概率的进一步认识(专项练习题)

合集下载

九年级第三章 概率的进一步认识测试卷及解析

九年级第三章 概率的进一步认识测试卷及解析

第三章 概率的进一步认识检测题(本检测题满分:120分;时间:120分钟)一、选择题(每小题3分;共30分)1.如图是一个可以自由转动的正六边形转盘;其中三个正三角形涂有阴影.转动指针;指针落在有阴影的区域内的概率为a ; 如果投掷一枚硬币;正面向上的概率为b .关于a ;b 大小的正确判断是( ) A.a >b B.a =b C.a <b D.不能判断 2.下列说法正确的是( ) A .在一次抽奖活动中;“中奖的概率是1100”表示抽奖100次就一定会中奖 B .随机抛一枚硬币;落地后正面一定朝上C .同时掷两枚均匀的骰子;朝上一面的点数和为6D .在一副没有大、小王的扑克牌中任意抽一张;抽到的牌是6的概率是1133.在一个不透明的盒子中装有8个白球;若干个黄球;它们除颜色不同外;其余均相同.若从中随机摸出一个球;它是白球的概率为23;则黄球的个数为( )4.()让图中两个转盘分别自由转动一次;当转盘停止转动时;两个指针分别落在某两个数所表示的区域;则这两个 数的和是2的倍数或是3的倍数的概率等于( )A .316B .38C .58D .13165.(湖北宜昌中考)在课外实践活动中;甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率;其试验次数分别为10次;50次;100次;200次;其中试验相对科学的是( )A .甲组B .乙组C .丙组D .丁组 6.(某个密码锁的密码由三个数字组成;每个数字都是0-9这十个数字中的一个;只有当三个数字与所设定的密码及顺序完全相同;才能将锁打开;如果仅忘记了所设密码的最后那个数字;那么一次就能打开该密码锁的概率是( ) A.110B.19C.13D.127.10名学生的身高如下(单位:cm ):159 169 163 170 166 164 156 172 163 162 从中任选一名学生;其身高超过165 cm 的概率是( ) A.12B.25C.15D.1108.某市民政部门五一期间举行“即开式福利彩票”的销售活动;发行彩票10万张(每张彩票2元);在这次彩票销售活动中;设置如下奖项:奖金(元)100050010050102数量(个)1040150400100010000如果花2元钱买1张彩票;那么所得奖金不少于50元的概率是()A. B. C. D.9.青青的袋中有红、黄、蓝、白球若干个;晓晓又放入5个黑球;通过多次摸球试验;发现摸到红球、黄球、蓝球、白球的频率依次为30%、15%、40%、10%;则青青的袋中大约有黄球()个个个个10.航空兵空投救灾物资到指定的区域(大圆)如图所示;若要使空投物资落在中心区域(小圆)的概率为;则小圆与大圆半径的比值为()A. C.二、填空题(每小题3分;共24分)11.任意抛掷一枚质地均匀的正方体骰子1次;骰子的六个面上分别刻有1到6的点数;掷得朝上一面的点数大于4的概率为.12.(浙江温州中考)一个不透明的袋子中只装有1个红球和2个蓝球;它们除颜色外其余都相同.现随机从袋中摸出两个球;颜色是一红一蓝的概率是.13(长沙中考)若同时抛掷两枚质地均匀的骰子;则事件“两枚骰子朝上的点数互不相同”的概率是__________.14.在一个不透明的袋中装有除颜色外其余都相同的3个小球;其中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后不再放回;第二次再从袋中摸出一个;那么两次都摸到黄色球的概率是.15.(林业部门要考察某种幼树在一定条件下的移植成活率;下表是这种移植的棵数n成活的棵数m成活的频率m n16.山西中考)现有两个不透明的盒子;其中一个装有标号分别为1;2的两张卡片;另一个装有标号分别为1;2;3的三张卡片;卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片;则两张卡片标号恰好相同的概率是.17.(重庆中考) 从-1;1;2这三个数字中;随机抽取一个数;记为a.那么;使关于x的一次函数2y x a =+的图象与x 轴、y 轴围成的三角形面积为14;且使关于x 的不等式组212x a x a +≤⎧⎨-≤⎩,有解的概率为 . 18.(呼和浩特中考)在学校组织的义务植树活动中;甲、乙两组各四名同学的植树棵数如下;甲组:9;9;11;10;乙组:9;8;9;10;分别从甲、乙两组中随机选取一名同学;则这两名同学的植树总棵数为19的概率为 .三、解答题(共66分)19.(8分)有两组卡片;第一组三张卡片上各写着A 、B 、B ;第二组五张卡片上各写着A 、B 、B 、D 、F .试用列表法求出从每组卡片中各抽取一张;两张都是B 的概率.20.(8分)一个不透明袋子中有1个红球;1个绿球和n 个白球;这些球除颜色外无其他 差别.(1)当n =1时;从袋子中随机摸出1个球;摸到红球和摸到白球的可能性是否相同? (2)从袋中随机摸出1个球;记录其颜色;然后放回.大量重复该试验;发现摸到绿球的频 率稳定于;则n 的值是________;(3)在一个摸球游戏中;所有可能出现的结果如下:根据树状图呈现的结果;求两次摸出的球颜色不同的概率. 21.(8分)(袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回;混合均匀后再摸出1个球. ①求第一次摸到绿球;第二次摸到红球的概率; ②求两次摸到的球中有1个绿球和1个红球的概率.(2)先从袋中摸出1个球后不放回;再摸出1个球;则两次摸到的球中有1个绿球和1 个红球的概率是多少?请直接写出结果.22.(8分)湖北宜昌中考)901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个).为了解学生参加社团的情况;学生会对该班参 加各个社团的人数进行了统计;绘制成如下不完整的扇形统计图.已知参加“读书社” 的学生有15人.请解答下列问题: (1)该班的学生共有____________名;(2)若该班参加“吉他社”与“街舞社”的人数相同;请你计算“吉他社”对应扇形 的圆心角的度数;(3)901班学生甲、乙、丙是“爱心社”的优秀成员;现要从这三名学生中随机选两 名学生参加“社区义工”活动;请你用画树状图或列表的方法求出恰好选中甲和乙的 概率.第22题图23.(8分)如图;有两个可以自由转动的转盘A、B;转盘A被均匀分成4等份;每份标上1、2、3、4四个数字;转盘B被均匀分成6等份;每份标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏;其规则如下:(1)同时转动转盘A与B.(2)转盘停止后;指针各指向一个数字(如果指针恰好指在分割线上;那么重转一次;直到指针指向一个数字为止);用所指的两个数字作积;如果所得的积是偶数;那么甲胜;如果所得的积是奇数;那么乙胜.你认为这样的规则是否公平?请你说明理由;如果不公平;请你设计一个公平的规则;并说明理由.24.(8分)甲、乙两个盒子中装有质地、大小相同的小球;甲盒中有2个白球;1个黄球和1个蓝球;乙盒中有1个白球;2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍.(1)求乙盒中蓝球的个数;(2)从甲、乙两盒中分别任意摸取一球;求这两球均为蓝球的概率.25.(8分)()为了参加中考体育测试.甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下;且每位传球人传球给其余两人的机会是均等的;由甲开始传球;共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后;球回到甲脚下的概率;(3)三次传球后;球回到甲脚下的概率大还是传到乙脚下的概率大.26.(10分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材;甲品牌有A、B、C三种型号;乙品牌有D、E两种型号;现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠. (1)写出所有的选购方案(用列表法或树状图法).(2)如果在上述选购方案中;每种方案被选中的可能性相同;那么A型器材被选中的概率是多少?第三章 概率的进一步认识检测题参考答案1. B 解析:由题意得;在正六边形转盘中;有阴影的区域与空白区域面积相等;所以指针落在有阴影区域内的可能性与落在空白区域内的可能性相等;所以12a =;投掷一枚硬币;正面向上与反面向上的可能性都相等;所以12b =;所以a b =;故选项B 正确.2.D3.B 解析:设黄球的个数为;则由题意;得;解得.4.C 解析:两个指针分别落在某两个数所表示的区域;两个数的和的各种可能情况列表 如下:3的倍数的结果有5种;既是2的倍数;又是3的倍数的结果有3种;故两个数的和是2的倍数或是3的倍数的结果有10种.所以P (两个数的和是2的倍数或是3的倍数)=105168=.5.D 解析: 用试验频率估计概率;必须进行大量重复试验;试验次数越多;频率越接近 概率;故试验次数最多的那组相对科学;故选D.6.A 解析:所设密码的最后那个数字可能是0、1、2、3、4、5、6、7、8、9中的任意一 个;因此该事件中有10种等可能的结果发生;而打开锁的情况只有一种;因此P (打开密 码锁)=101;故选A. 7.B 解析:10名学生中有4名学生的身高超过165 cm ;所以概率为25. 8.D 解析:10万张彩票中设置了10个1 000元;40个500元;150个100元;400个50元的奖项;所以所得奖金不少于50元的概率为.9.C 解析:由于知道有5个黑球;又摸到黑球的频率为1-30%―15%―40%―10%=5%;所以袋中球的总数为5÷5%=100(个);从而黄球的数量为100×15%=15(个). 10.C 解析:由题意可知小圆的面积是大圆面积的;从而小圆的半径是大圆半径的. 11. 解析:抛掷一枚质地均匀的正方体骰子;共有6种情况.掷得朝上一面的点数大于 4的有5和6两种情况;所以掷得朝上一面的点数大于4的概率是 =.两数和第 二 个12341 2 3 4 5 2 3 4 5 6 3 4 5 6 7 45678第 一 个12.32解析:画树状图;如图所示.由图可以看出共有6种等可能的情况;其中结果为一红一蓝的情况有4种;所以P(一红一蓝)==.13.56解析:由题意作出树状图如下:第13题答图一共有36种情况;“两枚骰子朝上的点数互不相同”有30种情况;所以;P(两枚骰子朝上的点数互不相同)==.14.解析:画出树状图如下:所以P(两次都摸到黄色球)21.63==15.解析:用频率估计概率;数据越大;估计越准确;所以;移植幼树棵数越多;估算成活的概率越准确;因此可作为估计值.16.13解析1:列表法:第一盒第二盒1 21 (1;1) (1;2)2 (2;1) (2;2)3 (3;1) (3;2)共有6种情况;两张卡片标号恰好相同的情况有2种;所以P(两张卡片标号恰好相同).解析2:画树状图如图所示:共有6种情况;两张卡片标号恰好相同的情况有2种;所以P(两张卡片标号恰好相同).17.13解析:①当1a=-时;函数21y x=-;它的图象与两坐标第12题答图轴的交点坐标分别为10 2⎛⎫⎪⎝⎭,、(0;-1);它的图象与两坐标轴围成的三角形的面积为14;不等式组21,12xx+≤-⎧⎨-≤-⎩无解;②当1a=时;函数21y x=+;它的图象与两坐标轴的交点坐标分别为102⎛⎫-⎪⎝⎭,、(0;1);它的图象与两坐标轴围成的三角形的面积为14;不等式组21,12xx+≤⎧⎨-≤⎩的解是1x=-;③当2a=时;函数22y x=+;它的图象与两坐标轴的交点坐标分别为(-1;0)、(0;2);它的图象与两坐标轴围成的三角形的面积为1;不等式组22,14xx+≤⎧⎨-≤⎩的解集为30x-≤≤.综上;使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为14和关于x的不等式组212x ax a+≤⎧⎨-≤⎩,有解同时成立的a值只有1;概率为13.18.解析:画出树状图如图:第18题答图或者列表如下:乙组和甲组9 8 9 109 18 17 18 199 18 17 18 1911 20 19 20 2110 19 18 19 20用树状图法或列表法表示出所有等可能的结果数是16;再找出两名同学植树总棵树为19的结果数是5;所以P(两名同学植树总棵树为19)=.19.解:列出表格如下:第二组第一组A B B D FA(A;A)(A;B)(A;B)(A;D)(A;F)B (B ;A ) (B ;B ) (B ;B ) (B ;D ) (B ;F ) B(B ;A )(B ;B )(B ;B )(B ;D )(B ;F )所有可能出现的情况有15种;其中两张都是B 的情况有4种;故从每组卡片中各抽取一张;两张都是B 的概率为. 20. 解:(1)相同; (2)2;(3)由树状图可知:共有12种结果;且每种结果出现的可能性相同. 其中两次摸出的球颜色不同(记为事件A )的结果共有10种;∴ P (A ).点拨:(1)当n =1时;此时袋子中有1个红球、1个绿球、1个白球;所以此时摸到红球和白球的概率都是;所以摸到红球和摸到白球的可能性是相同的;(2)由摸到绿球的频率稳定于可估计摸到绿球的概率为;可得=;即=;解得n =2;(3)由树状图可知;找出所有等可能的结果和两次摸出的球颜色不同的结果利用概率公式求解.21. 解:(1)分别用R 1;R 2表示2个红球;G 1;G 2表示2个绿球;列表如下:第二次第一次R 1R 2G 1G 2 R 1 (R 1;R 1) (R 1;R 2) (R 1;G 1) (R 1;G 2) R 2 (R 2;R 1) (R 2;R 2) (R 2;G 1) (R 2;G 2) G 1 (G 1;R 1) (G 1;R 2) (G 1;G 1) (G 1;G 2) G 2 (G 2;R 1) (G 2;R 2) (G 2;G 1)(G 2;G 2)由上表可知;①其中第一次摸到绿球;第二次摸到红球的结果有4种; ∴ P (第一次摸到绿球;第二次摸到红球)=41=164.②其中两次摸到的球中有1个绿球和1个红球的结果有8种; ∴ P (两次摸到的球中有1个绿球和1个红球)=81=162. (2)23. 22. 解:(1)60(2)参加“吉他社”的学生在全班学生中所占比例为=;所以;“吉他社”对应扇形的圆心角的度数为:360°×10%=36°. (3)画树状图如下:第22题答图或列表如下: 另一名 一名甲 乙 丙 甲 (甲;乙)(甲;丙) 乙 (乙;甲) (乙;丙)丙(丙;甲)(丙;乙)由树状图(或表格)可知;共有6种等可能的情况;其中恰好选中甲和乙的情况有2种;故P (恰好选中甲和乙)==. 点拨:(1)由题意知参加“读书社”的学生有15人;从扇形统计图中可以看出参加“读书社”的占25%;故该班的学生共有:=.(2)该班参加“吉他社”与“街舞社”的学生共占学生总数的(1-25%-20%-20%-15%)=20%;而参加“吉他社”与“街舞社”的学生人数相同;所以参加“吉他社”的学生占学生总数的20%÷2=10%;也就是“吉他社”对应的扇形的圆心角占整个圆的10%;所以“吉他社”对应的扇形的圆心角的度数为:360°×10%=36°.(3)由树状图或列表可知;从甲、乙、丙三人中选两人;共有6种等可能的结果;其中恰好选中甲和乙的情况有2种;所以P (恰好选中甲和乙)== 1234561 123456 2 2 4 6 8 10 12 3 3 6 9 12 15 18 44812162024所有可能结果共24种;其中积为奇数的结果有6种;积为偶数的结果有18种;所以 P (奇)=; P (偶)=;所以P (偶)>P (奇);所以不公平. 新规则:⑴同时自由转动转盘A 和B ;⑵转盘停止后;指针各指向一个数字;用所指的两个数字作和;如果得到的和是偶数;则甲胜;如果得到的和是奇数;则乙胜.理由:因为P (奇)=;P (偶)=;所以P (偶)=P (奇);所以规则公平. 24.解:(1)设乙盒中有x 个蓝球;则从乙盒中任意摸取一球;1P (摸到蓝球)3xx =+; B积A从甲盒中任意摸取一球;2P (摸到蓝球)14=.根据题意;得1234x x =⨯+;解得3x =; 所以乙盒中有3个蓝球. (2)方法一:列表如下:由表格可以看出;可能的结果有24种;其中两球均为蓝球的有3种; 因此从甲、乙两盒中各摸取一球;两球均为蓝球的概率31248P ==. (也可以用画树状图法或列举法)方法二:从甲盒中任意摸取一球;摸到蓝球的概率为14; 从乙盒中任意摸取一球;摸到蓝球的概率为12. 则从甲、乙两盒中各摸取一球;两球均为蓝球的概率为111428P =⨯=. 25.解:(1)如图.第25题答图(2)P (“三次传球后;球回到甲脚下”)==. (3)P (“三次传球后;球回到甲脚下”)=;P (“三次传球后;球传到乙脚下”)=;因此球传到乙脚下的概率大.26.分析:用列表法或画树状图法可以得到所有的选购方案;从中找出选中A 型器材的方案 的个数;利用概率的计算公式求出A 型器材被选中的概率. 解:(1)列表如下:所有选购方案为A;D;A;E ;B;D;B;E;C;D;C;E.(2)∵所有可能出现的结果共有6种;每种结果出现的可能性都相同;A型器材被选中的结果有两种;∴P(选中A型器材)==.。

专题01 概率进一步认识(四大类型)(题型专练)(解析版)

专题01 概率进一步认识(四大类型)(题型专练)(解析版)

专题01 概率进一步认识(两大类型)【题型1 用列举法求概率】【题型2用频率估计概率】【题型1 用列举法求概率】1.(2023•西陵区模拟)将分别标有“最”、“美”、“宜”、“昌”四个汉字的小球装在一个不透明的口袋中,这些小球除汉字以外其它完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“宜昌”的概率是( )A.B.C.D.【答案】A【解答】解:画树状图如下:共有12种等可能的结果,其中两次摸出的球上的汉字组成“宜昌”的结果有2种,∴两次摸出的球上的汉字组成“宜昌”的概率为=,故选:A.2.(2023•萧县三模)将标有“最”“美”“安”“徽”的四个小球装在一个不透明的口袋中(每个小球上仅标一个汉字),这些小球除所标汉字不同外,其余均相同.从中随机摸出两个球,则摸到的球上的汉字可以组成“安徽”的概率是( )A.B.C.D.【答案】D【解答】解:画树状图如下:共有12种等可能的结果,其中两次摸出的球上的汉字可以组成“安徽”的结果有2种,∴两次摸出的球上的汉字可以组成“安徽”的概率为,故选:D.3.(2023春•海州区校级月考)如图,用圆中两个可以自由转动的转盘做“配紫色”游戏,若其中一个转出红色,另一个转出蓝色可配成紫色,那么可配成紫色的概率是( )A.B.C.D.【答案】C【解答】解:重新划分如下:画树状图为:共有6种等可能的结果数,其中一个为红色,另一个转出蓝色的占3种,所以可配成紫色的概率=,故选:C.4.(2023•庐阳区校级模拟)市内某公交站台有4个候车位(成一排),现有甲、乙、丙、丁4名伺学随机坐在某个座位上候车,则甲和乙恰好相邻的概率是( )A.B.C.D.【答案】C【解答】解:由题意知,所有等可能结果如下:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙);(乙,甲,丙,丁),(乙,甲,丁,丙),(乙,丁,甲,丙),(乙,丁,丙,甲),(乙,丙,甲,丁),(乙,丙,丁,甲);(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,丁,甲,乙),(丙,丁,乙,甲),(丙,乙,甲,丁),(丙,乙,丁,甲);(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),(丁,丙,甲,乙),(丁,丙,乙,甲);所以所有等可能结果共24种结果,其中甲和乙恰好相邻的有12种,所以甲和乙恰好相邻的概率为=,故选:C.5.(2023•大连模拟)众所周知,“石头、剪刀、布”游戏规则是比赛时双方任意出“石头”、“剪刀”、“布”这三种手势中的一种.石头胜剪刀,剪刀胜布,布胜石头,若双方出相同手势,则算打平.小明和小红玩这个游戏,他们随机出一种手势,则小明获胜的概率为( )A.B.C.D.【答案】B【解答】解:画树状图得:∵共有9种等可能的结果,小明获胜的有3种情况,∴小明获胜的概率P==;故选:B.6.(2022秋•朝阳期末)现有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗匀.(1)若从中随机抽取一张,则抽到数字0的概率为 ;(2)记下(1)中所抽到的数字后卡片不放回,背面朝上洗匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,请利用画树状图或列表的方法,求点A(m,n)在第一象限的概率.【答案】(1);(2),求解过程见解析.【解答】解:(1)有四张分别标有数字﹣1,0,1,2的卡片,若从中随机抽取一张,则抽到0的概率是,故答案为:(2)画树状图如下:共有12种等可能的结果,点P(m,n)在第一象限(横坐标、纵坐标均为正数)的结果有2种(1,2),(2,1).∴点P(m,n)在第一象限的概率为.7.(2022秋•官渡区期末)从2025年起,云南省高考将采用“3+1+2”新模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小红在“1”中选择了物理,在“2”中选择了生物,则她选择化学的概率是 .(2)若小军在“1”中选择了历史,用画树状图或者列表的方法求他在化学、生物、思想政治、地理4科中任选2科.选中思想政治、地理的概率.【答案】(1);(2).【解答】解:(1)小红在“1”中选择了物理,在“2”中选择了生物,从剩下的化学、思想政治、地理三科中选一科,∴她选择化学的概率为,故答案为:;(2)把化学、生物、思想政治、地理4科分别记为A、B、C、D,画树状图如下:共有12种等可能的结果,其中小军选中思想政治、地理的结果有2种,∴小军选中思想政治、地理的概率为=.8.(2023•榆次区一模)【问题情境】大自然中的植物千姿百态,如果细心观察,就会发现:不同植物的叶子通常有着不同的特征,如果我们用数学的眼光来观察,会有什么发现呢?“数智”小组的四位同学开展了“利用树叶的特征对树木进行分类”的项目化学习活动.【实践发现】同学们从收集的杨树叶、柳树叶中各随机选取10片,通过测量得到这些树叶的长和宽(单位:cm)的数据后,分别计算长宽比,整理数据如下:序号12345678910杨树叶的长宽比2 2.4 2.1 2.4 2.8 1.8 2.4 2.2 2.1 1.7柳树叶的长宽比1.5 1.6 1.5 1.4 1.5 1.4 1.7 1.5 1.6 1.4【实践探究】分析数据如下:平均数中位数众数方差杨树叶的长宽比 2.19m 2.40.0949柳树叶的长宽比 1.51 1.5n0.0089【问题解决】(1)上述表格中:m= 2.15 ,n= 1.5 ;(2)①这两种树叶从长宽比的方差来看, 柳 树叶的形状差别较小;②该小组收集的树叶中有一片长为11.5cm,宽为5cm的树叶,这片树叶来自于 杨 树的可能性大;(3)该小组准备从四位成员中随机选取两名同学进行成果汇报,请用列表或画树状图的方法求成员小颖和小娜同时被选中的概率.【答案】(1)2.15,1.5;(2)①柳;②杨;(3).【解答】解:(1)杨树叶的长宽比的中位数为=2.15,即m=2.15;柳树叶的长宽比的众数为1.5,即n=1.5,故答案为:2.15,1.5;(2)①因为柳树叶的长宽比的方差小于杨树叶的长宽比的方差,所以柳树叶的形状差别较小;故答案为:柳;②长为11.5cm,宽为5cm的树叶的长宽比为2.3,而样本中柳树叶的长宽比都小于2.3,杨树叶的长宽比的众数为2.4,所以这片树叶来自于杨树的可能性大;故答案为:杨;(3)四位同学分别用A、B、C、D表示,其中A代表小颖,B代表小娜,画树状图为:共有12中等可能的结果,其中成员小颖和小娜同时被选中的结果数为2,所以成员小颖和小娜同时被选中的概率==.9.(2023•临县二模)某校组织全校学生进行了“航天知识竞赛”,教务处从中随机抽取了n名学生的竞赛成绩(满分100分,每名学生的成绩记为x分)分成如表中四组,并得到如下不完整的频数分布表、频数分布直方图和扇形统计图.根据图中信息,解答下列问题:分组频数A:60≤x<70aB:70≤x<8018C:80≤x<9024D:90≤x≤100b(1)n的值为 60 ,a的值为 6 ,b的值为 12 ;(2)请补全频数分布直方图并计算扇形统计图中表示“C”的圆心角的度数为 144 °;(3)竞赛结束后,九年级一班从本班获得优秀(x≥80)的甲、乙、丙、丁四名同学中随机为抽取两名宣讲航天知识,请用列表或画树状图的方法求恰好抽到甲、乙两名同学的概率.【答案】(1)60,6,12;(2)图形见解析,144;(3).【解答】解:(1)n=18÷30%=60,∴a=60×10%=6,∴b=60﹣6﹣18﹣24=12,故答案为:60,6,12;(2)补全频数分布直方图如下:扇形统计图中表示“C”的圆心角的度数为:360°×=144°,故答案为:144;(3)画树状图如下:共有12种等可能的结果,其中恰好抽到甲、乙两名同学的结果有2种,∴恰好抽到甲、乙两名同学的概率为=.10.(2023•开江县二模)目前“微信”、“支付宝”、“共享单车“和“网购”给我们的生活带来了很多便利,九年级数学兴趣小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种),并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m= 100 ,n= 35 ;(2)请你帮助他们将这两个统计图补全;(3)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D 同学最认可“网购”,从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.【答案】见试题解答内容【解答】解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,故答案为:100、35;(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)根据题意画树状图如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为=.11.(2023•昭阳区一模)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是 ;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【答案】见试题解答内容【解答】解:(1)∵共有A,B,C,D,4个小区,∴甲组抽到A小区的概率是,故答案为:.(2)根据题意画树状图如下:∵共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为.12.(2023•深圳模拟)某中学对九年级学生开展了“我最喜欢的景区”的抽样调查(每人只能选一项):分别有A、B、C、D、E五个景区,根据收集的数据绘制了如图所示的两幅不完整的统计图,其中B对应的圆心角为90°,请根据图中信息解答下列问题.(1)抽取的九年级学生共有 200 人,并补全条形统计图;(2)扇形统计图中m= 10 ,表示E的扇形的圆心角是 72 度;(3)九年级准备在最喜欢A景区的5名学生中随机选择2名进行实地考察,这5名学生中有2名男生和3名女生,请用树状图或列表法求选出的2名学生都是女生的概率.【答案】(1)200,见解析;(2)10,72;(3).【解答】解:(1)∵B所对的圆心角为90°,∴B的占比为,∴总人数为(人),C﹣y+1﹣m=0的人数为200﹣60﹣50﹣20﹣40=30(人),补全统计图如图所示,故答案为:200;(2),E的扇形的圆心角是,故答案为:10,72.(3)画出树状图如图所示,∵共有20种情况,选出的两名学生都是女生的情况有6种,∴选出的两名学生都是女生的概率是.【题型2用频率估计概率】13.(2023•高州市校级二模)一个暗箱中放有a个除颜色外其他完全相同的球,这a个球中只有2个红球,每次将球搅拌均匀后,任意摸出1个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸到红球的频率稳定在20%,那么可以估算a的值是( )A.15B.10C.4D.3【答案】B【解答】解:根据题意得:2÷20%=10(个),答:可以估算a 的值是10;故选:B .14.(2023•方城县模拟)北京2022年冬奥会的吉祥物为“冰墩墩”,冬残奥会的吉祥物为“雪容融”,体现了人与自然和谐共生,深受青少年的喜爱.现有两张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中一张正面印有“冰墩墩”图案,另一张正面印有“雪容融”图案,将两张卡片正面向下洗匀,从中随机抽取一张卡片,小颖和同学抽取卡片获得的数据如下表:抽取卡片的次数/次100200300400500抽到冰墩墩的次数/次5398156201248若抽取卡片的次数为1000,则“抽到冰墩墩”的频数最接近( )A .250B .500C .700D .850【答案】B【解答】解:由表格知,随着抽取次数的增加,抽到冰墩墩的概率约为=0.496≈0.5,所以当抽取卡片的次数为1000时,“抽到冰墩墩”的频数最接近1000×0.5=500,故选:B .15.(2023•宝安区校级三模)在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( )A .15个B.20个C .30个D .35个【答案】D【解答】解:设袋中有黄球x 个,由题意得=0.3,解得x =15,则白球可能有50﹣15=35个.故选:D .16.(2023•高州市二模)在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.6个B.15个C.12个D.13个【答案】C【解答】解:设白球个数为x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:C.17.(2023•琼中县一模)一个不透明的袋子中装有2个红球和若干个黄球,这些球除颜色外都相同.经过多次试验发现,摸出红球的频率稳定在左右,则袋子中的黄球个数最有可能是( )A.1B.2C.4D.6【答案】C【解答】解:设袋子中黄球的个数可能有x个,根据题意得:=,解得:x=4,经检验x=4是原方程的解,∴袋子中黄球的个数可能是4个.故选:C.18.(2023•市南区一模)两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出的统计图如图所示,则符合这一结果的试验可能是( )A.掷一枚正六面体的骰子,出现点数是偶数的概率B.抛一枚硬币,正面朝下的概率C.从装有2个红球和1个蓝球(3个球除颜色外均相同)的不透明口袋中,任取一个球恰好是蓝球的概率D.用一副去掉大、小王的扑克牌做摸牌游戏,随机抽取一张牌,花色为“红桃”的概率【答案】C【解答】解:A、掷一枚正六面体的骰子,出现点数是偶数的概率是,故此选项不符合题意;B、抛一枚硬币,出现正面朝下的概率为,故此选项不符合题意;C、从装有2个红球和1个蓝球(3个球除颜色外均相同)的不透明口袋中,任取一个球恰好是蓝球的概率是,故此选项符合题意.D、用一副去掉大、小王的扑克牌做摸牌游戏,随机抽取一张牌,花色为“红桃”的概率=,故此选项不符合题意;故选:C.19.(2023•蕉城区校级一模)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则盒子中大约有白球( )个.A.10B.12C.15D.18【答案】B【解答】解:∵共摸了40次,其中10次摸到黑球,∴有30次摸到白球,∴摸到黑球与摸到白球的次数之比为1:3,∴口袋中黑球和白球个数之比为1:3,∴4÷=12(个).故选:B.20.(2022秋•武侯区校级期末)在一个不透明的盒子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.5,由此可估计袋中红球的个数约为( )A.6个B.8个C.10个D.12个【答案】C【解答】解:设盒子中有红球x个,由题意可得:=0.5,解得:x=10,故选:C.21.(2022秋•丛台区校级期末)在一个不透明的盒子中装有a个球,这些球除颜色外无其他差别,这a个球中只有4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.2左右,则a的值约为( )A.12B.16C.18D.20【答案】D【解答】解:根据题意得:=0.2,解得:a=20,经检验:a=20是原分式方程的解,答:a的值约为20;故选:D.22.(2022秋•渝中区期末)为了方便核酸检测,小刚将自己的核酸检测二维码打印在纸上,如图所示,为了估计图中黑色部分的面积,他在纸内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.5左右,测得二维码是边长为5dm的正方形,据此可以估计黑色部分的面积约为( )A.2.5dm2B.6.25dm2C.10dm2D.12.5dm2【答案】D【解答】解:经过大量重复试验,发现点落入黑色部分的频率稳定在0.5左右,据此可以估计黑色部分的面积为25×0.5=12.5(dm2),故选:D.23.(2023春•横山区期末)某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率,表格如下,则符合这一结果的试验最有可能是( )次数1002003004005006007008009001000频率0.600.300.500.360.420.380.410.390.400.40 A.掷一个质地均匀的骰子,向上的面点数是“6”B.掷一枚一元的硬币,正面朝上C.不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D.三张扑克牌,分别是3,5,5,背面朝上洗匀后,随机抽出一张是5【答案】C【解答】解:A、掷一个质地均匀的骰子,向上的面点数是“6”的概率为:,不符合题意;B、抛一枚硬币,出现反面的概率为,不符合题意;C、不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球的概率是=0.4,符合题意;D、三张扑克牌,分别是3,5,5,背面朝上洗匀后,随机抽出一张是5的概率为,不符合题意,故选:C.24.(2023春•尉氏县月考)某玩具厂对一批毛绒玩具进行抽检的结果如下:2050100200500100015002000抽取的毛绒玩具数n19479118446292113791846优等品数m0.9500.9400.9100.9200.9240.9210.9190.923优等品的频率从这批毛绒玩具中,任意抽取的一个优等品的概率约是 0.92 .(精确到0.01)【答案】0.92.【解答】解:从这批毛绒玩具中,任意抽取的一个优等品的概率约是0.92,故答案为:0.92.25.(2023•西陵区模拟)如图,平整的地面上有一个不规则图案(图①的阴影部分),小明想了解该图案的面积是多少,他采取了如下方法:用一个面积为20cm2的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了图②所示的折线统计图,由此他估计不规则图案的面积大约为 7 cm2.【答案】7.【解答】解:假设不规则图案面积为xm2,已知长方形面积为20m2,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:=0.35,解得x=7.故答案为:7.26.(2023春•思明区校级期末)在一个不透明的袋子里有若干个白球,为估计白球个数,小东向其中投入8个黑球(与白球除颜色外均相同),搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复这一过程,共摸球100次,发现有50次摸到黑球.则可估计这个袋中白球的个数约为 8 个.【答案】8.【解答】解:由题意可得,袋中球的总数为:8÷=16(个),则白球约为16﹣8=8(个),故答案为:8.27.(2023春•太仓市期末)一只不透明的袋子中装有若干个红球和8个白球,这些球除颜色外都相同,将球摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大盘重复摸球试验后发现,摸到白球的频率稳定在0.4,则袋子中有红球 12 个.【答案】12.【解答】解:由题意知,袋中球的总个数约为8÷0.4=20(个),所以袋子中有红球20﹣8=12(个),故答案为:12.。

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试(包含答案解析)

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试(包含答案解析)

一、选择题1.一个学习兴趣小组有2名女生,3名男生,现要从这5名学生中任选出一人担当组长,则女生当组长的概率是( ) A .12B .23C .25D .352.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29B .13C .49D .593.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是( ) A .0B .12C .13D .234.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球( ) A .24个B .10个C .9个D .4个5.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( ) A .59B .49C .56D .136.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是( )A .12B .24C .1188D .11767.一个不透明的袋子装有除颜色外其余均相同的2个白球和n 个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在0.2附近,则n的值为()A.2 B.4 C.8 D.108.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数大于3的概率为()A.12B.13C.14D.159.一个不透明的盒子中装有3个白球、9个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.34B.13C.14D.2310.小冬和小松正在玩“掷骰子,走方格”的游戏.游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停.(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束.下图是该游戏的部分方格:大本营1对自己说“加油!”2后退一格3前进三格4原地不动5对你的小伙伴说“你好!”6背一首古诗例如:小冬现在的位置在大本营,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”.小冬此次“掷骰子,走方格”结束,最终停在了方格1.如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是()A.16B.13C.12D.2311.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A.14B.13C.12D.2312.已知数据:1174,52π1-,0.其中无理数出现的频率为()A.0.2B.0.4C.0.6D.0.8二、填空题13.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有________.14.随机往如图所示的正方形区域内撒一粒豆子,豆子恰好落在空白区域的概率是______.15.“校园手机”现象越来越受到社会的关注.小明决定从九(1)班的4位家长中随机选择2位进行深入调查,其中包含小亮的爸爸和妈妈,小亮的爸爸和妈妈被同时选中的概率是__________.16.一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,随机掷一次小正方体,朝上一面的数字是奇数的概率是__________.17.把一袋黑豆中放入红豆100粒,搅匀后取出100粒豆子,其中红豆5粒,则该袋中约有黑豆_______粒.18.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是______ .19.三张完全相同的卡片,正面分别标有数字0,1,2,先将三张卡片洗匀后反面朝上,随机抽取一张,记下卡片上的数字m,放置一边,再从剩余的卡片中随机抽取一张卡片,记下卡片上的数字n,则满足关于x的方程x2+mx+n=0有实数根的概率为______.20.婷婷和她妈妈玩猜拳游戏.规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时婷婷获胜.那么,婷婷获胜的概率为______.三、解答题21.电视台为了开展线上“百人合唱一首歌”的“云演出”活动,需招募青少年歌手.甲、乙、丙、丁报名参加了应聘活动,其中甲、乙为男歌手,丙、丁为女歌手.现对这四名歌手采取随机抽取的方式进行线上面试.(1)若随机抽取一名歌手,求恰好抽到丁的概率;(2)若随机抽取两名歌手,请用列表或画树状图表示所有可能的结果,并求出恰好抽到一男一女的概率.22.国庆黄金周期间,甲、乙两名同学分别想从云台山、青天河、青龙峡3个景点中随机选择2个景点去游览.(1)求甲同学选择的2个景点是云台山、青天河的概率是________;(2)甲、乙两名同学选择的2个景点恰好相同的概率是多少?请用树状图或表格表示.23.在一个不透明的布袋里装有3个大小、质地均相同的乒乓球,球上分别标有数字为1、2、3(1)随机从布袋中一次摸出两个乒乓球,写出两个乒乓球上的数字都是奇数的概率是_________;(2)随机从布袋中摸出一个乒乓球,记下数字后放回布袋里,再随机从布袋中摸出一个乒乓球,请用列表或画树状图的方法求出两个乒乓球上的数字之和不小于4的概率.24.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组5060≤<6x第2组6070≤<8x第3组7080≤<14x第4组8090≤<ax第5组90100≤<10x请结合图表完成下列各题:(1)①表中a的值为_________,中位数在第_________组:②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.25.在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是奇数的概率.26.一个不透明的口袋里装有分别标有汉字“武”、“汉”、“加”、“油”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从中任取一球,球上的汉字刚好是“武”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图的方法,求出甲取出的两个球上的汉字恰能组成“武汉”或“加油”的概率P 1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】直接利用概率公式求解即可求得答案. 【详解】∵一个学习兴趣小组有2名女生,3名男生, ∴女生当组长的概率是:25. 故选:C . 【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.2.C解析:C 【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率. 【详解】 解不等式组得:7x ax ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3, ∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5, 分式方程去分母得:﹣a ﹣x+2=x ﹣3, 解得:x =52a - ,∵分式方程有非负整数解,∴a=5、3、1、﹣3,则这9个数中所有满足条件的a的值有4个,∴P=49故选:C.【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.3.D解析:D【分析】直接运用概率计算公式求解即可.【详解】解:∵小丽书包里有3只包装相同的备用口罩,2只是医用外科口罩,∴她取一只医用外科口罩的概率为:23,故选:D.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.4.D解析:D【分析】设口袋中红球有x个,用黄球的个数除以球的总个数等于摸到黄球的频率,据此列出关于x的方程,解之可得答案.【详解】解:设口袋中红球有x个,根据题意,得:66x=0.6,解得x=4,经检验:x=4是分式方程的解,所以估计口袋中大约有红球4个,故选:D.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.5.B【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.6.B解析:B【分析】由表中数据可判断合格衬衣的频率稳定在0.98,于是利于频率估计概率可判断任意抽取一件衬衣是合格品的概率为0.98,从而得出结论.【详解】解:根据表中数据可得任抽取一件衬衣是合格品的概率为0.98,次品的概率为0.02,出售1200件衬衣,其中次品大约有1200×0.02=24(件),故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.7.C解析:C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:依题意有:22n=0.2,解得:n=8.故选:C.此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解题关键.8.A解析:A【分析】骰子六个面出现的机会相同,求出骰子向上的一面点数大于3的情况有几种,直接应用求概率的公式求解即可.【详解】∵一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,点数大于3的有4,5,6共3个,∴这个骰子向上的一面点数大于3的概率为3162=故选:A.【点睛】考核知识点:概率.熟记概率的公式是关键.9.A解析:A【分析】先求出球的总数,再由概率公式即可得出结论.【详解】∵一个不透明的盒子中装有3个白球,9个红球,∴球的总数=3+9=12(个),∴这个盒子中随机摸出一个球,摸到红球的可能性=93124=.故选:A.【点睛】本题考查的是可能性的大小,熟记随机事件的概率公式是解答此题的关键.10.B解析:B【分析】根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答即可.【详解】掷一次骰子最终停在方格6的情况有①直接掷6;②掷3后前进三格到6;所以掷一次骰子最终停在方格6的概率是21 63 =,故选B.【点睛】此题考查几何概率,关键是根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答.11.B解析:B 【分析】根据概率公式求出该事件的概率即可. 【详解】解:根据题意共有3种等情况数,其中“A 口进C 口出”有一种情况, 从“A 口进C 口出”的概率为13故选:B . 【点睛】本题考查的是基本的概率计算,熟悉相关概率计算是解题的关键.12.B解析:B 【分析】根据无理数的定义和“频率=频数÷总数”计算即可. 【详解】解:共有5个数,其中无理数有,2π1-,共2个 所以无理数出现的频率为2÷5=0.4. 故选B . 【点睛】此题考查的是无理数的判断和求频率问题,掌握无理数的定义和频率公式是解决此题的关键.二、填空题13.13【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手设出未知数列出方程求解【详解】解:设袋中有黑球x 个由题意得:=02解得:x=13经检验x=13是原方程的解解析:13 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解. 【详解】解:设袋中有黑球x 个,由题意得:52xx +=0.2, 解得:x=13,经检验x=13是原方程的解, 则布袋中黑球的个数可能有13个. 故答案为:13. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.【分析】设正方形的边长为a 则正方形的面积为阴影部分的面积=2倍扇形面积-正方形面积空白区域面积=正方形面积-阴影部分面积豆子恰好落在空白区域的概率=空白区域面积÷正方形面积【详解】解:设正方形的边长 解析:42π- 【分析】设正方形的边长为a ,则正方形的面积为2a ,阴影部分的面积=2倍扇形面积-正方形面积,空白区域面积=正方形面积-阴影部分面积,豆子恰好落在空白区域的概率=空白区域面积÷正方形面积. 【详解】解:设正方形的边长为a ,则正方形的面积为2a ,则2倍扇形面积=2×2π4a =22a π,∴ 阴影部分的面积=2倍扇形面积-正方形面积=222a a π-,∴ 空白区域面积=正方形面积-阴影部分面积=22222222a a a a a ππ⎛⎫--=- ⎪⎝⎭, ∴ 豆子恰好落在空白区域的概率=空白区域面积÷正方形面积222242==2a a a ππ--.故答案为:42π-. 【点睛】本题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.此题用2倍扇形面积-正方形面积求出阴影部分的面积是解题关键.15.【分析】设4位家长为ABCD 小亮和小明的家长分别为AB 画出树状图即可【详解】解:设小亮小明的家长分别用AB 表示另外两个家长用CD 表示列树状图如下:∴一共有12种等可能的结果同时选中小亮和小明家长有2解析:16. 【分析】设4位家长为A、B、C、D,小亮和小明的家长分别为A、B,画出树状图即可.【详解】解:设小亮、小明的家长分别用A、B表示,另外两个家长用C、D表示,列树状图如下:∴一共有12种等可能的结果,同时选中小亮和小明家长有2种情况,∴P(小亮和小明的家长被同时选中)=2÷12=16.故答案为:16.【点睛】此题考查了概率,用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】直接利用概率求法进而得出答案【详解】∵一个质地均匀的小正方体六个面分别标有数字112455∴随机掷一次小正方体朝上一面的数字是奇数的概率是:故答案为:【点睛】此题主要考查了概率公式正确掌握概解析:2 3【分析】直接利用概率求法进而得出答案.【详解】∵一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:42=63.故答案为:23.【点睛】此题主要考查了概率公式,正确掌握概率公式是解题关键.17.1900【分析】先根据取出100粒豆子其中有红豆5粒确定取出红豆的概率为5然后用100÷5求出豆子总数最后再减去红豆子数即可【详解】解:由题意得:取出100粒豆子红豆的概率为5则豆子总数为100÷5解析:1900【分析】先根据取出100粒豆子,其中有红豆5粒,确定取出红豆的概率为5%,然后用100÷5%求出豆子总数,最后再减去红豆子数即可.【详解】解:由题意得:取出100粒豆子,红豆的概率为5%,则豆子总数为100÷5%=2000粒,所以该袋中黑豆约有2000-100=1900粒.故答案为1900.【点睛】本题考查了用频率估计概率,弄清题意、学会用样本估计总体的方法是解答本题的关键.18.【分析】首先确定所求的阴影小正方形可能的位置总数目除以剩余空白部分的正方形的面积个数即为所求的概率【详解】解:从阴影下边的四个小正方形中任选一个就可以构成正方体的表面展开图∴能构成这个正方体的表面展解析:4 7【分析】首先确定所求的阴影小正方形可能的位置总数目,除以剩余空白部分的正方形的面积个数即为所求的概率.【详解】解:从阴影下边的四个小正方形中任选一个,就可以构成正方体的表面展开图,∴能构成这个正方体的表面展开图的概率是47.故答案为:47.【点睛】本题将概率的求解设置于正方体的表面展开图中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比;“一,四,一”组合类型的6个正方形能组成正方体.19.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与满足关于x的方程x2+mx+n=0有实数根的情况再利用概率公式即可求得答案【详解】画树状图得:∵共有6种等可能的结果满足关于x的方程x解析:1 2【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与满足关于x的方程x2+mx+n=0有实数根的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有6种等可能的结果,满足关于x的方程x2+mx+n=0有实数根的有3种情况,∴满足关于x的方程x2+mx+n=0有实数根的概率为:36=12.故答案为:12.【点睛】本题主要考查一元二次方程根的判别式与概率,掌握画树状图求得等可能的结果数以及概率公式,是解题的关键.20.【分析】根据题意可用列举法列表法或树状统计图来计算出总次数和婷婷获胜的次数从而求出婷婷获胜的概率【详解】解:根据题意一共有25个等可能的结果即(11)(12)(13)(14)(15)(21)(22)解析:13 25【分析】根据题意,可用列举法、列表法或树状统计图来计算出总次数和婷婷获胜的次数,从而求出婷婷获胜的概率【详解】解:根据题意,一共有25个等可能的结果,即(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5);两人出拳的手指数之和为偶数的结果有13个,所以婷婷获胜的概率为13 25故答案为:13 25【点睛】本题考查的是用列举法等来求概率,找出所有可能的结果数和满足要求的结果数是解决问题的关键.三、解答题21.(1)14;(2)23【分析】(1)共有4种可能出现的结果,抽到丁的只有1种,可求出抽到丁的概率;(2)用列表法表示所有可能出现的结果,进而求出恰好抽到一男一女的概率.【详解】解:(1)共有4种可能出现的结果,抽到丁的只有1种,因此()1 4P=抽到丁,故答案为:14;()2根据题意,列表如下:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)因为、乙为男歌手,丙、丁为女歌手,所以其中恰好一男一女的结果有8种,则()82 123P==一男一女,所以,恰好抽到一男一女的概率是23.【点睛】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.22.(1)13;(2)13.【分析】(1)列举出甲选择的2个景点所有可能出现的结果情况,进而求出相应的概率;(2)用表格表示所有可能出现的结果,再求出两个景点相同的概率.【详解】解:(1)用字母,,A B C分别表示云台山,青天河,青龙峡,甲选择的2个景点所有可能出现的结果情况如下表:共有6种等可能的结果,其中选择云台山、青天河有2种,∴P (云台山、青天河)=26=13, 故答案是:13; (2)用字母,,A B C 分别表示云台山,青天河,青龙峡,用列表法表示所有可能出现的结果如下:由上表可知,共出现9种等可能出现的结果,其中选择景点相同的有3种,3193P ∴==(景点相同). 【点睛】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的关键. 23.(1)13;(2)23【分析】(1)用列举法展示所有可能的结果数,然后根据概率公式求解;(2)画树状图展示所有9种等可能的结果数,再找出两个兵乒球上的数字之和不小于4的结果数,然后根据概率公式求解. 【详解】(1)可能出现的结果有:()12,,()13,,()23,,共3种, 两个数字都是奇数的只有()13,一种,∴两个乒乓球上的数字都是奇数的概率是13, 故答案为:13; (1)画树状图如下:一共有9种可能的结果,其中大于或等于4的有6种, ∴两个乒乓球上的数字之和不小于4的概率为:6293=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 24.(1)12;3;补充的频数分布直方图见解析;(2)44%;(3)13【分析】(1)①根据题意和表中的数据可以求得a 的值;②将5个组的人数从小到大排序,处于中间位置的数即为中位数;③由表格中的数据可以将频数分布表补充完整; (2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意画树状图可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率. 【详解】解:(1)①由题意和表格,可得:5068141012a =----=, 故答案为:12;成绩的中位数是第25和第26的平均数,且前三组人数和为28人 ∴中位数处于第3组, 故答案为:3;②补充完整的频数分布直方图如下图所示:(2)∵测试成绩不低于80分为优秀, ∴本次测试的优秀率是:1210100%44%50+⨯=;(3)用A表示小明,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:从上图可知共有12种等可能情况,小明与小强两名男同学分在同一组的情况有4种,则小明与小强两名男同学分在同一组的概率是P=412=13.【点睛】此题主要考查频数分布直方图及概率的求解,解题的关键是熟知统计调查的知识及树状图的画法.25.(1)34;(2)23【分析】(1)根据口袋中数字不大于3的小球有3个,即可确定概率;(2)通过列表或画树状图写出所有的等可能结果,然后数出两次摸出小球上的数字和恰好是奇数的结果,即可得到概率.【详解】解:(1)34;(2)列表得:1234 1——(1,2)(1,3)(1,4)2(2,1)——(2,3)(2,4)3(3,1)(3,2)——(3,4)4(4,1)(4,2)(4,3)——两次摸出小球上的数字和恰好是奇数的情况有8种:即:(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3).∴P(两次摸出小球上的数字和恰好是奇数)=82123.【点睛】本题考查了概率的计算,熟练掌握画树状图或列表法求概率是解题的关键.26.(1)14;(2)图表见解析,概率为13【分析】(1)直接利用概率公式求解即可;(2)画树状图(用A、B、C、D分别表示标有汉字“武”、“汉”、“加”、“油”的四个小球)展示所有12种等可能的结果数,再找出取出的两个球上的汉字恰能组成“武汉”或“加油”的结果数,然后根据概率公式求解.【详解】解:(1)若从中任取一球,球上的汉字刚好是“武”的概率P=14;(2)画树状图为:(用A、B、C、D分别表示标有汉字“武”、“汉”、“加”、“油”的四个小球),共有12种等可能的结果数,其中取出的两个球上的汉字恰能组成“武汉”或“加油”的结果数为4,所以甲取出的两个球上的汉字恰能组成“武汉”或“加油”的概率P=41 123.【点睛】本题考查了概率的计算问题,掌握概率的计算公式及利用树状图画出所有等可能的结果是解题的关键.。

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试题(有答案解析)

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试题(有答案解析)

一、选择题1.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率2.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为()A.2 B.3 C.4 D.123.如图所示,一个大正方形的面上,编号为1,2,3,4的地块,是四个全等的等腰直角三角形空地,中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都能落在大正方形地面上,则跳伞运动员一次跳伞落在草坪上的概率是()A.12B.14C.16D.184.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球()A.24个B.10个C.9个D.4个5.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.166.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .197.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ.自由转动转盘,则下面说法错误的是( )A .若90α>︒,则指针落在红色区域的概率大于0.25B .若αβγθ>++,则指针落在红色区域的概率大于0.5C .若αβγθ-=-,则指针落在红色或黄色区域的概率和为0.5D .若180γθ+=︒,则指针落在红色或黄色区域的概率和为0.58.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为( ) A .13B .14C .16D .1369.下列命题正确的是( )A .1x -有意义的x 取值范围是1x >.B .一组数据的方差越大,这组数据波动性越大.C .若7255'a ∠=︒,则a ∠的补角为10745'.D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为3810.为了解历下区九年级男生的身高情况,随机抽取了100名九年级男生,他们的身高()x cm 统计如下,根据以上结果,抽查一名九年级男生,估计他的身高不低于180cm 的概率是()A .0.85B .0.57C .0.42D .0.1511.小张和小王相约去参加“抗疫情党员志愿者进社区服务”活动现在有A 、B 、C 三个社区可供随机选择,他们两人恰好进入同一社区的概率是()A.19B.13C.29D.2312.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中红球约有()A.12个B.14个C.18个D.20个二、填空题13.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有________.14.如图,正方形ABCD是一飞镖游戏板,其中点E,F,G,H分别是各边中点,并将该游戏板划分成如图中所示的9个区域,现随机向正方形内投掷一枚飞镖(投中各区域的边界线或没有投中游戏板,则重投1次),则投中阴影区域的概率是______.15.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.16.把一根长度为6的铁丝截成3段,若三段的长度均为正整数,则能构成三角形的概率_____.17.在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“罗”、“山”的文字.先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是含有“美”“丽”二字的概率为_____.18.一个不透明的袋子中装有若干个除颜色外都相同的小球,小明每次从袋子中随机摸出一个球,记录下颜色,然后放回,重复这样的试验3000次,记录结果如下:实验次数n100200300500800100020003000摸到红球次数m6512417830248162012401845摸到红球频率mn0.650.620.5930.6040.6010.6200.6200.615估计从袋子中随机摸出一个球恰好是红球的概率约为_______________.(精确到0.1)19.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是______ .20.为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:等待时的频数间5≤t≤1010<t≤1515<t≤2020<t≤2525<t≤30合计乘车等待时间地铁站A5050152148100500B452151674330500据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A,B两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)三、解答题21.有甲、乙、丙三张完全相同的卡片,小明在其正面各写上一个方程,如图,然后将这三张卡片背面朝上洗匀.(1)从中随机抽取一张,求抽到方程没有实数根的概率;(2)从中随机抽取一张,记下方程后放回,再随机抽取一张,请用列表或面树状图的方法,求抽到的方程都有实数根的概率.22.某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中一门.某班班主任对全班同学的选修情况进行了调查统计,制成了两幅不完整的统计图(图①和图②):(1)请你求出该班的总人数,并补全条形图;(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?23.一个不透明的口袋中装有三个除所标数字外完全相同的小球,小球上分别标有数字-.小丽先从袋中随机取出一个小球,记录下小球上的数字为x,不放回,再从袋中1,0,1,x y.随机取出一个小球,记录下小球上的数字为y,设点M的坐标为()(1)请写出点M所有可能的坐标;=-图象上的概率.(2)求点M在一次函数y x24.自从我国全面实行二孩政策后,甲、乙两个家庭都有了各自的规划,假定生男生女的概率相同,请回答下列问题:(1)甲家庭已经有一个男孩,求第二个孩子是女孩的概率;(2)乙家庭目前没有孩子,计划生两个孩子,请用列表法或树状图求至少有一个孩子是女孩的概率.25.小华和小雪玩摸牌游戏,现有同一副扑克牌中的2张“方块”,1张“梅花”和1张“红桃”,共4张扑克牌.游戏规则:先将这些扑克牌背面朝上洗匀后,放置在水平桌面上,再从中随机摸出一张牌,记下花色后放回,称为摸牌一次.(1)小华随机摸牌20次,其中6次摸出的是“红桃”,求这20次中摸出“红桃”的频率;(2)若小雪随机摸牌两次,请利用画树状图或列表的方法,求这两次摸出的牌都是“方块”的概率.26.现有若干个完全相同的硬币(硬币的正、反面图案不同),按如下方式抛掷硬币:方式一:从中选取一枚硬币抛掷;方式二:从中选取两枚硬币抛掷;方式三:从中选取三枚硬币抛掷.请你在每一种抛掷方式中,各找出一种随机现象,使得这三种随机现象的概率相等(要求:概率不能为0或1),并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、掷一枚正六面体的骰子,出现5点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为10.333≈,故此选项正确;D、任意写出一个两位数,能被2整除的概率为12,故此选项错误.故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.2.B解析:B【解析】试题分析:首先设袋中白球的个数为x个,然后根据概率公式,可得15344x++=,解得:x=3.经检验:x=3是原分式方程的解.∴袋中白球的个数为3个.故选B.考点:概率公式.3.A解析:A【分析】设大正方形的边长为2a,从而可得大正方形的面积为24a,先求出小正方形绿色草坪的面积,再根据简单事件的几何概率公式即可得.【详解】设大正方形的边长为2a ,则大正方形的面积为22(2)4a a =, 编号为1,2,3,4的地块是四个全等的等腰直角三角形空地,∴等腰直角三角形的直角边均相等,且长为a ,=,,∴小正方形绿色草坪的面积为22)2a =,则跳伞运动员一次跳伞落在草坪上的概率是222142a P a ==, 故选:A . 【点睛】本题考查了简单事件的几何概率计算公式、全等三角形的性质、勾股定理等知识点,根据全等三角形的性质和勾股定理求出小正方形绿色草坪的边长是解题关键.4.D解析:D 【分析】设口袋中红球有x 个,用黄球的个数除以球的总个数等于摸到黄球的频率,据此列出关于x 的方程,解之可得答案. 【详解】解:设口袋中红球有x 个, 根据题意,得:66x+=0.6, 解得x =4,经检验:x =4是分式方程的解, 所以估计口袋中大约有红球4个, 故选:D . 【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.5.A解析:A 【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可. 【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61122=. 故答案为A . 【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.6.B解析:B 【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比. 【详解】解:∵如图所示的正三角形, ∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°, 设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.7.C解析:C 【分析】根据概率公式计算即可得到结论. 【详解】 解:A 、∵α>90°,900.25360360α∴>=,故A 正确;B 、∵α+β+γ+θ=360°,α>β+γ+θ,1800.5360360α∴>=,故B 正确;C 、∵α-β=γ-θ,∴α+θ=β+γ,∵α+β+γ+θ=360°, ∴α+θ=β+γ=180°,1800.5360︒︒∴= ∴指针落在红色或紫色区域的概率和为0.5,故C 错误; D 、∵γ+θ=180°, ∴α+β=180°,1800.5360∴= ∴指针落在红色或黄色区域的概率和为0.5,故D 正确; 故选:C . 【点睛】本题考查了概率公式,熟练掌握概率公式是解题的关键.8.C解析:C 【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可. 【详解】 列表得:∴两个骰子的点数相同的概率为:61=366故选:C 【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比9.B解析:B 【分析】分别分析各选项的题设是否能推出结论,即可得到答案. 【详解】解:x 取值范围是1x ≥,故选项A 命题错误; B. 一组数据的方差越大,这组数据波动性越大,故选项B 命题正确; C. 若7255'a ∠=︒,则a ∠的补角为1075',故选项C 命题错误;D. 布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为58,故选项D 命题错误; 故答案为B. 【点睛】本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.10.D解析:D 【分析】先计算出样本中身高不低于180cm 的频率,然后根据利用频率估计概率求解. 【详解】样本中身高不低于180cm 的频率=15100=0.15, 所以估计他的身高不低于180cm 的概率是0.15. 故选D . 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.11.B解析:B 【分析】画树状图展示所有9种等可能的结果数,找出两人恰好进入同一社区的结果数,然后根据概率公式求解即可. 【详解】解:画树状图如图:共有9种等可能的结果数,其中两人恰好选择同一社区的结果为3种,则两人恰好进入同一社区的概率=31 93 =.故选:B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.12.B解析:B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x个,由题意可得:66x+=0.3,解得:x=14,经检验,x=14是分式方程的解.估计口袋中红球约有14个.故选:B【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.二、填空题13.13【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手设出未知数列出方程求解【详解】解:设袋中有黑球x个由题意得:=02解得:x=13经检验x=13是原方程的解解析:13【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【详解】解:设袋中有黑球x个,由题意得:52xx +=0.2, 解得:x=13,经检验x=13是原方程的解, 则布袋中黑球的个数可能有13个. 故答案为:13. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.【分析】用阴影部分的面积除以正方形ABCD 的面积得到概率【详解】解:阴影部分组合起来的面积就等于三角形ABF 的面积设正方形ABCD 的边长是则∵F 是BC 中点∴∴概率是故答案是:【点睛】本题考查概率的求解析:14【分析】用阴影部分的面积除以正方形ABCD 的面积得到概率. 【详解】解:阴影部分组合起来的面积就等于三角形ABF 的面积, 设正方形ABCD 的边长是x ,则AB x =, ∵F 是BC 中点, ∴12BF x =, ∴211112224ABFSAB BF x x x =⋅=⋅=, 概率是221144ABFABCDxSS x ==. 故答案是:14. 【点睛】本题考查概率的求解,解题的关键是掌握概率求解的方法.15.【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表: 男1 男2 女1 女2 男1 (男1男2) (男1女1) (男解析:23【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】先求出将长度为6的铁丝截成3段每段长度均为整数厘米共有几种情况再找出其中能构成三角形的情况最后根据概率公式计算即可【详解】因为将长度为6的铁丝截成3段每段长度均为整数厘米共有3种情况分别是1解析:1 3【分析】先求出将长度为6的铁丝截成3段,每段长度均为整数厘米,共有几种情况,再找出其中能构成三角形的情况,最后根据概率公式计算即可.【详解】因为将长度为6的铁丝截成3段,每段长度均为整数厘米,共有3种情况,分别是1,1,4;1,2,3;2,2,2;其中能构成三角形的是:2,2,2一种情况,所以能构成三角形的概率是13.故答案为13.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.17.【分析】画树状图展示所有16种等可能的结果数再找出两次摸出的球上是写有美丽二字的结果数然后根据概率公式求解【详解】(1)用1234别表示美丽罗山画树形图如下:由树形图可知所有等可能的情况有16种其中解析:1 8【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球上是写有“美丽”二字的结果数,然后根据概率公式求解.【详解】(1)用1、2、3、4别表示美、丽、罗、山,画树形图如下:由树形图可知,所有等可能的情况有16种,其中“1,2”出现的情况有2种,∴P(美丽)21168==.故答案为:18.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.6【分析】利用表格中摸到红球频率估计随机摸出一个球恰好是红球的概率即可【详解】解:由表格中的数据可得摸到红球频率大约为06则随机摸出一个球恰好是红球的概率约为06故答案为06【点睛】本题主要考查了利解析:6【分析】利用表格中摸到红球频率估计随机摸出一个球恰好是红球的概率即可.【详解】解:由表格中的数据可得,摸到红球频率大约为0.6,则随机摸出一个球恰好是红球的概率约为0.6.故答案为0.6.【点睛】本题主要考查了利用频数估计概率,明确题意、掌握频率和概率的关系是解答本题的关键.19.【分析】首先确定所求的阴影小正方形可能的位置总数目除以剩余空白部分的正方形的面积个数即为所求的概率【详解】解:从阴影下边的四个小正方形中任选一个就可以构成正方体的表面展开图∴能构成这个正方体的表面展解析:4 7【分析】首先确定所求的阴影小正方形可能的位置总数目,除以剩余空白部分的正方形的面积个数即为所求的概率.【详解】解:从阴影下边的四个小正方形中任选一个,就可以构成正方体的表面展开图,∴能构成这个正方体的表面展开图的概率是47.故答案为:47.【点睛】本题将概率的求解设置于正方体的表面展开图中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比;“一,四,一”组合类型的6个正方形能组成正方体.20.B【分析】用用时不超过15分钟的人数除以总人数即可求得概率;先分别求出A线路不超过20分钟的人数和B线路不超过20分钟的人数再进行比较即可得出答案【详解】∵在A地铁站乘车等待时间不超过15分钟有50解析:15B【分析】用“用时不超过15分钟”的人数除以总人数即可求得概率;先分别求出A线路不超过20分钟的人数和B线路不超过20分钟的人数,再进行比较即可得出答案.【详解】∵在A地铁站“乘车等待时间不超过15分钟有50+50=100人,∴在A地铁站“乘车等待时间不超过15分钟”的概率为100500=15,∵A线路不超过20分钟的有50+50+152=252人,B线路不超过20分钟的有45+215+167=427人,∴选择B线路,故答案为:15,B.【点睛】此题考查了用频率估计概率的知识,能够读懂图是解答本题的关键,难度不大;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.(1)13;(2)49.【分析】(1)根据根的判别式分别判断三个方程根的情况,再运用概率公式求解即可; (2)画出树状图展示所有9种等可能的结果,找出恰好抽到两个方程都有实数根的结果数,然后根据概率公式求解. 【详解】解:(1)方程有实数根,则2=40b ac ∆-≥> 甲方程:210x +=2=0411=40∆-⨯⨯-<∴甲方程没有实数根; 乙方程:20x x +=2=1410=10∆-⨯⨯>∴乙方程有实数根 丙方程:2210x x ++=2=2411440∆-⨯⨯=-=∴丙方程有实数根所以,抽到方程没有实数根的概率13; (2)画树状图:共有9种等可能的结果,其中恰好抽到两个方程都有实数根的结果数为4, 所以恰好抽到两个方程都有实数根的概率=49. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 22.(1)50人,图见详解;(2)13. 【分析】(1)由篮球人数及其所占百分比可得总人数,再进一步求出足球和羽毛球人数即可补全图形;(2)先画树状图展示所有12种等可能的结果数,找出选出的2人恰好有1人选修排球、1人选修羽毛球所占结果数,然后根据概率公式求解.【详解】(1)该班的总人数为:1734%50÷=(人),足球科目人数为:5014%7⨯=(人)羽毛球科目人数为:501771259----=(人),补全统计图如图所示:(2)设选修排球的记为A,选修羽毛球记为1B和2B,选修乒乓球记为C.画树状图为:共有12种等可能的结果,其中恰好有1人选修排球、1人选修羽毛球的占4种,所以()1141 123P==恰好有人选修排球、人选修羽毛球.【点睛】本题考查了统计与概率,解题的关键是利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.(1)点M的坐标为:(-1,0)或(-1,1)或(0,-1)或(0,1)或(1,-1)或(1,0);(2)21 63 =【分析】(1)列树状图解答;(2)确定点M 在一次函数y x =-图象上的坐标为:(-1,1)或(1,-1),根据概率公式计算即可. 【详解】 (1)列树状图:共有6种等可能的结果:(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),∴点M 的坐标为:(-1,0)或(-1,1)或(0,-1)或(0,1)或(1,-1)或(1,0); (2)点M 在一次函数y x =-图象上的坐标为:(-1,1)或(1,-1), ∴点M 在一次函数y x =-图象上的概率为2163=. 【点睛】此题考查列举法求事件的概率,正确理解概率事件中“放回”或“不放回”事件是解此类问题的关键. 24.(1)12;(2)34. 【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解. 【详解】解:(1)∵第二个孩子是可能是男孩,也可能是女孩,可能性相同, ∴第二个孩子是女孩的概率= 12; (2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3, 所以至少有一个孩子是女孩的概率=34. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.。

九年级数学下册《对概率的进一步认识》练习题及答案

九年级数学下册《对概率的进一步认识》练习题及答案

九年级数学下册《对概率的进一步认识》练习题及答案时间:60分钟 满分:100分一、选择题(30分)1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率2.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1,2,3,4,5,6。

同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.31 B.61 C.91 D.121 3.(临沂中考)2018年某市初中学业水平实验操作考试。

要求每名学生从物理、化学、生物三个学科中随机抽取一科参加考试,小华和小强都抽到物理学科的概率是( )A.31 B.41 C.61 D.91 4.(玉林中考)如图是某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球5.小明向如图所示的正方形ABCD 区域内投掷飞镖,点E 是以AB 为直径的半圆与对角线AC 的交点。

如果小明投掷飞镖一次,那么飞镖落在阴影部分的概率为( )A.21 B.41 C.31 D.81 6.某电路图如图所示,其中K 1,K 2,K 3为电路开关,L 1,L 2为能正常发光的灯泡。

任意闭合开关K 1,K 2,K 3中的两个,那么能让两盏灯泡同时发光的概率为( )A.31 B.32 C.21 D.417.(无锡中考)如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有( )A.4条B.5条C.6条D.7条8.(山西中考)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球。

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试题(含答案解析)

(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试题(含答案解析)

一、选择题1.一个不透明的袋子里装有黄、白、红三种颜色的球,其中黄色16个,白色8个和红色若干,小明通过多次摸球试验后,发现摸到红球的频率稳定在0.5左右,则摸到黄球的概率约为()A.23B.12C.13D.162.掷一枚均匀的硬币两次,两次均为反面朝上的概率是()A.12B.13C.23D.143.张老师对本班40名学生的血型作了统计,列出如下的统计表,则本班AB型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16人B.14人C.6人D.4人4.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.14B.12C.35D.345.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B.12C.13D.146.2018年10月,开州区举行初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,甲、乙两名同学都抽到化学学科的概率是().A.13B.14C.16D.197.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A .13B .14 C .16 D .1368.从拼音“nanhai”中随机抽取一个字母,抽中a 的概率为( ) A .12B .13C .15D .169.下列命题正确的是( )A .1x -有意义的x 取值范围是1x >.B .一组数据的方差越大,这组数据波动性越大.C .若7255'a ∠=︒,则a ∠的补角为10745'.D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为3810.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( ) A .32个B .36个C .40个D .42个11.四个外观完全相同的粽子有三种口味:两个豆沙、一个红枣、一个蛋黄,从中随机选一个是豆沙味的概率为( ) A .14B .13C .12D .112.随机掷一枚质地均匀的硬币两次,落地后至多有一次正面朝下的概率为( ) A .34B .23C .12D .14二、填空题13.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.14.甲、乙、丙、丁两位同学做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每次都由持球者将球再随机传给其他三人中的某一人,则第二次传球后球回到甲手里的概率是______.15.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是_____16.布袋中有2个红球.3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是黄球的概率是__________.17.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.18.现有6张正面分别标有数字1,0,1,2,3,4-的不透明卡片,这些卡片除数字不同外其余全部相同现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有实数根的概率为____.19.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.20.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________.三、解答题21.2020年疫情期间,某校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有 人,在线答疑所在扇形的圆心角度数是 ; (2)补全条形统计图;(3)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.22.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(指针指在分界线时取指针右侧扇形的数). (1)小王转动一次转盘指针指向3所在扇形的概率是______________.(2)请你用树状图或列表的方法求一次游戏结束后两数之和是5的概率.23.为发展学生多元能力,某校九年级开设A,B,C,D四门校本选修课程,要求九年级每个学生必须选报且只能选报其中一门.图1,图2是九年(1)班学生A,B,C,D四门校本选修课程选课情况的不完整统计图.请根据图中信息,解答下列问题.(1)求九年(1)班学生的总人数及该班选报A课程的学生人数;(2)在统计的信息中,我们发现九年(1)班的甲同学和乙同学选报了A课程,若从该班选报A课程的同学中随机抽取2名进行选修学习效果的测评,求甲,乙同时被抽中的概率.24.布袋中有红、黄、蓝三种只有颜色不同的球各一个,从中先摸出一个球,记录下它的颜色,将它放回布袋并搅匀,再摸出一个球,记录下颜色.求摸出的两个球颜色为“一红一黄”的概率.25.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)计算平局的概率.(3)刘凯说:“这种规则不公平”,你认同他的说法吗?请说明理由.(4)若你认为不公平,请你帮他们修改规则使游戏公平?26.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A、B、C、D四个等次,绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)请将条形统计图补充完整,并计算表示C等次的扇形所对的圆心角的度数为°;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据多次摸球试验后,发现摸到红球的频率稳定在0.5左右,可以计算出摸到黄球和白球的概率和为1−0.5=0.5,由此可估计到布袋中的三种球可能共有48个,则利用概率公式即可得出结论.【详解】解:∵通过多次摸球试验后发现,摸到红球的频率稳定在0.5左右,∴摸到黄球和白球的概率和为1−0.5=0.5.则布袋中的三种球可能共有:168480.5+=个,∴摸到黄球的概率约为:161483=.故选:C.【点睛】此题考查了利用频率估计概率,解答此题的关键是掌握频率和概率的关系及概率的计算方法.2.D解析:D【分析】首先根据题意用列举法,即可求得掷一枚均匀的硬币两次,所有等可能的结果,又由两次均为反面朝上的只有1种情况,然后利用概率公式求解即可求得答案.【详解】解:∵掷一枚均匀的硬币两次,等可能的结果有:正正,正反,反正,反反,又∵两次均为反面朝上的只有1种情况,∴两次均为反面朝上的概率是:14.故选:D.【点睛】本题考查了用列举法求概率.注意不重不漏的表示出所有等可能的结果是解此题的关键,注意:概率 所求情况数与总情况数之比.3.D解析:D【分析】根据题意计算求解即可.【详解】由题意知:共40名学生,由表知:P(AB型)=0.10.10.1 0.40.350.10.151.∴本班AB型血的人数=40×0.1=4名.故选D.【点睛】本题主要考查了概率的知识,正确掌握概率的知识是解题的关键.4.B解析:B【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7;其中能构成三角形的有2、6、7;4、6、7这两种情况,所以能构成三角形的概率是21 42 =,故选:B.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.构成三角形的基本要求为两小边之和大于最大边.5.B解析:B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案.【详解】解:根据题意,在A,B,C,D四个点中任选三个点,有:△ABC、△ABD、△ACD、△BCD,共4个三角形;其中是等腰三角形的有:△ACD、△BCD,共2个;∴能够组成等腰三角形的概率为:2142P==;故选:B.【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.6.D解析:D【分析】列树状图解答即可.【详解】树状图如下:共有9种等可能的情况,其中甲、乙都抽到化学学科的有1种情况,∴P(甲、乙两名同学都抽到化学学科)=19,故选:D.【点睛】此题考查列树状图求事件的概率,会画树状图,理解题意是解题的关键.7.C解析:C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:∴两个骰子的点数相同的概率为:61=366故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比8.B解析:B【解析】【分析】nanhai共有6个拼音字母,a有2个,根据概率公式可得答案.【详解】∵nanhai共有6个拼音字母,a有2个,∴抽中a的概率为21=,63故选:B.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.B解析:B【分析】分别分析各选项的题设是否能推出结论,即可得到答案.【详解】解:x 取值范围是1x ≥,故选项A 命题错误; B. 一组数据的方差越大,这组数据波动性越大,故选项B 命题正确; C. 若7255'a ∠=︒,则a ∠的补角为1075',故选项C 命题错误;D. 布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为58,故选项D 命题错误; 故答案为B. 【点睛】本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.10.A解析:A 【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数” 【详解】设盒子里有白球x 个, 根据=黑球个数摸到黑球次数小球总数摸球总次数得:8808400x =+ 解得:x=32.经检验得x=32是方程的解. 答:盒中大约有白球32个. 故选;A . 【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.11.C解析:C 【分析】根据概率公式用豆沙口味的个数除以粽子的总个数即可得出答案. 【详解】解:∵外观完全相同的粽子有4个,两个豆沙、一个红枣、一个蛋黄, ∴从中随机选一个是豆沙味的概率是2142=. 故选:C . 【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.12.A解析:A【分析】用列举法确定所有等可能的情况,根据落地后至多有一次正面朝下的次数,利用概率公式计算解答.【详解】随机掷一枚质地均匀的硬币两次,共“正、反”,“反、正”,“正、正”,“反、反”,4种情况,落地后至多有一次正面朝下包括“正、反”,“反、正”,“正、正”,3种情况,故至多有一次正面朝下的概率为34.故选:A.【点睛】此题考查了列举法求概率,解题的关键是找到所有的情况.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题13.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193,故答案为:13.本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.14.【分析】画出树状图可得总结果数与传到甲手里的情况数根据概率公式即可得答案【详解】画树状图如下:共有9种等可能的结果其中第二次传球后球回到甲手里的结果有3种∴第二次传球后球回到甲手里的概率为=故答案为解析:1 3【分析】画出树状图,可得总结果数与传到甲手里的情况数,根据概率公式即可得答案.【详解】画树状图如下:共有9种等可能的结果,其中第二次传球后球回到甲手里的结果有3种,∴第二次传球后球回到甲手里的概率为39=13.故答案为:1 3【点睛】本题考查了树状图法计算概率,计算概率的方法有树状图法与列表法,正确的画出树状图是解题关键.15.【分析】数出黑色瓷砖的数目和瓷砖总数求出二者比值即可【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值进而转化为黑色瓷砖个数与总数的比值即故答案为:【点睛】本题考查解析:1 4【分析】数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即41 164故答案为:1 4 .本题考查几何概率的求法:根据题意将面积比表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.16.【分析】直接根据概率公式求解【详解】∵袋中有2个红球3个黄球共有5个球∴从袋中任意摸出一个球是黄球的概率是故答案为:【点睛】本题考查了概率公式随机事件A的概率P(A)=事件A可能出现的结果数除以所有解析:3 5【分析】直接根据概率公式求解.【详解】∵袋中有2个红球、3个黄球,共有5个球,∴从袋中任意摸出一个球是黄球的概率是35.故答案为:35.【点睛】本题考查了概率公式,随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.17.【分析】先画出树状图求出所有可能出现的结果数再找出选出的2名同学刚好是一男一女的结果数然后利用概率公式求解即可【详解】解:设报名的3名男生分别为ABC2名女生分别为MN则所有可能出现的结果如图所示:解析:3 5【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=123 205.故答案为:35.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.18.【分析】先由一元二次方程x2-2x+a-2=0有实数根得出a的取值范围最后根据概率公式进行计算即可【详解】解:∵一元二次方程x2-2x+a-2=0有实数根∴4-4(a-2)≥0∴a≤3∴a=-101解析:5 6【分析】先由一元二次方程x2-2x+a-2=0有实数根,得出a的取值范围,最后根据概率公式进行计算即可.【详解】解:∵一元二次方程x2-2x+a-2=0有实数根,∴4-4(a-2)≥0,∴a≤3,∴a=-1,0,1,2,3.∴使得关于x的一元二次方程x2-2x+a-2=0有实数根概率为:56.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使一元二次方程x2-2x+a-2=0有实数根情况数是解决本题的关键.19.【分析】根据题意得出摸出红球的频率继而根据频数=总数×频率计算即可【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40∴口袋中红色球的个数可能是30×40=12个故答案为:12【点睛】本解析:【分析】根据题意得出摸出红球的频率,继而根据频数=总数×频率计算即可.【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,∴口袋中红色球的个数可能是30×40%=12个.故答案为:12.【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.20.22【分析】袋中黑球的个数为利用概率公式得到然后利用比例性质求出即可【详解】解:设袋中黑球的个数为根据题意得解得即袋中黑球的个数为个故答案为:22【点睛】本题主要考查概率的计算问题关键在于根据题意对解析:22【分析】袋中黑球的个数为x,利用概率公式得到5152310x=++,然后利用比例性质求出x即可.【详解】解:设袋中黑球的个数为x,根据题意得5152310x=++,解得22x=,即袋中黑球的个数为22个.故答案为:22.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.三、解答题21.(1)100,72°;(2)见解析;(3)14.【分析】(1)样本中“在线阅读”的人数有25人,占调查人数的25%,可求出调查人数;再求出“在线答疑”所占整体的百分比即可求出相应的圆心角的度数即可;(2)补全条形统计图即可;(3)画出树状图表示所有可能出现的结果情况,进而求出甲、乙两个人选择同一种方式的概率.【详解】解:(1)25÷25%=100(人),即本次调查人数有100人,“在线答疑”的人数为100-40-25-15=20(人),在扇形图中的圆心角度数为360°×20 100=72°;故答案为:100,72°;(2)补全条形统计图如图所示:(3)四类在线学习方式在线阅读、在线听课、在线答疑、在线讨论分别用A、B、C、D表示,画树状图如图:共有16个等可能的结果,其中甲、乙两名同学喜欢同一种在线学习方式的结果有4个,∴甲、乙两名同学喜欢同一种在线学习方式的概率为41164.【点睛】本题考查了列表法与树状图法、条形统计图、扇形统计图等知识,理解两个统计图中的数量关系,正确画出树状图是解题的关键.22.(1)13;(2)29【分析】(1)利用概率公式计算可得;(2)先画树状图展示所有9个等可能的结果数,再找出两个数字之和为5的结果数,由概率公式求解即可.【详解】解:(1)∵转盘被平均分成3个扇形,分别标有1、2、3三个数字,转盘中有3的数字为1个,∴小王转动一次转盘指针指向3所在扇形的概率是13,故答案为:13;(2)画树状图为:共有9个等可能的结果数,其中两个数字之和为5的结果数为2个,∴两个数字之和为5的概率=29.【点睛】本题考查了列表法与树状图,树状图法适合两步或两步以上完成的事件;画出树状图是解题的关键.23.(1)总人数40人,选报A课程的学生人数为4人;(2)16.【分析】(1)利用B的频数和所占百分比计算即可;利用公式计算即可;(2)选用列表法或画树状图法计算即可.【详解】解:(1)九年(1)班学生的总人数是1640%40÷=(人),该班选报A课程的学生人数是4010%4⨯=(人).(2)由(1)得,九年(1)班选报A课程的人数是4,将甲,乙以外的两人记为丙,丁.根据题意,可以列出如下表格:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,J)丁(丁,甲)(丁,乙)(丁,丙)其中他们“甲,乙同时被抽中”的结果有2种.P∴(甲,乙同时被抽中)21 126 ==.∴甲,乙同时被抽中的概率是16.【点睛】本题考查了统计图的计算,列表法或画树状图法求概率,熟练掌握统计图的意义,灵活选择概率的计算方法是解题的关键.24.2 9【分析】先画出树状图,由树状图求得所有等可能的结果数,找出一红一黄的情况数,再利用概率公式,即可求得答案.【详解】解:画树状图得:由树状图可知:共有9种等情况数,其中“一红一黄”的有2种,∴摸出的两个球颜色为“一红一黄”的概率为29.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)见解析,12种;(2)14;(3)认同,见解析;(4)见解析.【分析】(1)根据题意画出树状图,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和等于12的情况数,再根据概率公式即可得出答案;(3)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案;(4)应保证双方赢的概率相同.【详解】解:(1)画树状图:可见,两数和共有12种等可能性;(2)两数和共有12种等可能性,其中平局的情况有3种, ∴P (出现平局)31124==; (3)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,P ∴(李燕获胜)61122==, P (刘凯获胜)31124==, ∵1142<, ∴这个游戏规则对双方不公平. (4)游戏规则:(答案不唯一)如:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数等于12,则李燕胜;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).或:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数小于12,则李燕胜;否则就刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止). 【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比. 26.(1)2,45,20;(2)图见解析,72;(3)16【分析】(1)用A 等次的人数除以它所占的百分比得到调查的总人数,再分别求出a 和B 等次的人数,然后计算出b 、c 的值;(2)先补全条形统计图,然后用360°乘以C 等次所占的百分比得到C 等次的扇形所对的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出甲、乙两名男生同时被选中的结果数,然后根据概率公式求解. 【详解】解:(1)1230%40÷=, 405%2a =⨯=;401282%100%45%40b ---=⨯=,即45b =; 8%100%20%40c =⨯=,即20c =; 故答案为:2,45,20;(2)B等次人数为40128218---=,条形统计图补充为:C等次的扇形所对的圆心角的度数20%36072=⨯︒=︒;故答案为72︒;(3)画树状图为:共有12种等可能的结果数,其中甲、乙两名男生同时被选中的结果数为2,所以甲、乙两名男生同时被选中的概率21 126 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.。

北师大版九年级上册数学第三章概率的进一步认识测试题

北师大版九年级上册数学第三章概率的进一步认识测试题
A.3项B.4项C.5项D.6项
二、填空题(共20分)
9.某校有一支由12人组成的篮球队,年龄结构如下表.
年龄(岁)
14
15
16
17
人数(人)
2
6
3
1
从中抽取1人,年龄不小于15岁的概率是.
10.如图表示某班21位同学衣服上口袋的数目.若任选一位同学,则其衣服上口袋数为5的概率是.
11.一个科室有3名男士、2名女士,从中任选2人做一项接待工作,则选到的人都女士的概率为.
(1)判断线段MN与线段BM的位置关系与数量关系,说明理由;
(2)如果CD=5,求NF的长.
23.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量y与销售单价x之间的函数关系式;
(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?
(1)如果花2元摸1个球,那么摸不到奖的概率是多少?
(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?
20.一个口袋里有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.
A. B. C. D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0

第六章《概率的进一步认识》单元测试卷(含答案)

第六章《概率的进一步认识》单元测试卷(含答案)

第六章概率的进一步认识单元测试班级:( 时间: 45 分钟满分:100分)__________________姓名: ____________一、选择题 :(每题 3 分,共 30 分)1.以下事件中,是必定事件的是()A. 翻开电视机,正在播放新闻B.父亲年纪比儿子年纪大C. 经过长久努力学习,你会成为数学家D.下雨天,每一个人都打着雨伞2.以下事件中:确立事件是()A. 掷一枚六个面分别标有1~6 的数字的均匀骰子,骰子停止转动后偶数点向上B.从一副扑克牌中任意抽出一张牌,花色是红桃C.任意选择电视的某一频道,正在播放动画片D. 在同一年出生的367 名学生中,起码有两人的诞辰是同一天.3.10 名学生的身高以下(单位:cm)159169163170166165156172165162从中任选一名学生,其身高明过165cm 的概率是()A . 1B .2C .1D .1 255104.以下说法正确的选项是()①试验条件不会影响某事件出现的频次;②在同样的条件下试验次数越多,就越有可能获取较精准的预计值,但各人所得的值不一定同样;③假如一枚骰子的质量散布均匀,那么投掷后每个点数出现的时机均等;④投掷两枚质量散布均匀的同样的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会同样.A .①②B .②③C .③④D .①③5.如图 1 所示为一水平搁置的转盘,用力转动其指针,并让它自由停下,下边表达正确的选项是()B A 120A .停在B区比停在A区的时机大B .停在三个区的时机同样大C C .停在哪个区与转盘半径大小相关图 1D .停在哪个区是能够为所欲为的6.从标有号码 1到100的100张卡片中,任意地抽出一张,其号码是3 的倍数的概率是()A . 33B .34 C .3 D .不确立100100107.两个射手相互独立射击一目标,甲射中目标的概率为0.9,乙射中目标的概率为 0.8,在一次射击中,甲、乙同时射中目标的概率是()A .0.72 B .0.85 C .0.1 D .不确立8.如图 2 所示的两个圆盘中,指针落在每一个数上的时机均等,则两个指针同时落在偶数上的概率是( )12A . 561 B .4 262525 5345C.10D . 1925259.有阜阳到合肥的某一次列车, 运转途中停靠的车站 图 2挨次是:阜阳 — 淮南 —水家湖 —合肥,那么要为此次列车制作的火车票有( )A.3 种B.4 种C.6 种D.12 种10.中央电视台 “好运 52”栏目中的 “百宝箱 ”互动环节,是一种竟猜游戏,游戏规则以下:在20 个商标牌中,有 5 个商标牌的反面注明必定的奖金额,其他商标牌的反面是一张哭脸,若翻到哭脸, 就不得奖, 参加这个游戏的观众有三次翻牌的时机 (翻过的牌不可以再翻) .某观众前两次翻牌均获取若干奖金,那么他第三翻牌获奖的概率是 ( )A . 1B .1C .1D . 34 5620二、填空题(每题 3 分,共 15 分)11. 一个口袋中装有4 个白色球, 1 个红色球, 7 个黄色球,搅匀后随机从袋中摸出1 个球是白色球的概率是.12. 掷两枚硬币,一枚硬币正面向上,另一枚硬币反面向上的概率是.13. 小红、小芳、小明在一同做游戏时需要确立做游戏的先后次序,他们商定用 “锤子、 剪刀、布 ”的方式确立.请问在一个回合中三个人都出“布 ”的概率是.14.在对某次实验数据整理过程中,某个事件出现的频次随实验次数变化折线图如图 3 所示,这个图形中折线的变化特色是,试举一个大概切合这个特色的实物实图 3验的例子(指出关注的结果).15.某校九年级(3)班在体育毕业考试中,全班全部学生得分的状况以下表所示:分数段18 分以下18~ 20 分21~ 23 分24~ 26 分27~ 29 分30 分人数2312201810那么该班共有人,随机地抽取 1 人,恰巧是获取 30 分的学生的概率是,从上表中,你还可以获取的信息是(写出一条即可)三、解答题(共55 分)16.( 6 分)有两组卡片,第一组三张卡片上都写着A、B、 B,第二组五张卡片上都写着A、B、B、 D、 E.试用列表法求出从每组卡片中各抽取一张,两张都是B的概率 .17.( 6分)将分别标有数字1,2, 3 的三张卡片洗匀后,反面向上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能构成哪些两位数?恰巧是 32 的概率是多少18.( 8 分)依照关游,你研究“ 关游”的神秘:(1)用列表的方法表示全部可能的关状况;(2)求出关成功的概率.关游: 4 所示的面板上,有左右两开关按,每中的两个按均分控制一个灯泡和一个音装置,同按下两中各一个按:当两个灯泡都亮关成功;当按一个按,音装置就会出“ 关失”的声音.419.( 8 分)有一个游,被均匀分红10 份(如 5),分有 1, 2,⋯⋯, 10 10 个数字,上有固定的指,,当停止,指指向的数字即出的数字.两人行游,一人,另一人猜数,假如猜的数与出的数状况符合,猜数的人,否的人.猜数的方法以下三种中的一种:(1)猜奇数或偶数;(2)猜是 3 的倍数或不是 3 的倍数;(3)猜大于 4 的数或不大于 4 的数.假如你是猜数的游者,了尽可能取,你哪一种猜法?怎猜?211039 48567520.(6 分)王老汉为了与客户签署购销合同,对自己的鱼塘的鱼的总质量进行预计,第一次捞出 100 条,称得质量为 184 千克,并将每条鱼作上记号放入水中;当它们完整混淆于鱼群后,又捞出 200 条,称得质量为 416 千克,且带有标志的鱼有 20 条. ①请你帮王老汉预计池塘中有多少条鱼?②请你帮王老汉预计池塘中的鱼有多重?21.( 6 分)( 2007 ·湖州市)在一个布口袋中装有只有颜色不一样,其他都同样的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏全部可能的结果;(2)假如规定:乙摸到与甲同样颜色的球为乙胜,不然为负,试求乙在游戏中能获胜的概率.22.( 7 分)如图6,有两个能够自由转动的转盘A、B,转盘 A 被均匀分红 4 等份,每份标上数字1、2、3、4 四个数字;转盘 B 被均匀分红 6 等份,每份标上数字1、2、3、4、5、6 六个数字.有人为甲乙两人设计了一个游戏,其规则以下:(1)同时转动转盘A与B;(2)转盘停止后,指针各指向一个数字(假如指针恰巧指在切割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,假如所得的积是偶数,那么甲胜;假如所得的积是奇数,那么乙胜 .你以为这样的规则能否公正?请你说明原因;假如不公正,请你设计一个公正的规则,并说明原因 .23.( 8 分)(2007 ·江西省)在一次数学活动中,黑板上画着如图在准备的四张纸片上分别写有以下四个等式中的一个等式:7 所示的图形,活动前老师① AB DC②ABE DCE③ AE DE④A D小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请联合图形解答以下两个问题:( 1)当抽得①和②时,用①,②作为条件能判断△ BEC是等腰三角形吗?谈谈你的理由;( 2)请你用树状图或表格表示抽取两张纸片上的等式全部可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使△ BEC ..不可以构成等腰三角形的概率.参照答案一、 1. B; 2.D; 3.B; 4.B; 5.A; 6.A; 7.A; 8. B;9.C;10.C.二、 11.1;12.1 ;13.1;322714. 跟实在验次数增添,频次趋于稳固 .如:投掷硬币实验中关注正面出现的频次;15. 65,2,答案不唯一,只需合理均可.13三、 16. 4.1521117.( 1) P(奇数) =.( 2)恰巧是32 的概率是 .18.(1)略.(2)364 19. 选( 2)不是 3 的倍数20.( 1) 1000 条;(2) 2000 千克 .21.( 1)树状图以下甲摸到的球白红黑乙摸到的球白红黑白红黑白红黑( 2)乙摸到与甲同样颜色的球有三种状况乙能取胜的概率为319.322. 不公正 .∵ P(奇) =1 /4;P(偶) =3/ 4∴P(偶)> P(奇)∴不公正.新规则:⑴同时自用转动转盘 A 和 B;⑵转盘停止后,指针各指向一个数字,用所指的两个数字作和,假如获取的和是偶数,则甲胜;假如获取的和是奇数,则乙胜.原因:∵ P(奇) =1/ 2;P(偶) =1/ 2∴ P(偶)=P(奇)∴公正23.( 1)能.原因:由AB DC ,∠ABE∠DCE ,∠AEB∠DEC ,得△ABE ≌△DCE .开始BE CE ,△BEC 是等腰三角形.( 2)树状图:①②③④先抽取的纸片序号后抽取的纸片序号②③ ④①③④①② ④①② ③全部可能出现的结果(①②)(①③)(①④)(②①)(②③)(②④)(③①)(③②)(③④)(④①)(④②)(④③)由表格(或树状图)能够看出,抽取的两张纸片上的等式可能出现的结果有12种,它们出现的可能性相等,不可以构成等腰三角形的结果有4种,因此使△ BEC不可以构成等腰三角形的概率为1.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档