形,也是中心对称图形.知足条件的是①③,应选A.【评论】掌握好中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【剖析】依据折叠的性质,对折前后角相等.【解答】解:依据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,第8页(共19页)AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.应选B.【评论】本题考察图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,依据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.6.下边四张扑克牌中,图案属于中心对称图形的是图中的()A.B.C.D.【考点】中心对称图形;生活中的旋转现象.【剖析】依照中心对称图形的定义即可求解.【解答】解:此中A选项、C选项及D选项旋转180度后新图形中间的桃心向下,原图形中间的桃心向上,因此不是中心对称图形.应选B.【评论】本题考察中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完整重合.7.下边的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.第9页(共19页)【考点】中心对称图形;轴对称图形.【专题】惯例题型.【剖析】依据轴对称图形与中心对称图形的观点求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.应选:C.【评论】本题考察了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.8.将如下图的图案按顺时针方向旋转90°后能够获得的图案是()A.B.C.D.【考点】生活中的旋转现象.【剖析】依据旋转的意义,找出图中眼,眉毛,嘴 5个重点处按顺时针方向旋转90°后的形状即可选择答案.【解答】解:依据旋转的意义,图片按顺时针方向旋转90°,即正立状态转为顺时针的横向状态,从而可确立为A图,应选A.【评论】本题考察了图形的旋转变化,学生主要要看清是顺时针仍是逆时针旋转,旋转多少度,难度不大,但易错.9.若将图中的每个字母都当作独立的图案,则这七个图案中是中心对称图形的有()第10页(共19页)A.1个B.2个C.3个D.4个【考点】中心对称图形.【剖析】依据中心对称图形的观点求解.【解答】解:依据中心对称图形的观点可知,图案O、I是中心对称图形;而图案L、Y、M、P、C都不是中心对称图形.应选B.【评论】解答本题要掌握中心对称图形的观点:在同一平面内,假如把一个图形绕某一点旋转180度,旋转后的图形能和原图形完整重合,那么这个图形就叫做中心对称图形,这个旋转点,就叫做中心对称点.10..以下图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【剖析】依据轴对称图形的定义:假如一个图形沿一条直线折叠,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也能够说这个图形对于这条直线(成轴)对称,从而得出答案.【解答】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.应选:B.【评论】本题考察了轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.11.下边的图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.第11页(共19页)【剖析】依据中心对称图形的观点求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;应选B.【评论】本题考察了中心对称图形的知识,中心对称图形是要找寻对称中心,旋转180度后与原图重合.二、填空题12.如图,点G是△ABC的重心,CG的延伸线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°获得△BDE,则DE= 2 cm,△ABC的面积18cm2.【考点】旋转的性质.【专题】压轴题.【剖析】三角形的重心是三条中线的交点,依据中线的性质,S△ACD=S△BCD;再利用勾股定理逆定理证明BG⊥CE,从而得出△BCD的高,可求△BCD的面积.【解答】解:∵点G是△ABC的重心,DE=GD=GC=2,CD=3GD=6,GB=3,EG=GC=4,BE=GA=5,BG2+GE2=BE2,即BG⊥CE,∵CD为△ABC的中线,S△ACD=S△BCD,∴S△ABC△ACDS△BCD△BCD2.填:2,18.=S+=2S=2××BG×CD=18cm第12页(共19页)【评论】本题考察旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所组成的旋转角相等.要注意旋转的三因素:①定点﹣旋转中心;②旋转方向;③旋转角度.13.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 4 .【考点】等腰三角形的性质;勾股定理.【剖析】依据等腰三角形三线合一的性质及勾股定理不难求得底边上的高.【解答】解:依据等腰三角形的三线合一,知:等腰三角形底边上的高也是底边上的中线.即底边的一半是3,再依据勾股定理得:底边上的高为4.故答案为:4【评论】考察等腰三角形的三线合一及勾股定理的运用.14.将线段AB平移1cm,获得线段A′,B′则点A到点A′的距离是 1 cm.【考点】平移的性质.【专题】压轴题.【剖析】依据题意,画出图形,由平移的性质直接求得结果.【解答】解:在平移的过程中各点的运动状态是同样的,此刻将线段平移1cm,则每一点都平移1cm,即AA′=1cm,∴点A到点A′的距离是1cm.【评论】本题考察了平移的性质:由平移知识可得对应点间线段即为平移距离.学生在学习中应当借助图形,理解掌握平移的性质.三、解答题15.如图,方格纸中的每个小正方形的边长均为1.(1)察看图1、2中所画的“L型”图形,而后各补画一个小正方形,使图1中所成的图形是轴对称图形,图2中所成的图形是中心对称图形;(2)补画后,图1、2中的图形是否是正方体的表面睁开图?(填“是”或“不是”)第13页(共19页)【考点】利用旋转设计图案;利用轴对称设计图案.【专题】网格型.【剖析】(1)依据轴对称图形与中心对称的定义即可作出,第一确立对称轴,即可作出所要作的正方形;2)利用折叠的方法进行考证即可.【解答】解:(1)如图(画对一个得3分).2)图1(不是)或图2(是),图3(是).【评论】掌握轴对称的性质:沿着向来线折叠后重合.中心对称的性质:绕某一点旋转180°此后重合.16.如图,在平面直角坐标系中,△ABC和△A1B1C1对于点E成中心对称.1)画出对称中心E,并写出点E、A、C的坐标;2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P(2a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的地点关系.(直接写出结果)第14页(共19页)【考点】作图﹣旋转变换;作图﹣平移变换.【专题】作图题;压轴题.【剖析】(1)连结对应点,对应点的中点即为对称中心,在网格中可直接得出点E、A、C的坐标;2)依据“(a+6,b+2)”的规律求出对应点的坐标A2(3,4),C2(4,2),按序连结即可;(3)由△A2B2C2和△A1B1C1的地点关系直接看出是对于原点O成中心对称.【解答】解:(1)如图,E(﹣3,﹣1),A(﹣3,2),C(﹣2,0);(4分)2)如图,A2(3,4),C2(4,2);(8分)3)△A2B2C2与△A1B1C1对于原点O成中心对称.(10分)【评论】本题考察的是平移变换与旋转变换作图.作平移图形时,找重点点的对应点也是重点的一步.平移作图的一般步骤为:①确立平移的方向和距离,先确立一组对应点;②确立图形中的重点点;③利用第一组对应点和平移的性质确立图中所相重点点的对应点;④按原图形次序挨次连结对应点,所获得的图形即为平移后的图形.第15页(共19页)作旋转后的图形的依照是旋转的性质,基本作法是①先确立图形的重点点;②利用旋转性质作出重点点的对应点;③按原图形中的方式按序连结对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特别状况.17.在一平直河岸l同侧有A,B两个乡村,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个乡村供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的表示图,设该方案中管道长度为d1,且d1=PB+BA(km)(此中BP⊥l于点p);图2是方案二的表示图,设该方案中管道长度为d2,且d2=PA+PB(km)(此中点A'与点A对于I对称,A′B与l交于点P.察看计算:1)在方案一中,d1=a+2km(用含a的式子表示);2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的协助线,请你按小宇同学的思路计算,d2= km(用含a的式子表示).研究概括(1)①当a=4时,比较大小:d1()d2(填“>”、“=或”“<”);②当a=6时,比较大小:d1()d2(填“>”、“=或”“<”);(2)请你参照右侧方框中的方法指导,就a(当a>1时)的全部取值状况进行剖析,要使铺设的管道长度较短,应选择方案一仍是方案二?第16页(共19页)【考点】作图—应用与设计作图.【专题】压轴题;阅读型;方案型.【剖析】运用勾股定理和轴对称求出d2,依据方法指导,先求d12﹣d22,再依据差进行分类议论选用合理方案.【解答】解:(1)∵A和A'对于直线l对称,PA=PA',d1=PB+BA=PB+PA'=a+2;故答案为:a+2;2)由于BK2=a2﹣1,A'B2=BK2+A'K2=a2﹣1+52=a2+24因此d2= .研究概括:(1)①当a=4时,d1=6,d2= ,d1<d2;②当a=6时,d1=8,d2= ,d1>d2;∴(2)=4a﹣20.①当4a﹣20>0,即a>5时,d12﹣d22>0,d1﹣d2>0,d1>d2;第17页(共19页)②当4a﹣20=0,即a=5时,d12﹣d22=0,d1﹣d2=0,d1=d2③当4a﹣20<0,即a<5时,d12﹣d22<0,d1﹣d2<0,d1<d2综上可知:当a>5时,选方案二;当a=5时,选方案一或方案二;当1<a<5(缺a>1不扣分)时,选方案一.【评论】本题为方案设计题,综合考察了学生的作图能力,运用数学知识解决实际问题的能力,以及察看研究和分类议论的数学思想方法.第18页(共19页)中考数学《图形的变换》总复习训练含答案解析第19页(共19页)21 / 2121。

2024年中考数学总复习:图形的变化(附答案解析)

2024年中考数学总复习:图形的变化(附答案解析)
A.
B.
C.
D.
4.下列图形中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
5.点P(2,﹣3)关于原点对称的点的坐标是( )
A.(3,﹣2)B.(﹣2,﹣3)C.(﹣2,3)D.(3,2)
6.下列手机手势解锁图案中,是中心对称图形的是( )
A. B. C. D.
7.下列图形中,是轴对称图形的是( )
A. B. C. D.
23.如图所示,已知矩形ABCD的边AD长为8cm,边AB长为6cm,从中截去一个矩形(图中阴影部分),如果所截矩形与原矩形相似,那么所截矩形的面积是( )
A.21cm2B.24cm2C.27cm2D.30cm2
24.如图,在▱ABCD中,E为边AB上一点,连结DE、AC交于点F.若 ,则下列说法错误的是( )
A.16mB.15mC.14mD.13m
2024年中考数学总复习:图形的变化
参考答案与试题解析
一.选择题(共25小题)
1.若点M与点N关于x轴对称,点M的坐标为(﹣2,3),则点N的坐标为( )
A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)
【分析】根据关于x轴对称的点的横纵坐标的特点解答即可.
A.3:2B.4:3C.5:3D.5:4
15.已知△ABC的周长为1,BC=1﹣2AB,则下列直线一定是△ABC的对称轴的是( )
A.△ABC的边AB的垂直平分线
B.∠ACB的平分线所在的直线
C.△ABC的边AC上的高所在的直线
D.△ABC的边BC上的中线所在的直线
16.已知a=3b,则a:b的值是( )
A.
B.△AEF与△CDF的周长比为1:4
C.△AEF与△CDF的面积比为1:4

数学中考图形变换题选择题

数学中考图形变换题选择题

数学中考图形变换题选择题1. 下列图形变换中,保持图形形状和大小不变的是()A. 顺时针旋转90度B. 水平翻转C. 上下平移2个单位D. 放大2倍2. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (3,-1)B. (-1,3)C. (1,-3)D. (3,1)3. 下列图形变换中,保持图形方向不变,但形状和大小改变的是()A. 顺时针旋转45度B. 放大2倍C. 缩小到原来的一半D. 水平翻转4. 一个长方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(3,1),点C的坐标是(3,3),点D的坐标是(1,3),将这个长方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (1,-3)B. (3,-1)C. (-1,3)D. (3,1)5. 下列图形变换中,保持图形形状和大小不变,但方向改变的是()A. 顺时针旋转45度B. 水平翻转C. 放大2倍D. 缩小到原来的一半6. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点顺时针旋转90度,旋转后点A的坐标是()A. (3,1)B. (1,-3)C. (-1,3)D. (3,-1)7. 下列图形变换中,保持图形方向不变,但形状和大小改变的是()A. 顺时针旋转45度B. 放大2倍C. 缩小到原来的一半D. 水平翻转8. 一个长方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(3,1),点C的坐标是(3,3),点D的坐标是(1,3),将这个长方形绕原点顺时针旋转90度,旋转后点A的坐标是()A. (1,-3)B. (3,-1)C. (-1,3)D. (3,1)9. 下列图形变换中,保持图形形状和大小不变,但方向改变的是()A. 顺时针旋转45度B. 水平翻转C. 放大2倍D. 缩小到原来的一半10. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (3,-1)B. (-1,3)C. (1,-3)D. (3,1)11. 下列图形变换中,保持图形方向不变,但形状和大小改变的是()A. 顺时针旋转45度B. 放大2倍C. 缩小到原来的一半D. 水平翻转12. 一个长方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(3,1),点C的坐标是(3,3),点D的坐标是(1,3),将这个长方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (1,-3)B. (3,-1)C. (-1,3)D. (3,1)13. 下列图形变换中,保持图形形状和大小不变,但方向改变的是()A. 顺时针旋转45度B. 水平翻转C. 放大2倍D. 缩小到原来的一半14. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点顺时针旋转90度,旋转后点A的坐标是()A. (3,1)B. (1,-3)C. (-1,3)D. (3,-1)15. 下列图形变换中,保持图形方向不变,但形状和大小改变的是()A. 顺时针旋转45度B. 放大2倍C. 缩小到原来的一半D. 水平翻转16. 一个长方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(3,1),点C的坐标是(3,3),点D的坐标是(1,3),将这个长方形绕原点顺时针旋转90度,旋转后点A的坐标是()A. (1,-3)B. (3,-1)C. (-1,3)D. (3,1)17. 下列图形变换中,保持图形形状和大小不变,但方向改变的是()A. 顺时针旋转45度B. 水平翻转C. 放大2倍D. 缩小到原来的一半18. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (3,-1)B. (-1,3)C. (1,-3)D. (3,1)19. 下列图形变换中,保持图形方向不变,但形状和大小改变的是()A. 顺时针旋转45度B. 放大2倍C. 缩小到原来的一半D. 水平翻转20. 一个长方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(3,1),点C的坐标是(3,3),点D的坐标是(1,3),将这个长方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (1,-3)B. (3,-1)C. (-1,3)D. (3,1)21. 下列图形变换中,保持图形形状和大小不变,但方向改变的是()A. 顺时针旋转45度B. 水平翻转C. 放大2倍D. 缩小到原来的一半22. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点顺时针旋转90度,旋转后点A的坐标是()A. (3,1)B. (1,-3)C. (-1,3)D. (3,-1)23. 下列图形变换中,保持图形方向不变,但形状和大小改变的是()A. 顺时针旋转45度B. 放大2倍C. 缩小到原来的一半D. 水平翻转24. 一个长方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(3,1),点C的坐标是(3,3),点D的坐标是(1,3),将这个长方形绕原点顺时针旋转90度,旋转后点A的坐标是()A. (1,-3)B. (3,-1)C. (-1,3)D. (3,1)25. 下列图形变换中,保持图形形状和大小不变,但方向改变的是()A. 顺时针旋转45度B. 水平翻转C. 放大2倍D. 缩小到原来的一半26. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (3,-1)B. (-1,3)C. (1,-3)D. (3,1)27. 下列图形变换中,保持图形方向不变,但形状和大小改变的是()A. 顺时针旋转45度B. 放大2倍C. 缩小到原来的一半D. 水平翻转28. 一个长方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(3,1),点C的坐标是(3,3),点D的坐标是(1,3),将这个长方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (1,-3)B. (3,-1)C. (-1,3)D. (3,1)29. 下列图形变换中,保持图形形状和大小不变,但方向改变的是()A. 顺时针旋转45度B. 水平翻转C. 放大2倍D. 缩小到原来的一半30. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点顺时针旋转90度,旋转后点A的坐标是()A. (3,1)B. (1,-3)C. (-1,3)D. (3,-1)31. 下列图形变换中,保持图形方向不变,但形状和大小改变的是()A. 顺时针旋转45度B. 放大2倍C. 缩小到原来的一半D. 水平翻转32. 一个长方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(3,1),点C的坐标是(3,3),点D的坐标是(1,3),将这个长方形绕原点顺时针旋转90度,旋转后点A的坐标是()A. (1,-3)B. (3,-1)C. (-1,3)D. (3,1)33. 下列图形变换中,保持图形形状和大小不变,但方向改变的是()A. 顺时针旋转45度B. 水平翻转C. 放大2倍D. 缩小到原来的一半34. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (3,-1)B. (-1,3)C. (1,-3)D. (3,1)35. 下列图形变换中,保持图形方向不变,但形状和大小改变的是()A. 顺时针旋转45度B. 放大2倍C. 缩小到原来的一半D. 水平翻转36. 一个长方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(3,1),点C的坐标是(3,3),点D的坐标是(1,3),将这个长方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (1,-3)B. (3,-1)C. (-1,3)D. (3,1)37. 下列图形变换中,保持图形形状和大小不变,但方向改变的是()A. 顺时针旋转45度B. 水平翻转C. 放大2倍D. 缩小到原来的一半38. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点顺时针旋转90度,旋转后点A的坐标是()A. (3,1)B. (1,-3)C. (-1,3)D. (3,-1)39. 下列图形变换中,保持图形方向不变,但形状和大小改变的是()A. 顺时针旋转45度B. 放大2倍C. 缩小到原来的一半D. 水平翻转40. 一个长方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(3,1),点C的坐标是(3,3),点D的坐标是(1,3),将这个长方形绕原点顺时针旋转90度,旋转后点A的坐标是()A. (1,-3)B. (3,-1)C. (-1,3)D. (3,1)41. 下列图形变换中,保持图形形状和大小不变,但方向改变的是()A. 顺时针旋转45度B. 水平翻转C. 放大2倍D. 缩小到原来的一半42. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (3,-1)B. (-1,3)C. (1,-3)D. (3,1)43. 下列图形变换中,保持图形方向不变,但形状和大小改变的是()A. 顺时针旋转45度B. 放大2倍C. 缩小到原来的一半D. 水平翻转44. 一个长方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(3,1),点C的坐标是(3,3),点D的坐标是(1,3),将这个长方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (1,-3)B. (3,-1)C. (-1,3)D. (3,1)45. 下列图形变换中,保持图形形状和大小不变,但方向改变的是()A. 顺时针旋转45度B. 水平翻转C. 放大2倍D. 缩小到原来的一半46. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点顺时针旋转90度,旋转后点A的坐标是()A. (3,1)B. (1,-3)C. (-1,3)D. (3,-1)47. 下列图形变换中,保持图形方向不变,但形状和大小改变的是()A. 顺时针旋转45度B. 放大2倍C. 缩小到原来的一半D. 水平翻转48. 一个长方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(3,1),点C的坐标是(3,3),点D的坐标是(1,3),将这个长方形绕原点顺时针旋转90度,旋转后点A的坐标是()A. (1,-3)B. (3,-1)C. (-1,3)D. (3,1)49. 下列图形变换中,保持图形形状和大小不变,但方向改变的是()A. 顺时针旋转45度B. 水平翻转C. 放大2倍D. 缩小到原来的一半50. 一个正方形ABCD,在平面直角坐标系中,点A的坐标是(1,1),点B的坐标是(2,1),点C的坐标是(2,3),点D的坐标是(1,3),将这个正方形绕原点逆时针旋转90度,旋转后点A的坐标是()A. (3,-1)B. (-1,3)C. (1,-3)D. (3,1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年中考数学图形的变换题
历年中考数学图形的变换题汇总
一、选择题
1. (北京4分)下列图形中,即是中心对称又是轴对称图形的是
A、等边三角形
B、平行四边形
C、梯形
D、矩形
【答案】D。

【考点】中心对称和轴对称图形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

从而有A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确。

故选D。

2.(天津3分)下列汽车标志中,可以看作是中心对称图形的是
【答案】A。

【考点】中心对称图形。

【分析】根据在平面内,一个图形绕某个点旋转180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形的定义,直接得出结果。

3.(天津3分)下图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是
【答案】A。

【考点】几何体的三视图。

【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观察原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。

故选A。

4.(河北省2分)将图1围成图2的正方体,则图1中的红心标志所在的正方形是正方体中的
A、面CDHE
B、面BCEF
C、面ABFG
D、面ADHG
【答案】A。

【考点】展开图折叠成几何体。

【分析】由图1中的红心标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE。

故选A。

5.(山西省2分)将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是
【答案】A。

【考点】剪纸问题。

【分析】严格按照图中的顺序先向上再向右对折,从左下方角剪去一个直角三角形,展开得到结论。

故选A。

6.(山西省2分)如图是一个工件的'三视图,图中标有尺寸,则这个工件的体积是
A.13
B.17
C.66
D.68 【答案】B。

【考点】由三视图判断几何体,圆柱的计算
【分析】根据三视图可知该几何体是两个圆柱体叠加在一起,体积是两个圆柱体的体积的和:底面直径分别是2cm和4cm,高分别是4cm和1cm,体积为:422+cm2。

故选B。

7.(内蒙古巴彦淖尔、赤峰3分)在下面的四个几何体中,主视图、俯视图、左视图都相同的几何体的个数有
A、1个
B、2个
C、3个
D、4个
【答案】A。

【考点】简单几何体的三视图。

【分析】主视图、俯视图、左视图是分别从物体正面、上面和左面看,所得到的图形,
圆柱主视图、俯视图、左视图分别是长方形、圆、长方形,主视图、左视图与俯视图不相同;
圆锥主视图、俯视图、左视图分别是三角形、有圆心的圆、三角形,主视图、左视图与俯视图不相同;
球主视图、俯视图、左视图都是圆,主视图、俯视图、左视图都相同;
长方体主视图、俯视图、左视图是大小不同的矩形,三视图不相同。

共1个同一个几何体的主视图与俯视图、左视图相同。

故选A。

8.(内蒙古包头3分)下列几何体各自的三视图中,只有两个视图相同的是
①正方体
②圆锥体
③球体
④圆柱体
A.①③
B.②③
C.③④
D.②④
【答案】D。

【考点】简单几何体的三视图。

【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别分析四个几何体的三视图,从中找出只有两个视图相同的几何体,可得出结论:①正方形的主、左和俯视图都是正方形;②圆锥的主、左视图是三角形,俯视图是圆;③球体的主、左和俯视图都是圆形;④圆柱的主、左视图是长方形,俯视图是圆。

只有两个视图相同的几何体是圆锥和圆柱。

故选D。

9.(内蒙古呼和浩特3分)已知圆柱的底面半径为1,母线长为2,则圆柱的侧面积为
A、2
B、4
C、2
D、4
【答案】D。

【考点】圆柱的展开。

【分析】圆柱沿一条母线剪开,所得到的侧面展开图是一个矩形,它的长是底面圆的周长,即2,宽为母线长为2cm,所以它的面积为4cm2。

故选D。

10.(内蒙古呼和浩特3分)将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是
A、 B、 C、 D、【答案】C。

【考点】几何体的展开图。

【分析】由原正方体知,带图案的三个面相交于一点,而通过折叠后A、B都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是C。

故选C。

11.(内蒙古呼伦贝尔3分)如图,几何体的俯视图是
【答案】C。

【考点】简单组合体的三视图。

【分析】找到从上面看所得到的图形即可:从上面看易得里层有4个正方形,外层左边有1个正方形。

故选C。

12.(内蒙古乌兰察布3分)如图是由五个相同的小正方体搭成的几何体,它的主视图是
【答案】B。

【考点】简单组合体的三视图。

【分析】找到从正面看所得到的图形即可:从正面看易得第一层左边有1个正方形,第二层有3个正方形。

故选B。

13.(内蒙古乌兰察布3分)己知O为圆锥的顶点,M 为圆锥底面上一点,点P 在OM上.一只锅牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示,若沿OM将圆锥侧面剪开并展开,所得侧面展开图是
【答案】D。

【考点】圆锥的展开,扇形的轴对称性,线段的性质。

【分析】根据两点之间比下有余最短的性质,锅牛爬过的最短路线应是一条线段:根据扇形的轴对称性,选择D正确。

故选D。

14.(内蒙古乌兰察布3分)将正方体骰子(相对面上的点数分别为1 和 6 、 2 和 5 、 3 和 4 )放置于水平桌面上,如图① .在图② 中,将骰子向右翻滚 90 ,然后在桌面上按逆时针方向旋转 90 ,则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是
A . 6
B . 5
C . 3
D . 2
【答案】B。

【考点】分类归纳(图形变化类)。

【分析】寻找规律:
可知,按上述规则连续完成3次变换后,骰子回到初始位置,因此连续完成10次变换后,骰子与完成1次变换的状态相同。

故选B。

相关文档
最新文档