热工基础的原理及应用

合集下载

热工基础

热工基础

【热辐射】
(2)特点: 可在真空中传播 能量传递同时伴随有能量的转换 任何物体只要在绝对零度以上,都能发射辐 射能,但是只有在物体温度较高时,热辐射才 能成为主要的传热方式。
(3)人站在火焰旁会感到热、太阳热量能传到 地球。
小结:
实际进行的传热过程,往往不是上述三 种基本方式单独出现,而是两种或三种传 热的组合,而又以其中一种或两种方式为 主。
【热对流(对流)】
(3)产生对流的原因 由于流体内部温度不同形成密度的差异,在浮力的 作用下产生流体质点的相对位移,使轻者上浮,重 者下沉,称为自然对流; 由于泵、风机或搅拌等外力作用而引起的质点强制 运动,称为强制对流。
流动的原因不同,热对流的规律也不同。 在强制对流的同时常常伴随有自然对流。
一般范围:2.3~427 W/m℃(纯银最大,其次为纯铜、铝等) 一般
温度T升高, λ下降
杂质含量增大, λ下降
2. 建材
一般范围:0.16~2.2 W/m℃,与材料结构、空隙率、 湿度、密度等有关 。 空气湿度增大, λ增大
3. 隔热材料(保温材料)
隔热材料:导热系数低于0.22 W/m℃的材料(多为 多孔结构)。
大多数金属:β<0 大多数非金属:β>0
湿度对导热系数有影响 因水的导热系数比气体大,所以湿物料 的导热系数比干物料的大
密度对导热系数有影响
密度小,导热系数小
傅立叶(Fourier, Jean Baptiste Joseph)(1768-1830)小传:法国数 学家、物理学家 。1768年3月21日生于法国欧塞尔 (Auxevre),1830年5月16日卒于巴黎。因研究热传导理论而闻名于 世。 9岁父母双亡,被当地教堂收养。12岁由主教送于地方军事学 校读书。17岁(1785年)回乡教数学,1794年到巴黎,成为高等师 范学校的首批学员,次年到巴黎综合工科学校执教,1798年随拿破 仑远征埃及时,任军中秘书和埃及研究院秘书。1801年回国,1817 年当选为科学院院士,1822年任该院终身秘书。后又任法兰西学院 终身秘书和理工科大学校务委员会主席。 1807年向巴黎科学院提交“热的传播”论文,推导出著名的热传导 方程。并在求解该方程时发现解函数可以由三角函数构成的级数形式 表示,从而提出任意函数都可以展成三角函数的无穷级数。1822年 在代表作“热的分析理论”中解决了热在非均匀加热的固体中分布传 播问题,成为分析学在物理中应用的最早例证之一,对19世纪数学和 理论物理学的发展产生深远影响。傅立叶级数(三角级数)、傅立叶 分析等理论均由此创造。

904热工基础

904热工基础

904热工基础【最新版】目录一、热工基础的概念与重要性二、热工基础的基本原理三、热工基础的应用领域四、热工基础的发展趋势正文一、热工基础的概念与重要性热工基础,全称为热能工程基础,是一门研究热能的生成、转换、传输及利用的学科。

它主要研究热力学、传热学、燃烧学等基础理论,以及热力设备、热力系统等实际应用。

在我国能源领域,热工基础占据着重要地位,对于能源的开发、利用和节约具有重要意义。

二、热工基础的基本原理热工基础主要包括以下几个方面的基本原理:1.热力学原理:研究热能与其它能量之间的转换关系,如热力学第一定律和第二定律。

2.传热学原理:研究热能在不同介质中的传输规律,如导热、对流和辐射传热。

3.燃烧学原理:研究燃料与氧气在特定条件下的化学反应过程,如燃烧反应动力学和燃烧过程的控制。

三、热工基础的应用领域热工基础在多个领域具有广泛的应用,如:1.能源工程:包括火力发电、核能发电、太阳能发电等,热工基础为这些领域提供理论基础和设计依据。

2.化工过程:石油化工、煤化工、天然气化工等,热工基础为化工过程提供热能转换和利用的技术支持。

3.冶金工业:钢铁、有色金属等,热工基础为冶金工业提供高温熔炼、热处理等关键技术。

4.航空航天:火箭推进、发动机燃烧等,热工基础为航空航天领域提供高性能热力系统的设计与优化。

四、热工基础的发展趋势随着全球能源需求的增长以及环境污染问题的加剧,热工基础在未来发展中将面临诸多挑战和机遇。

具体表现在以下几个方面:1.高效清洁能源技术的研究:热工基础将更加注重高效、清洁、可再生能源技术的研究,以降低能源消耗和减少环境污染。

2.节能减排技术的发展:热工基础将加大对节能减排技术的研发力度,提高能源利用效率,降低碳排放。

3.热工系统智能化:随着信息技术的发展,热工基础将引入大数据、云计算等技术,实现热工系统的智能化和优化运行。

总之,热工基础作为能源领域的重要学科,对于我国能源事业的发展和环境保护具有重要意义。

热工基础与应用第3版知识点

热工基础与应用第3版知识点

热工基础与应用第3版知识点《热工基础及应用》第3版知识点第一章热能转换的基本概念本章要求:1.掌握研究热能转换所涉及的基本概念和术语;2.掌握状态参数及可逆过程的体积变化功和热量的计算;3.掌握循环的分类与不同循环的热力学指标。

知识点:1.热力系统:根据研究问题的需要和某种研究目的,人为划定的一定范围内的研究对象称为热力系统,简称热力系或系统。

热力系可以按热力系与外界的物质和能量交换情况进行分类。

2.工质:用来实现能量相互转换的媒介物质称为工质。

3.热力状态:热力系在某瞬时所呈现的宏观物理状态称为热力状态。

对于热力学而言,有意义的是平衡状态。

其实现条件是:0,0,0p T μ?=?=?=。

4. 状态参数和基本状态参数:描述系统状态的宏观物理量称为热力状态参数,简称状态参数。

状态参数可按与系统所含工质多少有关与否分为广延量(尺度量)参数和强度量状态参数;按是否可直接测量可分为基本和非基本状态参数。

5. 准平衡(准静态)过程和可逆过程:准平衡过程是基于对热力过程的描述而提出的。

实现准平衡过程的条件是推动过程进行的不平衡势差要无限小,即0p ?→,0T ?→(0μ?→)。

6、热力循环:为了实现连续的能量转换,就必须实施热力循环,即封闭的热力过程。

热力循环按照不同的方法可以分为:可逆循环和不可逆循环;动力循环(正循环)和制冷(热)循环(逆循环)等。

动力循环的能量利用率的热力指标是热效率:0=t H W Q η;制冷循环能量利用率的热力学指标是制冷系数:L 0=Q W ε。

第二章热力学第一定律本章要求:1. 深入理解热力学第一定律的实质;2. 熟练掌握热力学第一定律的闭口系统和稳定流动系统的能量方程。

知识点:1. 热力学第一定律:是能量转换与守恒定律在涉及热现象的能量转换过程中的应用。

热力学第一定律揭示了能量在传递和转换过程中数量守恒这一实质。

2. 闭口系统的热力学第一定律表达式,即热力学第一定律基本表达式:Q U W =?+。

热工基础(张学学)第一章.ppt

热工基础(张学学)第一章.ppt
对于可逆过程1~2:
W pdV
1
2
18
单位质量工质所作的膨胀功用符号 w 表示,单位为 J/kg 或 kJ/kg。 2
w pdv
w pdv
1
膨胀:dv > 0,w > 0; 压缩:dv < 0,w < 0。 (2) 示功图(p-v图)
w 的大小可以用 p-v 图上的 过程曲线下面的面积来表示 。
5
(3)状态参数 用于描述系统平衡状态的物理量称为状态参数,如温度、 压力、比体积等。 状态参数的特点:当状态确定时,状态参数的数值也随
之确定;反之亦然。
(4)非平衡状态 系统内部存在不平衡势(温差或压差),因此存在能量
或质量传递的宏观物理状况。
非平衡状态不能用状态参数来描写。
6
2. 基本状态参数
只有绝对压力 p 才是状态参数。 当绝对压力 p 高于大气压力 pb 时,有:p = pb + pe 当绝对压力 p 低于大气压力 pb 时,有:p = pb - pv
8
(2)温度 1)温度的物理意义
温度是反映物体冷热程度的物理量。温度的高低反映物
体内部微观粒子热运动的强弱。
当两个温度不同的物体相互接触时,它们之间将发生热 量传递,如果没有其它物体影响,这两个物体的温度将逐渐
22
(3)示热图(T-s图) 在可逆过程中,单位质 量工质与外界交换的热量, 可以用 T-s 图(温熵图)上 过程曲线下的面积来表示。 温熵图也称为示热图。
q Tds
1
2
23
热力学温标与摄氏温标的关系:
t = T – 273.15 K 温差:1 K = 1 ℃ 国际单位制(SI)采用热力学温度T 作为基本状态参数。

热工基础-5-(3)-热工基础的应用-压气机

热工基础-5-(3)-热工基础的应用-压气机

工作原理:
气体从进口流入 压气机,经收缩
器时流速得到初
步提高,进口导 向叶片使气流改 为轴向,同时还 起扩压管作用,
使压力有提高。
转子由外力带动,作高速转动,固装其上的工作叶 片(亦称动叶片)推动气流,使气流获得很高的流速。
工作原理(续):
高速气流进入固装在机壳 上的导向叶片(亦称定叶片)
间的通道,使气流的动能
余隙容积的影响可从以下两个方面讨论:
(1) 生产量:
由于有余隙容积Vc的影响,缸 内气体从V3膨胀到V4才开始进 气。气缸实际进气容积V称有效 吸气容积, V=V1-V4。余隙容 积本身不起压气作用,且使另 部分缸容积也不起压缩作用。V 小于气缸排量Vh ,两者之比称 为容积效率,以ηV表示,即:
需级数甚多。其次,因气流速度相当高,容易造成较
大的摩擦损耗,故对叶轮式压气机的设计和制造的技 术水平要求甚高。
分类:
叶轮式压气机分:径流式(即离心式)与轴流
式两种型式。
离心式压气机适用于中、小型生产量,高转
速,但效率稍低。
轴流式压气机则结构紧凑,便于安排较多的 级数,且效率较高,适宜于大流量的场合。
二、压气机的理论耗功
压缩气体的生产过程包括气体的流入、压缩和输
出,所以压气机耗功应以技术功计。通常用符号Wc表
示压气机的耗功,则:
对定值比热容理想气体,据第三章 计算理论耗功: (1)可逆绝热(定熵)压缩
二、压气机的理论耗功(续)
(2)可逆多变压缩
(3)可逆定温压缩
上述各式中,P2/P1是压缩过程中气体终压和初压 之比,称为增压比,用 表示。
这时,各级的增压比相同,各级压气机耗功相同,且:
因此,按此原则选择中间压力可得以下有利结果: (1)每级压气机需功相等,有利于压气机曲轴的平衡; (2)每个气缸中气体压缩后所达到的最高温度相同,这 样每个气缸的温度条件相同; (3)每级向外排出的热量相等,而且每一级的中间冷却 器向外排出的热量也相等; (4)各级的气缸容积按增压比递减。 (5)分级压缩对容积效率的提高也有利。余隙容积的有 害影响随增压比的增加而扩大。分级后,每一级的增 压比缩小,故同样大的余隙容积对容积效率的有害影 响将缩小,使总容积效率比不分级时大。

814热工基础

814热工基础

814热工基础
814热工基础是热工技术的基础课程,主要介绍了热力学和传热学的基本概念、基本原理和应用。

以下是814热工基础的主要内容:
1. 热力学基本概念:介绍热力学的基本概念,如温度、压力、热量、功等,以及热力平衡、热力过程和热力循环等基本规律。

2. 热力学第一定律:介绍能量守恒原理和热力学第一定律,以及各种能量形式之间的转换关系,如热能转换为机械能等。

3. 热力学第二定律:介绍热力学第二定律,包括熵的概念和各种热力学过程的方向性,以及各种热力设备的工作原理和应用。

4. 传热学基本概念:介绍传热的基本方式,如导热、对流和辐射等,以及传热过程的基本规律。

5. 导热过程分析:介绍导热的基本原理和应用,包括导热系数、傅里叶定律和导热微分方程等。

6. 对流换热分析:介绍对流换热的基本原理和应用,包括牛顿冷却公式、流动阻力和流体动力方程等。

7. 辐射换热分析:介绍辐射换热的基本原理和应用,包括黑体辐射、辐射角系数和辐射换热方程等。

8. 传热过程分析和计算:介绍传热过程的分析和计算方法,包括总传热系数、传热面积和传热效率等。

通过学习814热工基础,学生可以掌握热工技术的基本原理和应用,为进一步学习其他专业课程和从事相关领域的工作打下基础。

热工基础与发动机原理 -回复

热工基础与发动机原理 -回复

热工基础与发动机原理-回复"热工基础与发动机原理"是一个涵盖广泛且具有重要意义的学科。

本文将一步一步回答关于这个主题的问题,并解释其背后的关键原理和应用。

一、热工基础热工基础是研究热能转化与利用的基本理论和方法,是热科学的重要组成部分。

它主要包括热力学和传热学两个方面。

1. 热力学:热力学是研究物质热平衡和热能转化规律的科学。

其基本定律包括热平衡定律、热力学第一定律和热力学第二定律。

热平衡定律表明,当两个物体处于热平衡状态时,它们的温度相等;热力学第一定律表示能量守恒的原理,能量可以从一种形式转化为另一种形式,但总能量保持恒定;热力学第二定律则规定了热能转化的方向性,即自然界中热量只能从高温物体传递到低温物体。

2. 传热学:传热学研究物质内部或物体之间的热量传递规律。

传热过程主要包括导热、对流传热和辐射传热。

导热是指固体或液体中热量通过分子传导传递的过程;对流传热是指热能通过流体运输而传递的过程;辐射传热是指通过电磁辐射的方式使热量传递的过程。

掌握传热规律对于设计高效的热能转换和利用设备至关重要。

二、发动机原理发动机是将热能转化为机械能的设备,广泛应用于交通工具、工业生产等领域。

根据工作物质的不同,发动机包括内燃机和外燃机两种类型。

1. 内燃机:内燃机是一种热机,通过可燃物质在密闭腔体中燃烧产生高温高压气体,并利用气体膨胀驱动活塞或转子进行工作。

内燃机按燃料的不同分为汽油机和柴油机。

汽油机通过点火将燃油与空气混合物点燃,柴油机则通过高压喷射燃油使其自燃。

内燃机按工作循环不同又可分为四冲程和两冲程。

2. 外燃机:外燃机是指燃烧燃料产生高温高压气体的过程在燃烧室外进行的发动机。

最常见的外燃机是蒸汽机,通过煤、石油、天然气等燃料加热水生成蒸汽,利用膨胀驱动活塞进行工作。

外燃机通过驱动活塞或转子转动轴,进而带动机械设备工作。

三、热工基础与发动机原理的关系与应用热工基础与发动机原理存在着紧密的关联,而且在实际应用中相互补充、互相促进。

公共基础知识热工基础知识概述

公共基础知识热工基础知识概述

《热工基础知识综合性概述》一、引言热工基础知识在现代科学技术和工程领域中占据着至关重要的地位。

从日常生活中的供暖、制冷到工业生产中的能源转换、动力系统,热工知识无处不在。

它不仅涉及到热力学、传热学等基础理论,还与材料科学、机械工程、电气工程等多个学科领域密切相关。

本文将对热工基础知识进行全面的阐述与分析,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。

二、基本概念1. 温度温度是表示物体冷热程度的物理量。

在热工领域中,常用的温度单位有摄氏度(℃)、华氏度(°F)和开尔文(K)。

其中,开尔文是国际单位制中的基本温度单位,它与摄氏度的换算关系为 T (K)=T(℃)+273.15。

2. 热量热量是指由于温度差而传递的能量。

热量的单位通常为焦耳(J)或千卡(kcal)。

在热传递过程中,热量总是从高温物体流向低温物体。

3. 热容量热容量是指物体温度升高(或降低)1 摄氏度所吸收(或放出)的热量。

热容量的大小与物体的质量、物质种类以及温度变化范围有关。

4. 热导率热导率是衡量物质导热能力的物理量。

热导率越大,物质的导热能力越强。

热导率的单位为瓦/(米·开尔文)(W/(m·K))。

三、核心理论1. 热力学第一定律热力学第一定律也称为能量守恒定律,它指出在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。

在热工领域中,热力学第一定律可以用来计算系统在热传递和做功过程中的能量变化。

2. 热力学第二定律热力学第二定律有多种表述方式,其中最著名的是克劳修斯表述和开尔文表述。

克劳修斯表述为:热量不能自发地从低温物体传递到高温物体。

开尔文表述为:不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。

热力学第二定律揭示了热过程的方向性和不可逆性。

3. 传热学基本理论传热学主要研究热量传递的规律和方法。

传热的方式主要有三种:热传导、热对流和热辐射。

(1)热传导:是指热量通过物质的分子、原子或电子的运动而传递的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热工基础的原理及应用
1. 热工基础的概念
热工基础是热力学和热传导学的基础,是研究能量转化、能量传递和能量转换
的科学。

它主要涉及热力学、热传导、热辐射等内容,可以应用于各个领域,如工业、航空航天、能源等。

热工基础对于理解和应用能量转化、传递和转换非常重要。

2. 热工基础的原理
2.1 热力学的原理
热力学是热工基础的重要组成部分,它研究的是热力学系统中能量的转化和传
递规律。

热力学的基本原理包括以下几个方面:
•热力学第一定律:能量守恒,能量可以从一种形式转化为另一种形式,但总能量不会减少或增加。

•热力学第二定律:熵增原理,自然界的熵总是增加的,热量不能自发地从低温物体传递到高温物体。

•热力学第三定律:绝对零度原理,当温度接近绝对零度时,物体的熵趋于零。

2.2 热传导的原理
热传导是热工基础中的重要内容,研究的是物体内部的热量传递规律。

热传导
的原理可以用以下几个概念和公式来描述:
•热导率:热导率是物质传导热量的能力,它的单位是瓦特/米·开尔文(W / m · K)。

•热传导方程:热传导方程描述了物体内部的温度变化与热流量之间的关系,可以用下面的公式表示: $Q = -k \\cdot A \\cdot \\frac{{dT}}{{dx}}$ •热阻和热导:热阻是物体传输热量的阻力,它的大小取决于物体的热导率和几何形状。

2.3 热辐射的原理
热辐射是热工基础中的另一个重要内容,研究的是物体通过辐射传递热量的规律。

热辐射的原理可以用以下几个概念和公式来描述:
•黑体辐射:黑体是理想的辐射体,它能完全吸收所有进入它表面的辐射能,并能以最大的效率辐射出去。

•斯特藩-玻尔兹曼定律:斯特藩-玻尔兹曼定律描述了黑体辐射的功率密度与温度的关系,可以用下面的公式表示: $P = \\sigma \\cdot A \\cdot T^4$
•辐射传热:物体的辐射传热是指物体通过辐射的方式将热量传递给其它物体,其传热速率与物体的温度差和表面特性有关。

3. 热工基础的应用
热工基础的原理可以应用于各个领域,下面列举了一些常见的应用:•工业领域:热工基础的原理在工业生产过程中有很多应用,如炉窑的设计与优化、能源利用的提高、热交换器的设计和使用等。

•航空航天领域:热工基础的原理在航空航天领域有很多应用,如发动机设计与优化、热防护材料的研究和应用等。

•能源领域:热工基础的原理在能源领域有重要应用,如热电站的设计和运行、核能技术的研究和应用等。

总之,热工基础的原理和应用涵盖了多个学科和领域,对于能量转化、传递和转换都有着重要的作用。

通过深入学习和应用热工基础的原理,可以更好地理解和解决与能量相关的问题。

相关文档
最新文档