商务智能案例
商务智能与决策支持——案例及案例分析

商务智能与决策支持教学案例案例1:光大银行商务智能系统得实施一、案例内容成立于1992年8月得光大银行, 作为国内最大得股份制商业银行,拥有众多客户群,几百个分支机构遍布国内外;同时光大银行以领先得理念为客户提供种类繁多得金融服务。
对于一个如此庞大得机构,如此繁多得金融服务,管理得复杂性可想而知。
近年来,通过综合柜台业务系统、阳光卡系统、网上银行系统与办公自动化系统等一系列信息化基础建设,光大银行率先实现了业务系统全国联网与总行数据大集中。
在成功实现业务系统全国联网与总行数据大集中后,经营管理分析方面又出现了一些亟待解决得新问题,如:统计数据不够及时准确、对决策分析缺乏专业化系统化支持、报表处理效率低、数据共享差、难以为以客户为中心得经营管理模式提供充足得信息支持、业绩考核没有理想得IT系统为支撑等等。
众多新问题得出现就是银行管理层始料未及得。
为了尽快突破海量数据得“封锁”,挖掘其中蕴涵得知识与信息,光大银行决策层于2002年初开始立项商业智能及数据仓库系统。
光大银行根据自身情况,以实际需要为导向,对各家方案得优劣进行仔细分析、反复考察、综合考虑。
最终,菲奈特软件公司得高端商务智能产品BI、Office以其领先得技术与简便得操作从众多竞争者中脱颖而出,赢得了光大银行决策层得一致青睐。
经过商议,双方在国际结算业务统计分析、对公业务统计分析、信贷风险管理、客户经理业绩考核等方面签定了一系列合作计划。
为了降低实施风险,将从国际结算业务统计分析系统开始,各个项目逐步实施。
成功得选型就是光大银行商业智能应用系统成功实施得开始。
国际业务部商业智能得应用证明,光大银行所采取得“以部门为基础实施数据处理”得决定就是正确得,也就是务实得。
从2002年12月开始,菲奈特BI、Office商业智能应用平台相继应用于光大银行其她几个业务部门,形成相应部门得商业智能系统。
这些商业智能系统以数据仓库技术为基础,把分散在各个业务系统得数据进行整合,数据经过清洗、转换,加载到数据仓库;再采用OLAP与Data Mining等技术,为管理决策人员提供强大、灵活得日常查询与决策支持。
商务智能与决策支持——案例及案例分析

商务智能与决策支持——案例及案例分析随着互联网技术的不断发展,大量数据被生产出来,这些数据中蕴含着巨大的商业价值。
商务智能和决策支持系统可以利用这些数据,提供决策制定者与业务分析师期望的数据驱动洞察,以优化业务决策。
以下是几个商务智能和决策支持系统的案例及案例分析。
案例1:超市销售决策支持系统在某家超市中,决策制定者需要决策哪些产品需要采购、以及量级的大小,以及哪些产品需要促销,以达到推广和促进销售的目的。
为了实现这些目的,该超市实现了一个决策支持系统。
决策支持系统采用商务智能数据仓库,从行业数据中导入了大量销售数据,包括每天、每周、每月、甚至每小时的交易、营销、库存和采购等数据。
该系统采用了高级数据可视化来表示销售数据,以帮助决策制定者快速识别有趣的数据趋势。
该系统还使用了预测分析,以辅助决策制定者预测某种产品的销售情况,并为其提供推荐;也使用了关联分析,以查找哪些产品最常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常常在一起出售。
通过使用这个决策支持系统,超市看到了显着的效益。
决策支持系统帮助他们预测哪些产品将具有更高的需求,帮助他们采购了更合适的库存量,以及哪些产品需要进行促销以提高销售。
超市转型成了一个以数据为驱动的企业。
案例2:在线零售商的数据分析一家在线零售商使用商务智能、数据挖掘与分析技术来对订单,商品,顾客及销售数据进行分析,以帮助经营者做出更加精准的商业决策。
他们使用了大量的内部和外部数据来源,以建立一个全面的数据仓库,数据包括订单历史、销售历史、客户数据、产品数据和行业趋势等。
他们使用了数据挖掘和预测性分析来发现顾客的需求以及未来销售趋势。
通过分析他们的数据,该在线零售商能够快速识别哪些产品的销售量增加,哪些产品的销售量下降,哪些产品的客户评分较低,并能及时调整库存和价格等策略来优化他们的销售。
此外,经营者能够更好地识别他们的目标客户及其需求,以提供更好的客户服务。
商业智能(BusinessIntelligence)成功实施案例

商业智能(BusinessIntelligence)成功实施案例客户解决方案案例研究微软商业智能让中体彩从数据中发掘业务价值,以技术推动体彩事业发展概况国家或地区:中国行业:专业服务客户资料中体彩科技发展有限公司是国家体育总局下属的多家单位共同出资设立的国有股份制高科技公司,2010年获国家双软认证,承担着中国体育彩票技术服务总集成商的职责,负责全国体育彩票全热线及高频交易系统的研发和运维。
总部位于北京,分翌景大厦、鹏龙大厦和德元九和3个办公区,下设天津、武汉、成都和广州四个区域中心。
业务情况公司是国家体育总局为适应体育彩票事业持续、安全、健康、稳定发展的需要,为整合体育彩票市场资源而组建的现代化高新技术企业。
现共设14个部门,下辖2个控股子公司。
公司自主研发完成的中国体育彩票全热线销售系统,截止到2008 年底已销售体育彩票1720.31 亿元。
同时,公司承担着中国体育彩票技术系统的规划、研发、运维、服务以及销售网络的增值服务业务等工作。
解决方案中体彩科技发展公司使用Microsoft SQL Server企业版以及微软商业智能构建体育彩票中心业务决策分析系统,以信息化全面地支持中国体育彩票事业的发展。
通过系统的建设,提供统一的、通用的、自助化的企业业务系统访问能力,使员工更有效率的获取各种信息,提高业务效率。
用户收益实现全面的数据收集提升数据处理与统计效率赋予业务用户分析洞察力微软的数据平台与商业智能解决方案,可以很好的整合不同的数据来源,对我们的各项业务数据进行集中的、高性能的处理和分析,最终生成符合各团队和层面所需的直观报表,让我们从业务数据中及早地获得利于发展的洞察力,从而更好的服务中国的体彩事业。
“——王卓,产品管理部部门经理,中体彩科技发展有限公司案例概况中体彩科技发展有限公司是由国家体育总局体育彩票管理中心、华体集团有限公司、体育基金管理中心及全国31 个省(自治区、直辖市)体育局所属单位等34 方共同出资设立的国有股份制企业,于2002 年12 月24 日在北京经济技术开发区注册成立。
商务智能与决策支持-案例及案例分析

商务智能与决策支持-案例及案例分析商务智能与决策支持教学案例案例1:光大银行商务智能系统的实施一、案例内容成立于1992年8月的光大银行,作为国内最大的股份制商业银行,拥有众多客户群,几百个分支机构遍布国内外;同时光大银行以领先的理念为客户提供种类繁多的金融服务。
对于一个如此庞大的机构,如此繁多的金融服务,管理的复杂性可想而知。
近年来,通过综合柜台业务系统、阳光卡系统、网上银行系统和办公自动化系统等一系列信息化基础建设,光大银行率先实现了业务系统全国联网和总行数据大集中。
在成功实现业务系统全国联网和总行数据大集中后,经营管理分析方面又出现了一些极待解决的新问题,如:统计数据不够及时准确、对决策分析缺乏专业化系统化支持、报表处理效率低、数据共享差、难以为以客户为中心的经营管理模式提供充足的信息支持、业绩考核没有理想的IT系统为支撑等等。
众多新问题的出现是银行管理层始料未及的。
为了尽快突破海量数据的“封锁”,挖掘其中蕴涵的知识和信息,光大银行决策层于2002年初开始立项商业智能及数据仓库系统。
光大银行根据自身情况,以实际需要为导向,对各家方案的优劣进行仔细分析、反复考察、综合考虑。
最终,菲奈特软件公司的高端商务智能产品BI.Office以其领先的技术和简便的操作从众多竞争者中脱颖而出,赢得了光大银行决策层的一致青睐。
经过商议,双方在国际结算业务统计分析、对公业务统计分析、信贷风险管理、客户经理业绩考核等方面签定了一系列合作计划。
为了降低实施风险,将从国际结算业务统计分析系统开始,各个项目逐步实施。
成功的选型是光大银行商业智能应用系统成功实施的开始。
国际业务部商业智能的应用证明,光大银行所采取的“以部门为基础实施数据处理”的决定是正确的,也是务实的。
从2002年12月开始,菲奈特BI.Office商业智能应用平台相继应用于光大银行其他几个业务部门,形成相应部门的商业智能系统。
这些商业智能系统以数据仓库技术为基础,把分散在各个业务系统的数据进行整合,数据经过清洗、转换,加载到数据仓库;再采用OLAP和Data Mining等技术,为管理决策人员提供强大、灵活的日常查询和决策支持。
商务智能应用案例

商务智能应用案例商务智能(Business Intelligence, BI)是指利用数据分析技术和信息技术来帮助企业进行决策和管理的过程。
随着大数据和人工智能技术的发展,商务智能已经成为企业发展的重要工具。
下面我们将介绍一些商务智能在实际应用中的案例,以便更好地理解商务智能的价值和作用。
首先,商务智能在零售行业的应用案例。
零售行业是一个典型的数据密集型行业,每天都会产生大量的销售数据、库存数据和客户数据。
利用商务智能技术,零售企业可以对这些数据进行分析,挖掘出消费者的购物偏好、商品的销售趋势等信息,从而更好地进行商品采购、促销活动和库存管理。
比如,一家超市可以通过商务智能系统分析出哪些商品的销售量呈现上升趋势,然后及时调整进货量,以满足消费者的需求,提高销售额。
其次,商务智能在金融行业的应用案例。
金融行业是一个风险管理和数据分析至关重要的行业。
商务智能技术可以帮助金融机构对客户的信用评分、贷款风险、投资组合等进行全面的分析,从而更好地控制风险,提高盈利能力。
比如,一家银行可以利用商务智能系统对客户的信用记录、财务状况等数据进行分析,及时发现潜在的信用风险,从而减少不良贷款的发生,保护银行的资产安全。
另外,商务智能在制造业的应用案例也非常广泛。
制造业是一个充满复杂生产过程和供应链的行业,商务智能可以帮助企业对生产数据、供应链数据进行分析,从而提高生产效率和降低成本。
比如,一家汽车制造商可以利用商务智能系统对生产线上的设备运行数据进行分析,及时发现设备的故障和停机情况,从而减少生产线的停工时间,提高生产效率。
最后,商务智能在市场营销领域的应用案例也非常值得关注。
市场营销是一个需要不断调整和优化的领域,商务智能可以帮助企业对市场数据、竞争对手数据进行分析,从而更好地制定营销策略和推广活动。
比如,一家互联网公司可以利用商务智能系统对用户的点击行为、购买行为进行分析,从而更好地了解用户的兴趣和需求,精准投放广告,提高营销效果。
商务智能分析案例分析

商务智能分析案例分析商务智能分析是指通过在线分析处理(OLAP)、数据挖掘(Data Mining)和其他商务智能工具,将企业内部和外部的数据整合、分析和应用,帮助企业决策者更好地了解市场动态和企业运营状况,制定更合理的商务战略,提高企业的运营效率和竞争力。
以下是一个商务智能分析案例:公司A是一家制造业企业,主营产品是电视机。
该公司希望通过商务智能分析来进行销售业绩分析和市场预测,以实现销售额的稳定增长。
首先,该公司建立了一个数据仓库,用于整合和存储来自不同部门和不同系统的数据,包括销售数据、市场数据、生产数据和客户数据等。
然后,公司A使用OLAP工具对销售数据进行分析。
通过OLAP,他们可以从不同的维度(如时间、地区、产品型号)对销售数据进行切片和钻取,了解销售额、销量和市场份额等指标的变化趋势和影响因素。
例如,他们发现一些特定地区的销售额出现下滑,通过进一步分析发现是由于竞争对手推出了新产品导致的。
此外,公司A还使用数据挖掘技术对市场数据进行分析。
他们利用数据挖掘算法,挖掘出潜在的消费者行为模式和市场趋势。
例如,他们发现在一些特定时间段,年轻人更倾向于购买大屏幕电视机,并在广告宣传中加大了对该目标消费群体的推广力度。
最后,公司A通过商务智能分析实现了销售额的稳定增长。
他们能够及时了解市场变化和竞争趋势,精确预测市场需求,并及时调整自己的产品和营销策略。
他们在市场中保持了竞争优势,提高了销售额和市场份额,实现了可持续发展。
通过上述案例可以看出,商务智能分析对于企业的决策制定和运营管理具有重要的作用。
它可以帮助企业快速获取和分析大量的数据,发现数据背后的规律和关联,为企业提供决策支持和战略指导,从而提高企业的竞争力和创造力。
商务智能应用案例

商务智能应用案例
1. 瑞典移动运营商Telio使用商务智能工具分析客户数据,以提高客户留存率和销售额。
他们利用数据挖掘和数据可视化技术,分析了客户使用率、消费模式和趋势。
通过这种方式,他们能够更好地了解客户需求和行为,制定更有针对性的销售策略,并提供更优质的服务。
2. 美国连锁超市Publix使用商务智能工具管理其库存,以减少废品和节省成本。
他们使用数据分析和预测工具,帮助管理者分析销售数据、库存流动等各项指标,预测需求,并及时调整库存量和采购计划,从而最大限度地降低库存成本和废品率。
3. 加拿大银行RBC使用商务智能工具对客户进行分析,根据客户的交易历史、购买习惯和偏好等信息,制定个性化的金融服务和产品。
他们利用数据挖掘技术,根据数据模式和趋势,挖掘出潜在的销售和增值机会,并提供更优秀的客户服务。
4. 英国国家医疗保健服务(NHS)使用商务智能工具对病人数据进行分析,以改善患者的护理和医疗结果。
他们使用数据可视化技术,对病人数据进行可视化分析,帮助医生和护士更好地了解病情,并根据病情制定更精确定制的治疗方案,提高医疗效果,同时降低医疗费用。
5. 中国电信通过利用商务智能分析大数据进行网络安全监控。
对网络数据进行分析,发现异常点、黑客攻击,提供实时监控和警告。
同时,通过挖掘大数据和
用户数据,研究用户需求和行为,制定更精准的服务策略。
商务智能在零售行业的应用

2
结 论
202X
单击此处添加副标题
商务智能在零售行业的应用
陈亚淞
汇报日期
在零售业中,通过条形码、编码系统、销售管理系统、客户资料管理及其它业务数据中,可以收集到关于商品销售、客户信息、货存单位及店铺信息等信息资料。数据从各种应用系统中采集,经分类整理,放到数据仓库里,允许高级管理人员、分析人员、采购人员、市场人员和广告客户访问,利用数据挖掘工具对这些数据进行分析,可以帮助管理者进行科学的决策。例如对商品进行购物篮分析,分析哪些商品是顾客最有希望一起购买。
数据挖掘通过分析具体数据,发现确定有效的、新颖的、有潜在使用价值的、以往不为人知的、最终可理解的信息,为产品的良好销售和决策部门作出重要决策提供帮助。数据挖掘一方面将数据转化为信息和知识,在此基础上作出正确的决策;另一方面提供一种机制,将知识融入到运营销售系统中,进行正确的运作。
零售行业是众多行业中较为复杂的行业,有效合理的数据挖掘分析可以使零售更加智能化,同时发现零售行业中的种种规律,并驾驭规律,从而赢得未来。
6 最优店址选择 利用数据挖掘技术可分辨出成功的商店或分店的特性,并协助新开张的商店选择恰当的地理位置。 7 客户群体分类 通过数据挖掘技术把大量的客户分成不同的类,每个类里的客户具有相似的属性,而不同类里的客户的属性尽量不相同。例如把所有客户分成VIP、一般客户和最差客户。企业可以针对不同类的客户提供针对性的产品和服务来提高客户的满意度。 8 客户的获得与保持 零售业的增长和发展壮大需要不断获得新的客户并维持老的客户。现在各个零售企业的竞争都越来越激烈,企业获得新客户的成本正在不断上升,通常吸收一个新客户的成本是留住一个老客户的成本的6-7倍,因此保持原有客户就显得越来越重要。通过数据挖掘技术可以帮助发现打算离开的客户,以使企业采取适当的措施挽留这些客户。 9 交叉销售 现代零售业和客户之间的关系是经常变动的,一旦—个人或—个团体成为企业的客户,就要竭力使这种客户关系趋于完善,需要对现有的客户进行交叉销售,为原有客户销售新的产品和服务。交叉销售是建立在双赢原则上的,对客户来讲,要得到更多更好满足其需求的服务且从中受益,对企业来讲,也会因销售额的增长而获益。数据挖掘可以帮助分析出最优的合理的销售匹配。 10 客户诚信度分析 数据挖掘中的差异性分析可用于发现客户的欺诈行为,分析客户的诚信度,从而获得诚信较好的客户。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
商务智能案例
在当今信息化时代,商务智能已经成为企业发展的重要战略。
通过商务智能技术,企业可以更好地理解市场和客户需求,优化业务流程,提高决策效率,从而获得竞争优势。
本文将通过几个实际案例,来探讨商务智能在不同行业中的应用和价值。
首先,让我们来看一个零售行业的案例。
一家大型连锁超市利用商务智能技术,对销售数据进行分析,发现某个季节性产品的销量出现了明显下滑。
经过进一步分析,发现这一产品的陈列位置发生了变化,导致顾客购买率下降。
通过及时调整陈列位置和促销策略,超市成功挽回了销量,并且提高了整体的销售额。
其次,我们来看一个制造业的案例。
一家汽车零部件制造企业利用商务智能技术,对生产过程进行监控和分析,发现某个工序出现了异常,导致产品质量下降。
通过及时调整生产参数,企业成功避免了大量次品的产生,提高了产品合格率,降低了生产成本。
再次,让我们看一个金融行业的案例。
一家银行利用商务智能技术,对客户数
据进行挖掘和分析,发现某一类客户的贷款违约率较高。
通过建立风险预警模型,银行成功识别了高风险客户,并采取了针对性的风险管理措施,降低了不良贷款率,提升了资产质量。
最后,让我们来看一个医疗行业的案例。
一家大型医院利用商务智能技术,对
医疗数据进行分析,发现某种疾病的就诊人数呈上升趋势。
通过及时调整资源配置和医疗方案,医院成功提高了对该疾病的诊疗效率,满足了患者的就医需求,提升了医疗服务水平。
通过以上案例的介绍,我们可以看到商务智能在不同行业中的应用场景和效果。
商务智能不仅可以帮助企业发现问题,还可以指导企业进行决策和行动。
在未来,
随着技术的不断发展和商务智能平台的不断完善,商务智能将会在企业管理中发挥越来越重要的作用,成为企业提升竞争力的重要手段之一。