九年级数学下册《对概率的进一步认识》练习题及答案

合集下载

北师大版九年级数学《概率的进一步认识》单元测试2(含答案)

北师大版九年级数学《概率的进一步认识》单元测试2(含答案)

第三章概率的进一步认识测试题A卷(基础知识部分,50分)一、细心填一填(每题2分,共10分)1.抛掷一枚各面分别标有1,2,3,4,5,6的普通骰子,写出这个实验中的一个可能事件:2.随意地抛掷一只纸可乐杯,杯口朝上的概率约是0.22,杯底朝下的概率约是0.38,则横卧的概率是3.在中考体育达标跳绳项目测试中,1分钟跳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是__________4.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为_______________5.从装有5个红球和3个白球的袋中任意取4个,那么取道的“至少有1个是红球”与“没有红球”的概率分别为和二、精心选一选(每题3分,共15分)6.以下说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是7.从一副扑克牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事件()A.可能发生B.不可能发生C.很有可能发生D.必然发生8.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取一只,是二等品的概率等于()A.112B.16C.14D.7129.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有”20”,”08”和”北京”的字块,如果婴儿能够排成”2008北京”或者”北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是 ( )A .16B .14 C.13 D.1210.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.四位同学各自发表了下述见解: 甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形; 乙:只要指针连续转六次,一定会有一次停在6号扇形; 丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有( )A .1个B .2个C .3个D .4个三、耐心解一解(第11~13题各6分,第14题7分,共25分)11.一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B 、C 、D 三人随机坐到其他三个座位上.求A 与B 不相邻而坐的概率.A 圆桌12.某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑. (1) 写出所有选购方案(利用树状图或列表方法表示);(2) 如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.13.苏州市区某居民小区共有800户家庭,有关部门准备对该小区的自来水管网系统进行改造,为此,需了解该小区的自来水用水的情况.该部门通过随机抽样,调查了其中的30户家庭,已知这30户家庭共有87人.(1)这30户家庭平均每户__________人;(精确到1.0人)(2)这30户家庭的月用水量见下表:求这30户家庭的人均日用水量;(一个月按30天计算,精确到3001.0m)(3)根据上述数据,试估计该小区的日用水量?(精确到31m)14.学校门口经常有小贩搞摸奖活动.某小贩在一只黑色的口袋里装有只有颜色不同的50只小球,其中红球1只,黄球2只,绿球10只,其余为白球.搅拌均匀后,每2元摸1个球.奖品的情况标注在球上(如下图)(1)如果花2元摸1个球,那么摸不到奖的概率是多少?(4分)(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?(5分)B 卷(激活训练部分,50分)一、细心填一填(每题2分,共10分)15.小红、小明、小芳在一起做游戏的先后顺序.他们约定用“剪子、包袱、锤子”的方式确定.问在一个回合中三个人都出包袱的概率是___________. 16.如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为17.某射手在同一条件下进行射击,结果如下表所示:请填好最后一行的各个频率,由此表推断这个射手射击1次,击中靶心的概率的是 ;18.对某名牌衬衫抽检结果如下表:如果销售1000件该名牌衬衫,至少要准备 件合格品,供顾客更换 19.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 . 二、精心选一选(每题3分,共15分)20.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是( )A 、61B 、31C 、21D 、3221.把标有号码1,2,3,……,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是( ) A .310 B .710 C .25 D .3522.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( ) A .41 B .61 C .51 D .203 23.两道单选题都含有A 、B 、C 、D 四个选择支,瞎猜这两道题恰好全部猜对的概率有( )A .14B .12C .18D .11624.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在某个黑色方格中的概率是( )A .12B .13C .14D .51三、耐心解一解(第25~27题各6分,第28题7分,共25分)25.四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况; (2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?26.某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%. 在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中. 全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问:(1)最后一个3分球由甲、乙中谁来投,获胜的机会更大?(2)请简要说说你的理由27.人寿保险公司的一张关于某地区的生命表的部分摘录如下:根据上表解下列各题:(1)某人今年50岁,他当年去世的概率是多少?他活到80岁的概率是多少?(保留三个有效数字)(2)如果有20000个50岁的人参加人寿保险,当年死亡的人均赔偿金为10万元,预计保险公司需付赔偿的总额为多少?28.质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等;(1)请采用计算器模拟实验的方法,帮质量检查员抽取被检产品;(2)如果没有计算器,你能用什么方法抽取被检产品?29.A、B两人做游戏,掷一枚硬币,若正面出现则A得1分,反面出现则B 得1分,先得10分者获胜,胜者获得全部赌金.现在A已得8分,B已得7分,而游戏因故中断,问赌金应如何分配才合理?C组(能力提升部分,20分)30.一堆彩球有红、黄两种颜色,首先数出的50个球中有49个红球,以后每数出8个球中都有7个红球,一直数到最后8个球,正好数完,在已经数出的球中红球的数目不少于90%.(1)这堆球的数目最多有多少个?(2)在(1)的情况下,从这堆彩球中任取两个球,恰好为一红一黄的概率有多大?参考答案A 卷(基础知识部分,50分)一、细心填一填(每题2分,共10分) 1.数字6朝上 2.0.4 3.0.4 4.1125.1 0 二、精心选一选(每题3分,共15分) 6.A 7.D 8.C 9.C 10.A三、耐心解一解(第11~13题各6分,第14题7分,共25分) 11.3112.解:(1) 树状图如下: 列表如下:有6种可能结果:(A ,D),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ).(2) 因为选中A 型号电脑有2种方案,即(A ,D)(A ,E ),所以A 型号电脑被选中的概率是13(3) 由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000050006000,36y x y x解得⎩⎨⎧=-=.116,80y x 经检验不符合题意,舍去;当选用方案(A ,E )时,设购买A 型号、E型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000020006000,36y x y x解得⎩⎨⎧==.29,7y x所以希望中学购买了7台A 型号电脑.13.(1)2.9 (2)0.174m 3 (3)404m 314.(1)∵白球的个数为50-1-2-10=37∴摸不到奖的概率是:3750(2)获得10元的奖品只有一种可能即同时摸出两个黄球∴获得10元奖品的概率是:12549 =11225B 卷(激活训练部分,50分)一、细心填一填(每题2分,共10分) 15.12716.甲获胜的可能性大 17.0.895 18. 30 19.15二、精心选一选(每题3分,共15分) 20.B 21.A 22.B 23.D 24.B三、耐心解一解(第25~27题各6分,第28题7分,共25分) 25、(1)(2)P (积为奇数)=6126.解法一:(1)最后一个三分球由甲来投12342341234124第一次第二次(2)因甲在平时训练中3分球的命中率较高解法二:(1)最后一个3分球由乙来投(2)因运动员乙在本场中3分球的命中率较高27.(1)0.0122、0.206 (2)951÷78009×20000×10≈2438.18万28.答案:(1)利用计算器模拟产生随机数与这批产品编号相对应,产生10个号码即可.(2)利用摸球或抽签等.29.赌金按照8比7来分C组(能力提升部分,20分)30.答案:(1)210个.设每次摸8个球,共模了n次,则497950810nn+≥+,∴20n≤当n=20时,共有210个球,∴这堆球的数目最多有210个.(2)在(1)的情况下,210个球中有21个黄球,189个红球,从中摸两个,恰为一黄一红的概率约为0.18.(可用实验的方法)。

九年级数学下册《对概率的进一步认识》练习题及答案

九年级数学下册《对概率的进一步认识》练习题及答案

九年级数学下册《对概率的进一步认识》练习题及答案时间:60分钟 满分:100分一、选择题(30分)1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率2.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1,2,3,4,5,6。

同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.31 B.61 C.91 D.121 3.(临沂中考)2018年某市初中学业水平实验操作考试。

要求每名学生从物理、化学、生物三个学科中随机抽取一科参加考试,小华和小强都抽到物理学科的概率是( )A.31 B.41 C.61 D.91 4.(玉林中考)如图是某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球5.小明向如图所示的正方形ABCD 区域内投掷飞镖,点E 是以AB 为直径的半圆与对角线AC 的交点。

如果小明投掷飞镖一次,那么飞镖落在阴影部分的概率为( )A.21 B.41 C.31 D.81 6.某电路图如图所示,其中K 1,K 2,K 3为电路开关,L 1,L 2为能正常发光的灯泡。

任意闭合开关K 1,K 2,K 3中的两个,那么能让两盏灯泡同时发光的概率为( )A.31 B.32 C.21 D.417.(无锡中考)如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有( )A.4条B.5条C.6条D.7条8.(山西中考)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球。

新北师大版九年级数学下册第三章概率的进一步认识全章同步练习(含答案)

新北师大版九年级数学下册第三章概率的进一步认识全章同步练习(含答案)

1 用树状图或表格求概率第1课时用树状图或表格求概率1.(2018大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是( D )(A)(B)(C)(D)2.(2018聊城)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( B )(A)(B)(C)(D)3.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是( C )(A)(B)(C)(D)4.从-2,-1,1,2四个数中,随机抽取两个数相乘积为大于-4小于2的数的概率是.5.(2018泰州)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A,B两个景点中任意选择一个游玩,下午从C,D,E三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B和C的概率.解:列表如下:由表可知共有6种等可能的结果,其中小明恰好选中景点B和C的结果有1种,所以小明恰好选中景点B和C的概率为.6.如图,管中放置着三根同样的绳子AA1,BB1,CC1,小明先从左端A,B,C 三个绳头中随机选取两个打一个结,再从右端A1,B1,C1三个绳头中随机选取两个打一个结,则这三根绳子能连结成一根长绳的概率是.7.大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字-1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q的值,两次结果记为(p,q).(1)请你帮他们用树状图或列表法表示(p,q)所有可能出现的结果;(2)求满足关于x的方程x2+px+q=0没有实数解的概率.解:(1)画树状图得则共有9种等可能的结果,分别为(-1,-1),(-1,0),(-1,1),(0,-1), (0,0),(0,1),(1,-1),(1,0),(1,1).(2)方程x2+px+q=0没有实数解,即Δ=p2-4q<0,由(1)可得,满足Δ=p2-4q<0的有(-1,1),(0,1),(1,1),所以满足关于x的方程x2+px+q=0没有实数解的概率为=.8.(结论探究题)父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其他一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.解:(1)分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,画树状图得:因为共有12种等可能的结果,爸爸吃前两个汤圆刚好都是花生馅的有2种情况,所以爸爸吃前两个汤圆刚好都是花生馅的概率为=.(2)会增大,理由:分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,画树状图得:因为共有20种等可能的结果,爸爸吃前两个汤圆都是花生馅的有6种情况,所以爸爸吃前两个汤圆都是花生馅的概率为=>.所以给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性会增大.第2课时判断游戏的公平性1.一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢(都摸出黑色球判为平,不记次数,重复摸球),这个游戏是( A )(A)公平的(B)不公平的(C)先摸者赢的可能性大(D)后摸者赢的可能性大2.四边形ABCD的对角线AC,BD相交于点O,给出下列4个条件:①AB ∥CD;②OB=OD;③AD=BC;④AD∥BC.从中任取两个条件,能推出四边形ABCD是平行四边形的概率是( C )(A)(B)(C)(D)3.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( A )(A)(B)(C)(D)4.在一个不透明的盒子里装有6个分别写有数字-3,-2,-1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,记下数字a后不放回,再取出一个记下数字b,那么点(a,b)在函数y=-x2+1图象上的概率是( B )(A)(B)(C)(D)5.某人设摊“摸彩”,只见他手持一袋,内装大小、质量完全相同的3个红球,2个白球,每次让顾客“免费”从袋中摸出两球,如果两球的颜色相同,顾客得10元钱,否则顾客付给这人10元钱,请你判断一下该活动对顾客不合算(填“合算”或“不合算”).6.(2018扬州)有4根细木棒,长度分别为2 cm,3 cm,4 cm,5 cm,从中任选3根,恰好能搭成一个三角形的概率是.7.有三张卡片(形状、大小、质地都相同),正面分别写有整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张,第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.解:(1)由题意,画树状图得:(2)共有6种等可能的情况,能组成分式的有,,,,共4种情况,所以P(能组成分式)==.8.(2018无锡)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有( B )(A)4条(B)5条(C)6条(D)7条9.三个筹码,第一个一面画上×,另一面画上○;第二个一面画上○,另一面画上#;第三个一面画上#,另一面画上×.甲、乙两人玩抛掷三个筹码的游戏,其游戏规则定为“掷出的三个筹码中有一对×或一对○(答案不唯一) 则甲赢;否则,乙赢”时,这个游戏是公平的. 10.将背面完全相同,正面上分别写有数字1,2,3,4的四张卡片背面朝上放在桌面上,小明从中随机地抽取一张,把卡片上的数字作为被减数;将形状、大小完全相同,分别标有数字1,2,3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字作为减数,然后计算出这两个数的差.(1)请你用画树状图或列表法,求这两数差为0的概率;(2)小明与小华的游戏规则是:若这两数的差为非负数,则小明赢;否则,小华赢,你认为该游戏公平吗?如果公平,请说明理由;如果不公平,请你修改游戏规则,使游戏公平.解:(1)列表得:由表知,所有可能出现的结果共有12种,其中差为0的结果有3种,所以这两数差为0的概率为P==.(2)不公平,理由如下:由(1)知,所有可能出现的结果有12种,这两数的差为非负数的有9种,所以P(小明赢)=;这两数的差为负数的有3种,所以P(小华赢)=.因为≠,所以该游戏不公平.游戏规则修改为:若这两数的差为正数,则小明赢;否则,小华赢.(只要正确即可,答案不唯一)11.(统计与概率综合题)某校开展研学旅行活动,准备去的研学基地有A(曲阜),B(梁山),C(汶上),D(泗水),每位学生只能选去一个地方.王老师对本班全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).(1)求该班的总人数,并补全条形统计图;(2)求D(泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.解:(1)该班的总人数为16÷32%=50(人).补全条形统计图如图所示.(2)14÷50×360°=100.8°.(3)选去曲阜的1人记为A,选去梁山的2人分别记为B1,B2,选去汶上的1人记为C,画树状图为共有12种等可能的结果,其中所抽取的2人中恰好有1人选去曲阜,1人选去梁山的共有4种结果,所以抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率为=.第3课时“配紫色”游戏1.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为( A )(A)(B)(C)(D)2.在“配紫色”游戏中,转盘被平均分成“红”“黄”“蓝”“白”四部分,转动转盘两次,配成紫色的概率为.3.如图,小明和小丁做游戏,分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明获胜,当所转到的数字之积为偶数时,小丁获胜,这个游戏公平吗? 不公平(选填“公平”或“不公平”).4.甲商场为吸引顾客,设立了一个可以自由转动的转盘,转盘平均分为四种颜色(如图),并规定:顾客每购买100元的商品,就有一次获奖的机会,顾客连续两次转动转盘,若一次转出“蓝”色,一次转出“红”色(配成紫色)奖80元,两次都能转出“红”色奖60元,两次都能转出“蓝”色奖20元.(1)用树状图或列表法,求甲商场顾客在一次获奖的机会中获奖的概率;(2)乙商场的商品一律打八折,问在同等条件下顾客选择哪家商场比较合算.说明理由.解:(1)列表得:共有16种结果,其中一红一蓝有2种,两红有1种,两蓝有1种,共4种获奖结果,所以甲商场顾客在一次获奖的机会中获奖的概率为=.(2)甲商场平均每购物100元可获得的钱数为×80+×60+×20=15(元).乙商场平均每购物100元可节省的钱数为100×(1-0.8)=20(元). 因为15<20,所以去乙商场购物比较合算.2 用频率估计概率1.当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,求(估计)概率可以( D )(A)用列举法(B)用列表法(C)用树状图法(D)通过统计频率估计2.盒子中有白球8个和黄球若干个,为求得盒中黄球的个数,小亮进行了如下试验:每次摸出一球记下它的颜色再放回,如此重复360次,共摸出白球90次,则估计黄球的个数为( A )(A)24 (B)90 (C)16 (D)703.(2018呼和浩特)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图折线统计图,则符合这一结果的试验最有可能的是( D )(A)袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球(B)掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数(C)先后两次掷一枚质地均匀的硬币,两次都出现反面(D)先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过94.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球试验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是15 个.5.(2018锦州)如图,这是一幅长为 3 m,宽为2 m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为2.4 m2.6.小颖和小红两位同学在学习概率时,做投掷骰子(质地均匀的正方体)的试验,她们共做了60次试验,试验的结果如下表:(1)计算3点朝上的频率和5点朝上的频率;(2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大.”小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?解:(1)3点朝上的频率为;5点朝上的频率为.(2)小颖的说法不对,因为试验次数太少,不能用频率来估计概率,而事实上,5点朝上的概率与其他各点朝上的概率都相同,都为;小红的说法也不对,因为虽然6点朝上的概率是,但每次试验都具有随机性,结果有偶然性,所以试验600次,6点朝上的次数不一定是100次.7.(方程思想)一个盒中装着大小、外形一模一样的x颗白色弹珠和y 颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是;如果再往盒中放进12颗同样的白色弹珠,取得白色弹珠的概率是,则原来盒中有白色弹珠( A )(A)4颗 (B)8颗(C)12颗 (D)6颗8.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为40 枚.9.(方案设计题)一个口袋里有若干个白球,没有其他颜色的球,而且不许将球倒出来数,那么你该如何来估计出其中的白球数呢?试设计出两种不同的方案.解:(1)可以向口袋里另放几个黑球,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程;记录一共摸球的次数,并记录摸到黑球的次数,来估计白球的个数.(2)利用抽样调查方法,从口袋中摸出几个球做上标记,然后放回袋中,从口袋中一次摸出多个球,求出其中做标记的球与摸到球总数的比值,再把球放回口袋中,不断重复上述过程;据此来估计白球的小专题集训三放回与不放回问题类型一:摸出后放回1.(2018武汉)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1,2,3,4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( C )(A)(B)(C)(D)2.(2018梧州)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( D )(A)(B)(C)(D)3.有一个从袋子中摸球的游戏,小红根据游戏规则,作出了如图所示的树状图,则此次摸球的游戏规则是( A )(A)随机摸出一个球后放回,再随机摸出1个球(B)随机摸出一个球后不放回,再随机摸出1个球(C)随机摸出一个球后放回,再随机摸出3个球(D)随机摸出一个球后不放回,再随机摸出3个球4.(新定义题)定义一种“各个数位上的数字从左向右逐渐减小”的数叫做“下降数”.如“876”就是一个“下降数”.在一个不透明的布袋中有三个质地相同的小球,小球上分别标有1,2,3三个数字.随机从中摸出一球,记下数字作为百位数字,然后放回摇匀,再从口袋中任取一个小球,记下数字作为十位数,然后放回摇匀,再从口袋中任取一个小球,记下数字作为个位数字,则三次摸球后得到的三位数是“下降数”的概率是( C )(A)(B)(C)(D)5.在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y,则点P(x,y)落在直线y=-x+5上的概率是.6.为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是 ;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.解:(1)小明诵读《论语》的概率为.(2)列表得:由表格可知,共有9种等可能的结果,其中小明和小亮诵读两个不同材料的结果有6种.所以小明和小亮诵读两个不同材料的概率为=.7.在一个口袋里有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取的摸取方法分别是:小明:随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机摸取一个小球,记下标号.(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小强两次摸球的标号之和等于5的概率.解:(1)画树状图得则小明共有16种等可能的结果.则小强共有12种等可能的结果.(2)因为小明两次摸球的标号之和等于5有4种可能,小强两次摸球的标号之和等于5也有4种可能,所以P(小明两次摸球的标号之和等于5)==;P(小强两次摸球的标号之和等于5)==.类型二:摸出后不放回1.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为( A )(A)(B)(C)(D)2.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( C )(A)(B)(C)(D)3.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为( D )(A)(B)(C)(D)4.一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.5.一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,-2,-3,4,它们除了标有的数字不同之外再也没有其他区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率为;(2)若小明再从剩余的三张卡片中随机抽取一张,则小明和小芳两人均抽到负数的概率为.6.(2018兰州)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.李强从布袋里随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样就确定了点M的坐标(x,y).(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.解:(1)列表如下:(2)一共有12个等可能的点坐标,有(1,2),(2,3),(3,4)三个点在函数y=x+1的图象上,所以点 M(x,y)在函数y=x+1的图象上的概率为P==.7.(2018曲靖)数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)用树状图或列表表示所有可能出现的结果;(2)求抽取的两张卡片中,每张卡片上的三条线段能组成三角形的概率.解:(1)列表法共有12种情况.(2)A卡片上1+<3,B卡片上2+3=5,因此A,B两张卡片上的三条线段不能构成三角形,因此含A或B的组合,不符合题意,因此只有(D,C)与(C,D)两种情况,两张卡片上的三条线段可以构成三角形,只有2种情况符合题意,因此抽取的两张卡片中,每张卡片上的三条线段能组成三角形的概率是P(两张卡片上的数字都能构成三角形)==.。

初中数学鲁教版(五四制)九年级下册第六章 对概率的进一步认识2 生活中的概率-章节测试习题

初中数学鲁教版(五四制)九年级下册第六章 对概率的进一步认识2 生活中的概率-章节测试习题

章节测试题1.【题文】甲、乙两人玩“石头、剪刀、布”游戏,他们在不透明的袋子中放入形状、大小均相同的12张卡片,其中写有“石头”“剪刀”“布”的卡片张数分别为3、4、5,两人各随机摸出一张卡片(先摸者不放回卡片)来比胜负,并约定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,但同种卡片不分胜负.(1)若甲先摸,则他摸出“石头”的概率是多少?(2)若甲先摸出“石头”,则乙获胜的概率是多少?(3)若甲先摸,则他摸出哪种卡片获胜的可能性最大?【答案】(1);(2);(3) 甲先摸“剪刀”获胜的可能性最大【分析】(1)共有12张牌,石头的有3张,让3÷12即可;(2)甲先摸出“石头”后,还有11张牌,而布有5种情况,让5÷11即可;(3)分别算出各种卡片获胜占总情况的多少,比较即可.【解答】解:∵此题有12张卡片,所以先摸者有12种情况,而后摸者有11种情况,共有12×11=132种情况,(1)他摸出“石头”的概率是(2)甲先摸出“石头”,则乙获胜的可能是摸得“布”,有5种情况,∴甲先摸出“石头”,则乙获胜的概率是(3)甲先摸“石头”获胜的概率是甲先摸“剪刀”获胜的概率是甲先摸“布”获胜的概率是所以甲先摸“剪刀”获胜的可能性最大.2.【题文】一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球5个,黄球2个,小明将球搅匀,从中任意摸出一个球.(1)会有哪些可能的结果?(2)若从中任意摸出一个球是白球的概率为0.5,求口袋中红球的个数.【答案】(1)有红、白、黄三种结果;(2)3.【分析】(1)根据口袋中球的颜色种类即可得知摸出的球有红、白、黄三种结果;(2)设口袋中有x个红球,根据摸到白球的概率可得关于x的方程,解方程即可得.【解答】解:(1)从袋子中任意摸出一个球,可能是红球,也可能是黄球或白球;(2)设口袋中有x个红球,则有0.5(x+5+2)=5,解得:x=3,答:口袋中有3个红球.3.【题文】某商场为了吸引顾客,设置了两种促销方式.一种方式是:让顾客通过转转盘获得购物券.规定顾客每购买100元的商品,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准100元、50元、20元的相应区域,那么顾客就可以分别获得100元、50元、20元购物券,凭购物券可以在该商场继续购物;如果指针对准其他区域,那么就不能获得购物券.另一种方式是:不转转盘,顾客每购买100元的商品,可直接获得10元购物券.据统计,一天中共有1 000人次选择了转转盘的方式,其中指针落在100元、50元、20元的次数分别为50次、100次、200次.(1)指针落在不获奖区域的概率约是多少?(2)通过计算说明选择哪种方式更合算?【答案】(1) ;(2) 转盘的方式更合算,理由见解析【分析】(1)利用大量试验下的频率即为概率,进而求出即可;(2)算出转一次转盘得到金额的平均数,与10比较即可.【解答】解:(1)P(不获奖)==(或65%);(2)∵转转盘的平均收益为:100×+50×+20×=14>10,∴转转盘的方式更合算.4.【题文】某家住宅面积为90 m2,其中大卧室18 m2,客厅30 m2,小卧室15m2,厨房14 m2,大卫生间9 m2,小卫生间4 m2.如果一只小猫在该住宅内地面上任意跑.求:(1)P(在客厅捉到小猫);(2)P(在小卧室捉到小猫);(3)P(在卫生间捉到小猫);(4)P(不在卧室捉到小猫).【答案】(1);(2);(3);(4).【分析】用概率公式让相应面积除以总面积直接解答即可.【解答】解:(1)P(在客厅捉到小猫)=(2)P(在小卧室捉到小猫)=(3)P(在卫生间捉到小猫)=(4)P(不在卧室捉到小猫)==.5.【题文】从背面相同的同一副扑克牌中取出红桃9张、黑桃10张、方块11张,现将这些牌洗匀背面朝上放在桌面上.(1)求从中抽出一张牌是红桃的概率;(2)现从桌面上先抽掉若干张黑桃,再放入与抽掉的黑桃张数相同的红桃,并洗匀且背面都朝上排开后,随机抽一张是红桃的概率不小于,问至少抽掉了多少张黑桃?(3)若先从桌面上抽掉9张红桃和m(m>6)张黑桃后,再在桌面抽出一张牌.①当m为何值时,事件“再抽出的这张牌是方块”为必然事件?②当m为何值时,事件“再抽出的这张牌是方块”为随机事件?并求出这个事件的概率的最小值.【答案】(1)抽出一张牌是红桃的概率为;(2)至少抽掉了3张黑桃;(3)①当m为10时,事件“再抽出的这张牌是方块”为必然事件;②当m为9、8、7时,事件“再抽出的这张牌是方块”为随机事件,P(最小)=.【分析】(1)根据题意列式计算即可;(2)设至少抽掉了x张黑桃,放入x张的红桃,根据题意列不等式即可得到结论;(3)根据题意即可得到结论.【解答】解:(1)洗匀背面朝上放在桌面上有红桃9张、黑桃10张、方块11张,∴抽出一张牌是红桃的概率为;(2)设抽掉x张黑桃,则放入x张红桃,由题意得,,解得x≥3,答:至少抽掉了3张黑桃.(3)①当m为10时,事件“再抽出的这张牌是方块”为必然事件;②当m为9、8、7时,事件“再抽出的这张牌是方块”为随机事件,P(最小)= .6.【题文】保险公司对某地区人们的寿命调查后发现活到50岁的有69800人,在该年龄死亡的人数为 980人,活到70岁的有38500人,在该年龄死亡的有2400人.(1)某人今年50岁,则他活到70岁的概率为多少?(2)若有20000个50岁的人参加保险,当年死亡的赔偿金为每人2万元,预计保险公司该年赔付总额为多少?.【答案】(1)0.5566,(2)561.6万元.【分析】(1)利用活到70岁的有38500人,除以总人数得出答案即可;(2)利用20000人在69800人中所占比例结合在该年龄死亡的人数为980人,求出即可.【解答】解:(1)由题意可得:P=≈0.5516.答:某人今年50岁,则他活到70岁的概率为:0.5516;(2)由题意可得:×980×2≈561.6(万).答:预计保险公司该年赔付总额为561.6万元.7.【题文】某公司对一批某品牌衬衣的质量抽检结果如下表.(1)从这批衬衣众人抽1件是次品的概率约为多少?(2)如果销售这批衬衣600件,那么至少要再准备多少件正品衬衣供买到次品的顾客更换?【答案】(1)0.06;(2)36件【分析】(1)根据概率的求法,找准两点:1.符合条件的情况数目;2.全部情况的总数;二者的比值就是其发生的概率;(2)需要准备调换的正品衬衣数=销售的衬衫数×次品的概率,依此计算即可.【解答】解:(1)抽查总体数m=50+100+200+300+400+500=1550,次品件数n=0+4+16+19+24+30=93,P(抽到次品)==0.06.(2)根据(1)的结论:P(抽到次品)=0.06,则600×0.06=36(件).答:准备36件正品衬衣供顾客调换.8.【题文】赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),求小明投掷一次飞镖扎在中间小正方形区域(含边线)的概率是多少?【答案】0.2【分析】根据几何概率的求法:一次飞镖扎在中间小正方形区域(含边线)的概率就是阴影区域的面积与总面积的比值.【解答】解:观察这个图可知:大正方形的边长为=,总面积为20平米,而阴影区域的边长为2,面积为4平米;故飞镖落在阴影区域的概率为:=0.2.9.【题文】动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?【答案】现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6.【分析】根据概率的定义,用活到25岁的概率除以活到20岁的概率可得到现年20岁的这种动物活到25岁的概率;用活到30岁的概率除以活到25岁的概率可得到现年25岁的这种动物活到30岁的概率【解答】解:现年20岁的这种动物活到25岁的概率为=0.625,现年25岁的这种动物活到30岁的概率为=0.6,答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6.10.【题文】中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?【答案】【分析】如果所有等可能出现结果的总数为n,事件A包含的等可能的结果数为m。

北师大版九年级数学《概率的进一步认识》单元测试2(含答案)

北师大版九年级数学《概率的进一步认识》单元测试2(含答案)

第三章概率的进一步认识测试题A卷(基础知识部分,50分)一、细心填一填(每题2分,共10分)1.抛掷一枚各面分别标有1,2,3,4,5,6的普通骰子,写出这个实验中的一个可能事件:2.随意地抛掷一只纸可乐杯,杯口朝上的概率约是0.22,杯底朝下的概率约是0.38,则横卧的概率是3.在中考体育达标跳绳项目测试中,1分钟跳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是__________4.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为_______________5.从装有5个红球和3个白球的袋中任意取4个,那么取道的“至少有1个是红球”与“没有红球”的概率分别为和二、精心选一选(每题3分,共15分)6.以下说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是7.从一副扑克牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事件()A.可能发生B.不可能发生C.很有可能发生D.必然发生8.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取一只,是二等品的概率等于()A.112B.16C.14D.7129.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有”20”,”08”和”北京”的字块,如果婴儿能够排成”2008北京”或者”北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是 ( )A .16B .14 C.13 D.1210.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.四位同学各自发表了下述见解: 甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形; 乙:只要指针连续转六次,一定会有一次停在6号扇形; 丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有( )A .1个B .2个C .3个D .4个三、耐心解一解(第11~13题各6分,第14题7分,共25分)11.一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B 、C 、D 三人随机坐到其他三个座位上.求A 与B 不相邻而坐的概率.A 圆桌12.某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑. (1) 写出所有选购方案(利用树状图或列表方法表示);(2) 如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.13.苏州市区某居民小区共有800户家庭,有关部门准备对该小区的自来水管网系统进行改造,为此,需了解该小区的自来水用水的情况.该部门通过随机抽样,调查了其中的30户家庭,已知这30户家庭共有87人.(1)这30户家庭平均每户__________人;(精确到1.0人)(2)这30户家庭的月用水量见下表:月用水量(3m) 4 6 7 12 14 15 16 18 20 25 28 户数 1 2 3 3 2 5 3 4 4 2 1求这30户家庭的人均日用水量;(一个月按30天计算,精确到001.0m)(3)根据上述数据,试估计该小区的日用水量?(精确到31m)14.学校门口经常有小贩搞摸奖活动.某小贩在一只黑色的口袋里装有只有颜色不同的50只小球,其中红球1只,黄球2只,绿球10只,其余为白球.搅拌均匀后,每2元摸1个球.奖品的情况标注在球上(如下图)(1)如果花2元摸1个球,那么摸不到奖的概率是多少?(4分)(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?(5分)8元的奖品5元的奖品1元的奖品无奖品B 卷(激活训练部分,50分)一、细心填一填(每题2分,共10分)15.小红、小明、小芳在一起做游戏的先后顺序.他们约定用“剪子、包袱、锤子”的方式确定.问在一个回合中三个人都出包袱的概率是___________. 16.如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为17.某射手在同一条件下进行射击,结果如下表所示: 射击次数(n ) 10 20 50 100 200 500 … 击中靶心次数(m)819 44 92 178 455 … 击中靶心频率(mn )…请填好最后一行的各个频率,由此表推断这个射手射击1次,击中靶心的概率的是 ;18.对某名牌衬衫抽检结果如下表: 抽检件数 10 20 100 150 200 300 不合格件数13469如果销售1000件该名牌衬衫,至少要准备 件合格品,供顾客更换 19.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 . 二、精心选一选(每题3分,共15分)20.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是( )A 、61B 、31C 、21D 、3221.把标有号码1,2,3,……,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是( ) A .310 B .710 C .25 D .3522.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( ) A .41 B .61 C .51 D .203 23.两道单选题都含有A 、B 、C 、D 四个选择支,瞎猜这两道题恰好全部猜对的概率有( )A .14B .12C .18D .11624.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在某个黑色方格中的概率是( )A .12B .13C .14D .51三、耐心解一解(第25~27题各6分,第28题7分,共25分)25.四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况; (2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?26.某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%. 在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中. 全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问:(1)最后一个3分球由甲、乙中谁来投,获胜的机会更大?(2)请简要说说你的理由27.人寿保险公司的一张关于某地区的生命表的部分摘录如下:根据上表解下列各题:(1)某人今年50岁,他当年去世的概率是多少?他活到80岁的概率是多少?(保留三个有效数字)(2)如果有20000个50岁的人参加人寿保险,当年死亡的人均赔偿金为10万元,预计保险公司需付赔偿的总额为多少?28.质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等;(1)请采用计算器模拟实验的方法,帮质量检查员抽取被检产品;(2)如果没有计算器,你能用什么方法抽取被检产品?29.A、B两人做游戏,掷一枚硬币,若正面出现则A得1分,反面出现则B 得1分,先得10分者获胜,胜者获得全部赌金.现在A已得8分,B已得7分,而游戏因故中断,问赌金应如何分配才合理?C组(能力提升部分,20分)30.一堆彩球有红、黄两种颜色,首先数出的50个球中有49个红球,以后每数出8个球中都有7个红球,一直数到最后8个球,正好数完,在已经数出的球中红球的数目不少于90%.(1)这堆球的数目最多有多少个?(2)在(1)的情况下,从这堆彩球中任取两个球,恰好为一红一黄的概率有多大?参考答案A 卷(基础知识部分,50分)一、细心填一填(每题2分,共10分) 1.数字6朝上 2.0.4 3.0.4 4.1125.1 0 二、精心选一选(每题3分,共15分) 6.A 7.D 8.C 9.C 10.A三、耐心解一解(第11~13题各6分,第14题7分,共25分) 11.3112.解:(1) 树状图如下: 列表如下:有6种可能结果:(A ,D),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ).(2) 因为选中A 型号电脑有2种方案,即(A ,D)(A ,E ),所以A 型号电脑被选中的概率是13(3) 由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000050006000,36y x y x解得⎩⎨⎧=-=.116,80y x 经检验不符合题意,舍去;当选用方案(A ,E )时,设购买A 型号、E型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000020006000,36y x y x解得⎩⎨⎧==.29,7y x所以希望中学购买了7台A 型号电脑.13.(1)2.9 (2)0.174m 3 (3)404m 314.(1)∵白球的个数为50-1-2-10=37∴摸不到奖的概率是:3750(2)获得10元的奖品只有一种可能即同时摸出两个黄球∴获得10元奖品的概率是:12549 =11225B 卷(激活训练部分,50分)一、细心填一填(每题2分,共10分) 15.12716.甲获胜的可能性大 17.0.895 18. 30 19.15二、精心选一选(每题3分,共15分) 20.B 21.A 22.B 23.D 24.B三、耐心解一解(第25~27题各6分,第28题7分,共25分) 25、(1)(2)P (积为奇数)=6126.解法一:(1)最后一个三分球由甲来投12342341234124第一次第二次(2)因甲在平时训练中3分球的命中率较高解法二:(1)最后一个3分球由乙来投(2)因运动员乙在本场中3分球的命中率较高27.(1)0.0122、0.206 (2)951÷78009×20000×10≈2438.18万28.答案:(1)利用计算器模拟产生随机数与这批产品编号相对应,产生10个号码即可.(2)利用摸球或抽签等.29.赌金按照8比7来分C组(能力提升部分,20分)30.答案:(1)210个.设每次摸8个球,共模了n次,则497950810nn+≥+,∴20n≤当n=20时,共有210个球,∴这堆球的数目最多有210个.(2)在(1)的情况下,210个球中有21个黄球,189个红球,从中摸两个,恰为一黄一红的概率约为0.18.(可用实验的方法)。

九年级数学概率练习题及答案

九年级数学概率练习题及答案

九年级数学概率练习题及答案九年级数学概率练习题及答案在九年级的数学学习中,概率是一个非常重要的概念。

概率可以帮助我们预测事件发生的可能性,也可以用来解决实际生活中的问题。

下面我将给大家提供一些九年级数学概率练习题及答案,希望能对大家的学习有所帮助。

1. 一个骰子有六个面,分别标有1到6的数字。

小明投掷了这个骰子一次,求小明投掷的结果是一个偶数的概率。

解答:一个骰子有6个可能的结果,其中有3个是偶数(2、4、6)。

所以小明投掷的结果是一个偶数的概率为3/6,即1/2。

2. 一副标有数字1到10的牌,从中随机抽取一张牌,求抽到的牌是一个质数的概率。

解答:一副牌中有10张牌,其中有4张是质数(2、3、5、7)。

所以抽到的牌是一个质数的概率为4/10,即2/5。

3. 一袋中有红、蓝、绿三种颜色的球,红球有4个,蓝球有3个,绿球有5个。

从袋中随机抽取一个球,求抽到的球是红色的概率。

解答:一共有12个球,其中有4个是红球。

所以抽到的球是红色的概率为4/12,即1/3。

4. 有一个有10个人的班级,其中有6个男生和4个女生。

从班级中随机选取一个人,求选取的人是女生的概率。

解答:班级中共有10个人,其中有4个是女生。

所以选取的人是女生的概率为4/10,即2/5。

5. 一副扑克牌中有52张牌,其中有4个花色(红桃、黑桃、方块、梅花),每个花色有13张牌。

从中随机抽取一张牌,求抽到的牌是红桃的概率。

解答:一共有52张牌,其中有13张是红桃。

所以抽到的牌是红桃的概率为13/52,即1/4。

通过以上习题的解答,我们可以看出,概率的计算主要是通过计算事件发生的可能性与总体样本空间的比值来得到。

在实际生活中,我们可以运用概率的概念来解决各种问题,比如购买彩票中奖的概率、天气预报的准确率等等。

当然,概率也有一些基本的性质和规律,比如概率的范围是0到1之间,事件不可能发生时概率为0,事件一定发生时概率为1。

此外,概率的计算还可以通过频率的方法来进行,即通过实验的结果来估算概率。

第三章《概率的进一步认识》单元测试题(含答案)

第三章《概率的进一步认识》单元测试题(含答案)

第三章 概率的进一步认识第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.三张外观相同的卡片上分别标有数字1,2,3,从中随机一次性抽出两张,这两张卡片上的数字恰好都小于3的概率是( )A.13B.23C.16D.192.某学校在八年级开设了数学史、诗词赏析、陶艺三门课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一门课程的概率是( )A.12B.13C.16D.193.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A.16B.29C.13D.234.有3个整式x ,x +1,2,先随机取一个整式作为分子,再从余下的整式中随机取一个作为分母,恰能组成分式的概率是( )A.13B.12C.23D.565.在物理课上,某实验的电路图如图1所示,其中S 1,S 2,S 3表示电路的开关,L 表示小灯泡,R 为保护电阻.若闭合开关S 1,S 2,S 3中的任意两个,则小灯泡L 发光的概率为( )图1A.16B.13C.12D.236.如图2,两个转盘分别自由转动一次,当它们都停止转动时,两个转盘的指针都指向2的概率为( )图2A.12B.14C.18D.1167.在一个不透明的口袋里装了只有颜色不同的黄球、白球若干只.某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复这一过程.下表是活动中的一组数据,则摸到黄球的概率约是( )A.0.4 B .0.5 C .0.6 D .0.78.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下表格,则符合这一结果的试验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃 B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀” C .抛一个质地均匀的正六面体骰子,向上的面点数是5 D .抛一枚硬币,出现反面的概率9.为了估计不透明的袋子里装有多少个球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有球( )A .10个B .20个C .100个D .121个10.有A ,B 两粒质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),小王掷骰子A ,朝上的数字记作x ;小张掷骰子B ,朝上的数字记作y .在平面直角坐标系中有一矩形,四个点的坐标分别为(0,0),(6,0),(6,4)和(0,4),小王、小张各掷一次所确定的点P (x ,y )落在矩形内(不含矩形的边)的概率是( )A.23B.512C.12D.712请将选择题答案填入下表:第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.一个不透明的袋子中装有2个红球,1个绿球,这些球除颜色不同外其余都相同,从袋子中随机摸出一个小球记下颜色后放回,再随机摸出一个小球,则一次摸到红球一次摸到绿球的概率为________.12.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为________.13.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方________.(填“公平”或“不公平”).14.点P 的坐标是(a ,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a ,b)在平面直角坐标系中第二象限内的概率是________.15.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取到白色棋子的概率是25.若再往盒中放进3颗黑色棋子,则取到白色棋子的概率变为14,原来围棋盒中有白色棋子______颗.16.如果任意选择一对有序整数(m ,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等实数根的概率是________.三、解答题(共72分)17.(6分)不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支.(1)从文具袋中随机抽取1支笔芯,求恰好抽到的是红色笔芯的概率;(2)从文具袋中随机抽取2支笔芯,求恰好抽到的都是黑色笔芯的概率.(请用画树状图法或列表法求解)18.(6分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球和黄球.怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次摸出1个球,放回盒中再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:由上述摸球试验可推算:(1)盒中红球、黄球占总球数的百分比分别是多少?(2)盒中有红球多少个?19.(8分)甲、乙、丙三名同学站成一排进行毕业合影留念,请用列表或画树状图的方法列出所有可能的情形,并求出甲、乙两人相邻的概率是多少.20.(8分)九年级某班组织全班活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买圆珠笔和铅笔两种奖品,已知圆珠笔的价格为2元/支,铅笔的价格为1元/支,且每种笔至少买一支.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的圆珠笔与铅笔数量相等的概率.21.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是________;(2)如果小明将“求助”留在第二题使用,请用画树状图或者列表的方法来分析小明顺利通关的概率;(3)从概率的角度分析,你建议小明在第几题使用“求助”?22.(10分)小明、小芳做一个“配色”的游戏.如图3是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其他情况下不分胜负.(1)利用列表或画树状图的方法表示此游戏所有可能出现的结果;(2)此游戏规则对小明、小芳公平吗?试说明理由.图323.(12分)一个暗箱中有大小相同的1个黑球和n个白球(记为白1、白2、…、白n),每次从中取出一个球,取到白球得1分,取到黑球得2分,甲从暗箱中有放回地依次取出2个球,而乙从暗箱中一次性取出2个球.(1)若n=2,分别求甲取得3分的概率和乙取得3分的概率;(请用“画树状图”或“列表”等方式给出分析过程)(2)若乙取得3分的概率小于120,则白球至少有多少个?(请直接写出结果)24.(12分)五一假期,某公司组织部分员工分别到A,B,C,D四地旅游,公司按定额购买了前往各地的车票.图4是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,求去D地车票的数量,并补全条形统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),则员工小胡抽到去A地的车票的概率是多少?(3)若有一张车票,小王、小李都想要,最后决定采取抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用列表或画树状图的方法分析这个规则对双方是否公平.图4详解详析1.A [解析] 列表如下:3的情况有2种,∴P(两张卡片上的数字都小于3)=26=13.解题突破从m(m >2)张卡片中一次性抽出两张卡片,可以理解为先抽出一张,再从剩下的里面抽出一张,即属于“抽出不放回”试验问题,可见为两步试验问题,可用列表法求解.2.B [解析] 列表如下:共有9所以其概率为39=13.故选B . 3.C [解析] 画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C .4.C [解析] 画树状图如下:共有6种等可能的结果,其中恰能组成分式的结果数为4种, 所以恰能组成分式的概率为46=23.5.B [解析] 列表如下:共有613L 发光的概率是26=13.故选B .6.D [解析] 列表如下:∵共有指针都指向2的概率为116.故选D .7.B [解析] 观察表格得:通过多次摸球试验后发现摸到黄球的频率稳定在0.5左右,则P(摸到黄球)=0.5.8.B [解析] A .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C .抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D .抛一枚硬币,出现反面的概率为12,不符合题意.故选B .9.C10.B [解析] 画树状图如下:∵共有36种等可能的结果,小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的有15种情况,∴小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的概率是1536=512.故选B .11.49[解析] 画树状图如下:∵共有9种等可能的结果,一次摸到红球一次摸到绿球的有4种情况,∴一次摸到红球一次摸到绿球的概率是49.12.16[解析] 画树状图如下:∵共有12种等可能的结果,点落在第一象限的可能是(1,2),(2,1)两种情形, ∴该点在第一象限的概率为212=16. 13.公平 [解析] 两人写的数共有奇偶、偶奇、偶偶、奇奇四种情况,因此同为奇数或同为偶数的概率为24=12,一奇一偶的概率也为24=12,所以这个游戏对双方公平.14.15[解析] 画树状图如下:共有20种等可能的结果,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15.15.216.17 [解析] 依题意知m =0,±1,n =0,±1,±2,±3,∴有序整数(m ,n)共有3×7=21(种).∵方程x 2+nx +m =0有两个相等的实数根,∴Δ=n 2-4m =0,有(0,0),(1,2),(1,-2)三种可能,∴关于x 的方程x 2+nx +m =0有两个相等实数根的概率是321=17.17.[解析] (1)由不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到的都是黑色笔芯的情况,再利用概率公式即可求得答案.解:(1)∵不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,∴恰好抽到的是红色笔芯的概率为33+2=35.(2)画树状图如下:∵共有20种等可能的结果,恰好抽到的都是黑色笔芯的只有2种情况, ∴恰好抽到的都是黑色笔芯的概率为220=110.18.解:(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次, 所以红球所占百分比为20÷50×100%=40%,黄球所占百分比为30÷50×100%=60%. 答:盒中红球占总球数的40%,黄球占总球数的60%.(2)由题意可知,50次摸球试验活动中,出现有记号的球4次,所以总球数为8÷450=100,所以红球有40%×100=40(个).答:盒中有红球40个. 19.解:用树状图分析如下:∵一共有6种等可能的情况,甲、乙两人相邻的有4种情况, ∴甲、乙两人相邻的概率是46=23.20.解:(1)设买圆珠笔x 支,铅笔y 支, 则2x +y =15,所以y =15-2x. 当x =1时,y =13; 当x =2时,y =11; 当x =3时,y =9; 当x =4时,y =7; 当x =5时,y =5; 当x =6时,y =3; 当x =7时,y =1. 所以共有7种购买方案.(2)在这7种方案中,买到的圆珠笔与铅笔数量相等的只有1种,所以P(买到的圆珠笔与铅笔数量相等)=17.21.解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是13.故答案为:13.(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示第二道单选题剩下的3个选项.画树状图如下:∵共有9种等可能的结果,小明顺利通关的只有1种情况, ∴小明顺利通关的概率为19.(3)∵如果在第一题使用“求助”,小明顺利通关的概率为18,如果在第二题使用“求助”,小明顺利通关的概率为19,∴建议小明在第一题使用“求助”. 解题突破(1)直接利用概率公式求解;(2)此问属于两次试验概率问题,注意第二次试验时只有三种可能;(3)比较第一题使用“求助”小明顺利通关的概率与第二题使用“求助”小明顺利通关的概率的大小,把“求助”用在通关概率大的那一次上.22.解:(1)用列表法将所有可能出现的结果表示如下:(2)不公平.理由:上面等可能出现的12种结果中,有3种情况能配成紫色,故配成紫色的概率是312,即小芳获胜的概率是14;但只有2种情况能配成绿色,故配成绿色的概率是212,即小明获胜的概率是16.而14>16,故小芳获胜的可能性大,这个“配色”游戏规则对双方是不公平的.23.解:(1)得3分,即为取到黑球、白球各1个. 甲从暗箱中有放回地依次取出2个球,画树状图如下:∴甲取得3分的概率为49;乙从暗箱中一次性取出2个球,画树状图如下:∴乙取得3分的概率=46=23.(2)若乙取得3分的概率小于120,则2n +1<120,∴n >39,∴白球至少有40个. 24.解:(1)设去D 地的车票有x 张,则x =(x +20+40+30)×10%,解得x =10. 答:去D 地的车票有10张. 补全条形统计图如图所示.(2)小胡抽到去A 地的车票的概率为2020+40+30+10=15.答:员工小胡抽到去A 地的车票的概率是15.(3)列表如下:小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),∴小王掷得着地一面的数字比小李掷得的着地一面数字小的概率为616=38.则小王掷得着地一面的数字不小于小李掷得的着地一面数字的概率为1-38=58.∵58≠38,∴这个规则对双方不公平.。

达标测试鲁教版(五四制)九年级数学下册第六章对概率的进一步认识专题攻克试卷(精选含答案)

达标测试鲁教版(五四制)九年级数学下册第六章对概率的进一步认识专题攻克试卷(精选含答案)

九年级数学下册第六章对概率的进一步认识专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机搭配在一起,则颜色搭配正确的概率是()A.14B.13C.12D.342、数学兴趣小组在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制了如图所示的频率分布散点图,则符合这一结果的试验可能是()A.抛掷一枚硬币,正面向上的概率B.抛掷一枚骰子,朝上一面的点数为3的倍数的概率C.从装有3个红球、2个黄球的袋子中,随机摸出1个球为红球的概率D.一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张,牌的花色是红桃的概率3、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是()A.24 B.18 C.16 D.64、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B.可以用试验次数累计最多时的频率作为概率的估计值C.由此估计这种幼苗在此条件下成活的概率约为0.9D.如果在此条件下再移植这种幼苗20000株,则必定成活18000株5、抛掷一枚质地均匀的硬币两次,两次都是正面朝上的概率为()A.12B.13C.14D.186、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球()个A.12 B.15 C.18 D.247、小明语数英的科目成绩的排序为语文>数学>英语.到家后,小明妈妈从小明书包依次抽2张试卷,若第二次抽到的试卷比第一次抽到的试卷成绩高的话,则小明可以获得奖励.请问小明获得奖励的概率为( )A .13 B .12 C .23 D .168、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:下面有3个推断:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是( )A .②B .①③C .②③D .①②③9、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )A .14B .12C .13 D .3410、如图,直线a b ∥,直线c 与直线a 、b 都相交,从1∠,2∠,3∠,4∠这四个角中任意选取2个角,则所选取的2个角互为补角的概率是( )A.14B.12C.34D.23第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.2、2022年春节贺岁档影片即将上映,小明、小红二人准备在《四海》、《奇迹》、《断桥》、《狙击手》四部影片中各自随机选择一部影片观看(假设两人选择每部影片的机会均等),则二人恰好选择同一部影片观看的概率为________.3、某植物种子在相同的条件下发芽试验的结果如下:则该植物种子发芽的概率的估计值是______.(结果精确到0.01)4、一个不透明的盒子中装有8个白球和若干个红球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验1000次,其中有199次摸到红球,由此估计盒子中的红球大约有______个.5、小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,则小明正好穿的是相同的一双袜子的概率是________.三、解答题(5小题,每小题10分,共计50分)1、某学校为了迎接国家文明城市的复查,需要选取1名或2名同学作为志愿者.九(1)班的A同学、B同学和九(2)班的C同学、D同学4名同学报名参加.(1)若从这4名同学中随机选取1名志愿者,则被选中的这名同学恰好是九(1)班同学的概率是_________.(2)若从这4名同学中随机选取2名志愿者,请用列举法(画树状图或列表)求这2名同学恰好都是九(2)班同学的概率.2、在一个不透明的口袋里装有若干个除颜色外其余均相同的红、黄、蓝三种颜色的小球,其中红球2个,蓝球1个,若从中任意摸出一个球,摸到球是黄球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色一次是红色、另一次是黄色的(第一次可能是红色也可能是黄球)概率.3、将A、B、C、D四人随机分成甲乙两组参加乒乓球双打比赛,求A、B同时分在甲组的概率.4、太原是国家历史文化名城,有很多旅游的好去处,周末哥哥计划带弟弟出去玩,放假前他收集了太原动物园、晋祠公园、森林公园、汾河湿地公园四个景点的旅游宣传卡片,这些卡片的大小、形状及背面完全相同,分别用D,J,S,F表示,如图所示,请用列表或画树状图的方法,求下列事件发生的概率.(1)把这四张卡片背面朝上洗匀后,弟弟从中随机抽取一张,作好记录后,将卡片放回洗匀,哥哥再抽取一张,求两人抽到同一景点的概率;(2)把这四张卡片背面朝上洗匀后,弟弟和哥哥从中各随机抽取一张(不放回),求两人抽到动物园和森林公园的概率.5、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:(1)这次活动共调查了______人,并补充完整条形统计图;(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表的方法,求出两人恰好选择同一种支付方式的概率.-参考答案-一、单选题1、C【解析】【分析】根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出搭配正确的概率即可.【详解】解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯.经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.∴颜色搭配正确的概率是12.故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.2、C【解析】【分析】根据统计图可知,试验结果在0.6附近波动,即其概率P≈0.6,计算四个选项的概率,约为0.6者即为正确答案.【详解】解:A、掷一枚硬币,出现正面朝上的概率为12,故此选项不符合题意;B、抛掷一枚骰子,朝上一面的点数为3的倍数的概率为21=63,故此选项不符合题意;C.从装有3个红球、2个白球袋子中,随机摸出一球为红球的概率为33=3+25,故此选项符合题意;D.一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张,牌的花色是红桃的概率为14,故此选项不符合题意;故选:C.【点睛】考查了利用频率估计概率的知识,解题的关键是能够分别求得每个选项的概率,然后求解.3、A【解析】【分析】根据频率之和为1计算出白球的频率,然后再根据“数据总数×频率=频数”,算白球的个数即可.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.40,∴口袋中白色球的个数可能是60×0.40=24个.故选A.【点睛】本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.根据频率之和为1计算出摸到白球的频率是解答本题的关键.4、D【解析】【分析】根据频率估计概率逐项判断即可得.【详解】解:A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B.可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C.由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D.【点睛】本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键.5、C【解析】【分析】画树状图展示所有4种等可能的结果数,再找出两次都是“正面朝上”的结果数,然后根据概率公式求解.【详解】解:画树状图如下:共有4种等可能的结果数,其中两次都是“正面朝上”的结果有1种,∴两次都是“正面朝上”的概率=14,故选:C.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.6、A【解析】【分析】根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可.【详解】解:设有红色球x 个, 根据题意得:0.418x x=+, 解得:x =12,经检验,x =12是分式方程的解且符合题意.故选:A .【点睛】考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数.7、B【解析】【分析】画出树状图求解即可.【详解】解:分别用A ,B ,C 表示语文,数学,英语的成绩,由题意得,由树状图可知,一共有6种可能的结果,符合题意的结果有3种, 所以获得奖励的概率为31=62, 故选B .【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即mPn .8、C【解析】【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案.【详解】解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;故选:C.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.9、B【解析】【分析】列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.【详解】解:列表如下:由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果, 所以两次摸出的小球的标号之和是3的概率为2142=, 故选:B . 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率. 10、B 【解析】 【分析】用列表法列出所有结果数,再求出所选取的2个角互为补角结果数,即可求解. 【详解】解:从1∠,2∠,3∠,4∠这四个角中任意选取2个角,列表可得:共有12种结果,其中所选取的2个角互为补角有6种结果(1∠,2∠)、(2∠,1∠)、(2∠,3∠)、(3∠,2∠)、(2∠,4∠)、(4∠,2∠) 所选取的2个角互为补角的概率为61122= 故选B 【点睛】此题考查了列表法或树状图求概率,涉及了平行线的性质以及补角的定义,解题的关键是掌握列表法或树状图求概率的方法. 二、填空题 1、8 【解析】 【分析】首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可. 【详解】解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近, ∴摸出红球的概率为0.2, 由题意,20.22m=+, 解得:8m =,经检验,8m 是原方程的解,且符合题意,故答案为:8.【点睛】本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键.2、14##0.25【解析】【分析】用a表示《四海》,b表示《奇迹》,c表示《断桥》,d表示《狙击手》,列树状图求解.【详解】解:用a表示《四海》,b表示《奇迹》,c表示《断桥》,d表示《狙击手》,列树状图如下:共有16种等可能的情况,其中二人恰好选择同一部影片观看的有4种,∴P(二人恰好选择同一部影片观看)=416=14,故答案为:14.【点睛】此题考查了列举法求事件的概率,正确掌握列举法的解题方法及概率的计算公式是解题的关键.3、0.95【解析】【分析】根据题意及频率估计概率可直接进行求解. 【详解】 解:由表格得:当每批粒数为50时,则种子发芽的频率为450.950=;当每批粒数为100时,则种子发芽的频率为960.96100=;当每批粒数为300时,则种子发芽的频率为2830.943300≈;当每批粒数为400时,则种子发芽的频率为3800.95400=;当每批粒数为500时,则种子发芽的频率为4740.948500=;当每批粒数为1000时,则种子发芽的频率为9480.9481000=; ∴该植物种子发芽的概率的估计值是0.95; 故答案为0.95. 【点睛】本题主要考查利用频率估计概率,熟练掌握利用频率估计概率是解题的关键. 4、2 【解析】 【分析】估计利用频率估计概率可估计摸到白球的概率为0.199,然后根据概率公式计算这个盒子中红球的数量. 【详解】解:设盒子中的红球大约有x 个, 根据题意,得:19981000x x =+, 解得x ≈2,经检验:x =2是分式方程的解,所以盒子中红球的个数约为2个, 故答案为:2. 【点睛】此题主要考查频率估计概率,概率公式的应用,解题的关键是根据题意列出分式方程求解. 5、13【解析】 【分析】两双不同的袜子共有6种可能的组合,而穿的是同一双袜子的可能情况有2种,从而可求得概率. 【详解】第一双袜子的两只分别记为12,a a ,第二袜子的两只分别记为12,b b ,列出树状图如下:两双不同的袜子共有12种可能的组合,是同一双袜子的可能情况有4种 则小明正好穿的是相同的一双袜子的概率是41123故答案为:13【点睛】本题考查了简单事件的概率,关键是根据题意求出事件的所有可能的结果及某事件发生的可能结果,则由概率计算公式即可求得概率. 三、解答题1、 (1)1 2(2)1 6【解析】【分析】(1)四名同学中九(1)班占一半,求出所求概率即可;(2)列表得出所有等可能的情况数,找出这2名同学恰好都是九(2)班同学的情况数,即可求出所求概率.(1)若从这4名同学中随机选取1名志愿者,则被选中的这名同学恰好是九(1)班同学的概率是12;故答案为:12;(2)根据题意列表如下:所有等可能的情况数有12种,其中这2名同学恰好都是九(2)班同学的情况有2种,则这2名同学恰好都是九(2)班同学的概率是212=16.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.2、 (1)1个;(2)1 3【解析】【分析】(1)设袋中黄球x个,利用概率公式列出方程求解即可;(2)画树状图,得出全部的可能结果总数和符合条件的结果数,利用概率公式求解即可.(1)解:设袋中黄球个数是x个,根据题意,得:1 34xx,解得:x=1,经检验,x=1是所列方程的解,答:袋中黄球的个数是1个;(2)解:画树状图为:由图可知,一共有12种等可能的结果,其中两次摸到球的颜色一次是红色,另一次是黄色的有4种,∴两次摸到球的颜色一次是红色,另一次是黄色的概率为41 123.【点睛】本题考查列表法或树状图法求概率、简单的概率计算,理解题意,正确画出树状图是解答的关键.3、1 6【解析】【分析】根据题意列举出符合题意的各种情况的个数,找出满足A,B都在甲组的结果数,再根据概率公式即可得出答案.【详解】解:根据题意列表如下:共有6种结果,每种结果出现的可能性相同,其中满足A,B都在甲组的结果有1种,∴A,B都在甲组的概率是16.【点睛】此题考查的是用列举法求概率.列举法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.4、(1)14;(2)16.【解析】【分析】(1)根据题意列表可得共有16种等可能的结果,其中两人抽到同一景点的结果有4种,进而由概率公式求解即可;(2)根据题意列表可得共有12种等可能的结果,其中两人抽到动物园和森林公园的结果有2种,进而由概率公式求解即可.【详解】解:(1)列表如下:所有等可能的情况数为16种,两人抽到同一景点的结果有4种,所以两人抽到同一景点的概率为41 164.(2)列表如下:所有等可能的情况数为12种,其中两人抽到动物园和森林公园的结果有2种,所以两人抽到动物园和森林公园的概率为21 126.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.5、(1)200;补图见解析;(2)81°;(3)1 3【解析】【分析】(1)根据使用支付方式为银行卡的占比为15%,人数为30人即可求得总人数,根据微信支付所占的百分比为30%乘以总人数即可求得,根据总人数减去微信支付,银行卡,现金,其他方式支付的人数即可求得支付宝支付的人数;(2)先求得支付宝支付的人数所占比45200乘以360°即可求得扇形圆心角的度数;(3)根据列表法求概率即可.【详解】解:(1)3015%200÷=(人)故答案为:200其中使用微信支付的有:20030%60⨯=(人)使用支付宝支付的有:2006030501545----=(人)(2)4536081 200⨯︒=︒故答案为:81°(3)将微信记为A,支付宝记为B,银行卡记为C,列表格如下:共有9种等可能性的结果,其中两人恰好选择同一种支付方式的结果有3种,则P(两人恰好选择同一种支付方式)31 93 ==【点睛】本题考查了扇形统计图与条形统计图信息关联,求条形统计图某项数据,求扇形统计图圆心角,列表法求概率,掌握以上知识是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学下册《对概率的进一步认识》练习题及答案时间:60分钟 满分:100分一、选择题(30分)1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率2.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1,2,3,4,5,6。

同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.31 B.61 C.91 D.121 3.(临沂中考)2018年某市初中学业水平实验操作考试。

要求每名学生从物理、化学、生物三个学科中随机抽取一科参加考试,小华和小强都抽到物理学科的概率是( )A.31 B.41 C.61 D.91 4.(玉林中考)如图是某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球5.小明向如图所示的正方形ABCD 区域内投掷飞镖,点E 是以AB 为直径的半圆与对角线AC 的交点。

如果小明投掷飞镖一次,那么飞镖落在阴影部分的概率为( )A.21 B.41 C.31 D.81 6.某电路图如图所示,其中K 1,K 2,K 3为电路开关,L 1,L 2为能正常发光的灯泡。

任意闭合开关K 1,K 2,K 3中的两个,那么能让两盏灯泡同时发光的概率为( )A.31 B.32 C.21 D.417.(无锡中考)如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有( )A.4条B.5条C.6条D.7条8.(山西中考)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球。

两次都摸到黄球的概率是( )A.94 B.31 C.92 D.91 9.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做“中高数”如796就是一个“中高数”。

若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是( )A.21 B.32 C.52 D.53 10.(淄博中考)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同。

甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n 。

如果m ,n 满足n m ≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )A.83 B.85 C.41 D.21 二、填空题(24分)11.(嘉兴中考)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,那么我赢。

”小红赢的概率是_________,据此判断该游戏_______(填“公平”或“不公平”)。

12.(滨州中考)若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是_________。

13.(聊城中考)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去。

如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是__________。

14.(聊城中考)如果任意选择一对有序整数(m ,n ),其中|m |≤1,|n |≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等的实数根的概率是___________。

15.盒子里有3张分别写有整式x +1,x +2,3的卡片,现从中随机抽取两张,把卡片的整式分别作为分子和分母,则能组成分式的概率是_________。

16.如图,有四张不透明的卡片,除正面的函数表达式不同外,其余均相同,将它们背面朝上洗匀后,从中随机抽取两张卡片,则抽到的函数图象均不经过第四象限的卡片的概率为____________。

17.(呼和浩特中考)已知函数y=(2k-1)x+4(k为常数),若从-3≤k≤3中任取k值,则得到的函数是具有性质“y随x的增加而增加”的一次函数的概率为___________。

18.如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A,B,C,D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片这两张卡片上的算式只有一个正确的概率是_____________。

三、解答题(8+8+10+10+10=46分)19.(南京中考)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别。

分别从每个口袋中随机摸出1个球。

(1)求摸出的2个球都是白球的概率。

(2)下列事件中,概率最大的是_______。

A.摸出的2个球颜色相同B.摸出的2个球颜色不相同C.摸出的2个球中至少有1个红球D.摸出的2个球中至少有1个白球20.小明和小亮用如图的同一个转盘进行“配紫色”游戏游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),那么小明得1分,否则小亮得1分。

你认为这个游戏对双方公平吗?若公平,请说明理由;若不公平,请你修改规则使游戏对双方公平。

21.端午节“赛龙舟,吃粽子”是中华民族的传统习俗。

节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同粽子煮好后,小邱的妈妈在一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;在一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子。

根据以上情况,请你回答下列问题。

(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子请用列表或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子,一个是豆沙粽子的概率。

22.(贵阳中考)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A 点开始沿着顺时针方向连续跳动几个顶点, 第二次从第一次的终点处开始,按第一次的方法跳动。

(1)随机掷一次骰子,则棋子跳动到点C 处的概率是__________。

(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C 处的概率。

23.(烟台中考)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷。

某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种自己最喜欢的支付方式。

现将调查结果进行统 计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题。

(1)这次活动共调查了________人,在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为___________。

(2)将条形统计图补充完整,观察此图,支付方式的“众数”是“______”。

(3)在一次购物中,小明和小亮都想从“微信"“支付宝"“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率。

参考答案一、1.D 2.C 3.D 4.D 5.B 6.A 7.B 8.A 9.C 10.B 二、11.41 不公平 12.31 13.52 14.71 15.32 16.21 17.125 18.32三、19.解:(1)面树状图如下:由树状图可知,共有6种等可能的结果,其中摸出的2个球都是白球的结果有2种,所以摸出的2个球都是白球的概率为3162=。

(2)D20.解:列表如下。

第一次 第二次红黄蓝红 (红,红) (红,黄) (红,蓝) 黄 (黄,红) (黄,黄) (黄,蓝) 蓝(蓝,红) (蓝,黄) (蓝,蓝)从表中可以得到:P (小明获胜)9=,P (小亮获胜)9=.小明的得分为9519=⨯(分),小亮的得分为 94194=⨯(分).∵95>94,∴游戏不公平,修改规则不唯一。

如:若两次转出颜色相同或配成紫色,则小明得4分,否则小亮得5分。

21.解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是2142=。

(2)列表如下.花盘 白盘 ABC 1C 2A 1 (A 1,A ) (A 1,B ) (A 1,C 1) (A 1,C 2) A 2 (A 2,A ) (A 2,B ) (A 2,C 1) (A 2,C 2) B (B ,A ) (B ,B ) (B ,C 1) (B ,C 2) C(C ,A )(C ,B )(C ,C 1) (C ,C 2)∴小邱取到的两个粽子中一个是红枣粽子,一个是豆沙粽子的概率是16。

22.解:(1)41(2)列表如下. 第一次 第二次9 8 7 6 9 (9,9) (8,9) (7,9) (6,9) 8 (9,8) (8,8) (7,8) (6,8) 7 (9,7) (8,7) (7,7) (6,7) 6(9,6)(8,6)(7,6)(6,6)由表可知,共有16种可能,和为14可以到达点C ,共有3种情况,所以棋子最终跳动到点C 处的概率为163。

23,解:(1)200 81º (2)“微信”人数为200 × 30% =60 (人),“银行 卡”人数为200 x15%=30(人),补全图形略。

微信(3)将“微信记为A 、“支付宝”记为B 、“银行卡”记为C ,画树状图如图。

∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为3193 。

相关文档
最新文档