四年级流水行船问题的公式和例题(含答案)
四年级流水行船问题的公式和例题含答案精修订

四年级流水行船问题的公式和例题含答案GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
行程问题流水行船问题

---流水行船
流水行船问题基本关系式:
顺水速度=船速+水速 逆水速度=船速-水速 船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
牛刀小试: 船在静水中的速度为每小时15千米,水流速度是 每小时3千米,船从上游乙港到下游甲港航行了12小时, 甲、乙两港间距离多少千米?
例1: 游轮从A城市到B城市顺流而下需要48小时,游轮 在静水中的速度是每小时30千米,水流速度是每小时 6千米,游轮从B城市返回A城市需要多少小时?
练习: 某轮船在相距216千米的两个港口间往返运送货物, 已知轮船在静水中每小时21千米,两个港口间的水流 速度是每小时3千米,那么,这只轮船往返一次需要多 长时间?
例2 : 甲、乙两港间的航线长360千米,一只船从甲港求船在静水中的速度和水流速度?
练习: 某架飞机顺风飞行每小时飞1320千米,逆风飞 行每小时飞1080千米,这架飞机的速度和风速分别是 多少?
例3: A、B两码头间河流长为90千米,甲、乙两船分别 从A、B码头同时起航,如果相向而行3小时相遇;如 果同向而行15小时甲船追上乙船,求两船在静水中的 速度?
练习: 两个港口相距342千米,甲、乙两支轮船同时从 两个港口相对开出,甲船顺流而下,乙船逆流而上, 9小时后正好相遇,已知甲船每小时比乙船慢4千米。 甲、乙两船的速度分别是多少?
谢谢观赏
WPS Office
Make Presentation much more fun
@WPS官方微博 @kingsoftwps
例5: 静水中,甲乙两船的速度分别为每小时20千米 和每小时16千米,两船先后自同一港口顺水开出, 乙船比甲船早出发2小时,若水速是每小时4千米, 甲船开出几小时后追上乙船?
流水行船问题的公式和例题(完整版)

流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
*例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?(适于高年级程度)解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
(完整版)流水行船问题及答案

流水行船问题顺水速度=船速+水速逆水速度=船速-水速2÷+=逆水速度)(顺水速度船速2-÷=逆水速度)(顺水速度水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
(完整版)流水行船问题及答案

(完整版)流水行船问题及答案流水行船问题顺水速度=船速+水速逆水速度=船速-水速2÷+=逆水速度)(顺水速度船速2-÷=逆水速度)(顺水速度水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13—3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。
这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15—3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22。
5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
流水行船问题的公式和例题(完整版)

流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?(适于高年级程度)解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
小学数学 流水行船问题 非常完整版教案 例题+练习+答案

流水行船基本公式:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.模块一、基本的流水行船问题【例题1】两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
(352÷11-352÷16)÷2=5(千米/小时).【巩固】光明号渔船顺水而下行200千米要10小时,逆水而上行120千米也要10小时.那么,在静水中航行320千米需要多少小时?顺水速度:200÷10=20(千米/时),逆水速度:120÷10=12(千米/时),静水速度:(20+12)÷2=16(千米/时),该船在静水中航行320千米需要320÷16=20(小时).【巩固】一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?顺水速度为25+3=28(千米/时),需要航行140÷28=5(小时).【例题2】甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
顺水速度:208÷8=26(千米/小时),逆水速度:208÷13=16(千米/小时),船速:(26+16)÷2=21(千米/小时),水速:(26—16)÷2=5(千米/小时)【巩固】甲乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?从甲到乙顺水速度:234÷9=26(千米/小时),从乙到甲逆水速度:234÷13=18(千米/小时),船速是:(26+18)÷2=22(千米/小时),水速是:(26-18)÷2=4(千米/小时).【例题3】一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用秒.本题类似于流水行船问题.根据题意可知,这个短跑选手的顺风速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒,那么他在无风时的速度为(9+7)÷2=8米/秒.在无风时跑100米,需要的时间为100÷8=12.5秒.【巩固】某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?从甲地到乙地的顺水速度为15+3=18(千米/时),甲、乙两地路程为18×8=144(千米),从乙地到甲地的逆水速度为15-3=12(千米/时),返回所需要的时间为144÷12=12(小时).【例题4】一只小船在静水中的速度为每小时25千米.它在长144千米的河中逆水而行用了8小时.求返回原处需用几个小时?4.5小时【巩固】一只小船在静水中速度为每小时30千米.它在长176千米的河中逆水而行用了11小时.求返回原处需用几个小时?这只船的逆水速度为:176÷11=16(千米/时);水速为:30-16=14(千米/时);返回原处所需时间为:176÷(30=14)=4(小时).【例题5】一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离?(船速+6)×4=(船速-6)×7,可得船速=22,两港之间的距离为:(22+6)×4=112千米.【巩固】甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,4小时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的距离相差多少千米?在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差=(船速+水速) -(船速-水速)=2×水速,即:每小时甲船比乙船多走6×2=12(千米).4小时的距离差为12×4=48(千米).【巩固】甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,3小时后相遇.已知水流速度是4千米/时.求:相遇时甲、乙两船航行的距离相差多少千米?在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差=(船速+水速) -(船速-水速)=2×水速,即:每小时甲船比乙船多走4×2=8(千米).3小时的距离差为8×3=24(千米).【例题6】乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?乙船顺水速度:120÷2=60(千米/小时).乙船逆水速度:120÷4=30(千米/小时)。
流水行船问题的公式和例题(含答案)

流水行船问题的公式和例题之青柳念文创作流水问题是研究船在流水中的行程问题,因此,又叫行船问题.在小学数学中涉及到的题目,一般是匀速运动的问题.这类问题的主要特点是,水速在船逆行和顺行中的作用分歧.流水问题有如下两个基本公式:顺水速度=船速+水速(1)顺水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的旅程;船速是指船自己的速度,也就是船在静水中单位时间里所行的旅程;水速是指水在单位时间里流过的旅程.公式(1)标明,船顺水航行时的速度等于它在静水中的速度与水流速度之和.这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的活动速度前进,因此船相对地面的实际速度等于船速与水速之和.公式(2)标明,船顺水航行时的速度等于船在静水中的速度与水流速度之差.根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-顺水速度(5)船速=顺水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,便可以求出第三个.别的,已知某船的顺水速度和顺水速度,还可以求出船速和水速.因为顺水速度就是船速与水速之和,顺水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+顺水速度)÷2 (7)水速=(顺水速度-顺水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米.此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”.5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米.*例2一只渔船在静水中每小时航行4千米,顺水4小时航行12千米.水流的速度是每小时多少千米?解:此船在顺水中的速度是:12÷4=3(千米/小时)因为顺水速度=船速-水速,所以水速=船速-顺水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米.*例3一只船,顺水每小时行20千米,顺水每小时行12千米.这只船在静水中的速度和水流的速度各是多少?解:因为船在静水中的速度=(顺水速度+顺水速度)÷2,所以,这只船在静水中的速度是:(20+12)÷2=16(千米/小时)因为水流的速度=(顺水速度-顺水速度)÷2,所以水流的速度是:(20-12)÷2=4(千米/小时)答略.*例4某船在静水中每小时行18千米,水流速度是每小时2千米.此船从甲地顺水航行到乙地需要15小时.求甲、乙两地的旅程是多少千米?此船从乙地回到甲地需要多少小时?解:此船顺水航行的速度是:18-2=16(千米/小时)甲乙两地的旅程是:16×15=240(千米)此船顺水航行的速度是:18+2=20(千米/小时)此船从乙地回到甲地需要的时间是:240÷20=12(小时)答略.*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时.已知水速为每小时3千米.此船从乙港返回甲港需要多少小时?解:此船顺水的速度是:15+3=18(千米/小时)甲乙两港之间的旅程是:18×8=144(千米)此船顺水航行的速度是:15-3=12(千米/小时)此船从乙港返回甲港需要的时间是:144÷12=12(小时)综合算式:(15+3)×8÷(15-3)=144÷12=12(小时)答略.*例 6 甲、乙两个船埠相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米.求由甲船埠到乙船埠顺水而行需要几小时,由乙船埠到甲船埠顺水而行需要多少小时?解:顺水而行的时间是:144÷(20+4)=6(小时)顺水而行的时间是:144÷(20-4)=9(小时)答略.*例7一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米.一只船在河中间顺流而下,6.5小时行驶260千米.求这只船沿岸边返回原地需要多少小时?解:此船顺流而下的速度是:260÷6.5=40(千米/小时)此船在静水中的速度是:40-8=32(千米/小时)此船沿岸边顺水而行的速度是:32-6=26(千米/小时)此船沿岸边返回原地需要的时间是:260÷26=10(小时)综合算式:260÷(260÷6.5-8-6)=260÷(40-8-6)=260÷26=10(小时)答略.*例8一只船在水流速度是2500米/小时的水中航行,顺水行120千米用24小时.顺水行150千米需要多少小时?解:此船顺水航行的速度是:120000÷24=5000(米/小时)此船在静水中航行的速度是:5000+2500=7500(米/小时)此船顺水航行的速度是:7500+2500=10000(米/小时)顺水航行150千米需要的时间是:150000÷10000=15(小时)综合算式:150000÷(120000÷24+2500×2)=150000÷(5000+5000)=150000÷10000=15(小时)答略.*例9一只汽船在208千米长的水路中航行.顺水用8小时,顺水用13小时.求船在静水中的速度及水流的速度.解:此船顺水航行的速度是:208÷8=26(千米/小时)此船顺水航行的速度是:208÷13=16(千米/小时)由公式船速=(顺水速度+顺水速度)÷2,可求出此船在静水中的速度是:(26+16)÷2=21(千米/小时)由公式水速=(顺水速度-顺水速度)÷2,可求出水流的速度是:(26-16)÷2=5(千米/小时)答略.*例10 A、B两个船埠相距180千米.甲船顺水行全程用18小时,乙船顺水行全程用15小时.甲船顺水行全程用10小时.乙船顺水行全程用几小时?解:甲船顺水航行的速度是:180÷18=10(千米/小时)甲船顺水航行的速度是:180÷10=18(千米/小时)根据水速=(顺水速度-顺水速度)÷2,求出水流速度:(18-10)÷2=4(千米/小时)乙船顺水航行的速度是:180÷15=12(千米/小时)乙船顺水航行的速度是:12+4×2=20(千米/小时)乙船顺水行全程要用的时间是:180÷20=9(小时)综合算式:180÷[180÷15+(180÷10-180÷18)÷2×3]=180÷[12+(18-10)÷2×2]=180÷[12+8]=180÷20=9(小时)操练1、一只油轮,逆流而行,每小时行12千米,7小时可以到达乙港.从乙港返航需要6小时,求船在静水中的速度和水流速度?分析:逆流而行每小时行12千米,7小时时到达乙港,可求出甲乙两港旅程:12×7=84(千米),返航是顺水,要6小时,可求出顺水速度是:84÷6=14(千米),顺速-逆速=2个水速,可求出水流速度(14-12)÷2=1(千米),因而可求出船的静水速度.解:(12×7÷6-12)÷2=2÷2=1(千米)12+1=13(千米)答:船在静水中的速度是每小时13千米,水流速度是每小时1千米.操练2、某船在静水中的速度是每小时15千米,河水流速为每小时5千米.这只船在甲、乙两港之间往返一次,共用去6小时.求甲、乙两港之间的航程是多少千米?分析:1、知道船在静水中速度和水流速度,可求船顺水速度 15-5=10(千米),顺水速度15+5=20(千米).2、甲、乙两港旅程一定,往返的时间比与速度成反比.即速度比是 10÷20=1:2,那末所用时间比为2:1 .3、根据往返共用6小时,按比例分配可求往返各用的时间,顺水时间为 6÷(2+1)×2=4(小时),再根据速度乘以时间求出旅程.解:(15-5):(15+5)=1:26÷(2+1)×2=6÷3×2=4(小时)(15-5)×4=10×4=40(千米)答:甲、乙两港之间的航程是40千米.操练3、一只船从甲地开往乙地,顺水航行,每小时行24千米,到达乙地后,又从乙地返回甲地,比顺水航行提前 2. 5小时到达.已知水流速度是每小时3千米,甲、乙两地间的间隔是多少千米?分析:顺水每小时行24千米,水速每小时3千米,那末顺水速度是每小时24+3×2=30(千米),比顺水提前2. 5小时,若行顺水那末多时间,便可多行 30×2. 5=75(千米),因每小时多行3×2=6(千米),几小时才多行75千米,这就是顺水时间.解: 24+3×2=30(千米)24×[ 30×2. 5÷(3×2)]=24× [ 30×2. 5÷6 ]=24×12. 5=300(千米)答:甲、乙两地间的间隔是300千米.操练4、一汽船在甲、乙两个船埠之间航行,顺水航行要8小时行完全程,顺水航行要10小时行完全程.已知水流速度是每小时3千米,求甲、乙两船埠之间的间隔?分析:顺水航行8小时,比顺水航行8小时可多行 6×8=48(千米),而这48千米正好是顺水(10-8)小时所行的旅程,可求出顺水速度 4 8÷2=24 (千米),进而可求出间隔.解: 3×2×8÷(10-8)=3×2×8÷2=24(千米)24×10=240(千米)答:甲、乙两船埠之间的间隔是240千米.解法二:设两船埠的间隔为“1”,顺水每小时行,顺水每小时行,顺水比顺水每小时快-,快6千米,对应.3×2÷(-)=6÷=24 0(千米)答:(略)操练5、某河有相距12 0千米的上下两个船埠,天天定时有甲、乙两艘同样速度的客船从上、下两个船埠同时相对开出.这天,从甲船上落下一个漂浮物,此物顺水漂浮而下,5分钟后,与甲船相距2千米,预计乙船出发几小时后,可与漂浮物相遇?分析:从甲船落下的漂浮物,顺水而下,速度是“水速”,甲顺水而下,速度是“船速+水速”,船每分钟与物相距:(船速+水速)-水速=船速.所以5分钟相距2千米是甲的船速5÷60=(小时),2÷=24(千米).因为,乙船速与甲船速相等,乙船逆流而行,速度为24-水速,乙船与漂浮物相遇,求相遇时间,是相遇旅程120千米,除以它们的速度和(24-水速)+水速=24(千米).解: 120÷[ 2÷(5÷60)]=120÷24=5(小时)答:乙船出发5小时后,可与漂浮物相遇.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流水行船问题的公式和例题
流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:
顺水速度=船速+水速(1)
逆水速度=船速-水速(2)
这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:
水速=顺水速度-船速(3)
船速=顺水速度-水速(4)
由公式(2)可得:
水速=船速-逆水速度(5)
船速=逆水速度+水速(6)
这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)
水速=(顺水速度-逆水速度)÷2 (8)
*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?
解:此船的顺水速度是:
25÷5=5(千米/小时)
因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)
综合算式:
25÷5-1=4(千米/小时)
答:此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航
行12千米。
水流的速度是每小时多少千米?
解:此船在逆水中的速度是:
12÷4=3(千米/小时)
因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:
4-3=1(千米/小时)
答:水流速度是每小时1千米。
*例3一只船,顺水每小时行20千米,逆水每小时行12千米。
这只船在静水中的速度和水流的速度各是多少?
解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:
(20+12)÷2=16(千米/小时)
因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:
(20-12)÷2=4(千米/小时)
答略。
*例4某船在静水中每小时行18千米,水流速度是每小时2千米。
此船从甲地逆水航行到乙地需要15小时。
求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?
解:此船逆水航行的速度是:
18-2=16(千米/小时)
甲乙两地的路程是:
16×15=240(千米)
此船顺水航行的速度是:
18+2=20(千米/小时)
此船从乙地回到甲地需要的时间是:
240÷20=12(小时)
答略。
*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。
已知水速为每小时3千米。
此船从乙港返回甲港需要多少小时?
解:此船顺水的速度是:
15+3=18(千米/小时)
甲乙两港之间的路程是:
18×8=144(千米)
此船逆水航行的速度是:
15-3=12(千米/小时)
此船从乙港返回甲港需要的时间是:
144÷12=12(小时)
综合算式:
(15+3)×8÷(15-3)
=144÷12
=12(小时)
答略。
*例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。
求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?
解:顺水而行的时间是:
144÷(20+4)=6(小时)
逆水而行的时间是:
144÷(20-4)=9(小时)
答略。
*例7一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。
一只船在河中间顺流而下,6.5小时行驶260千米。
求这只船沿岸边返回原地需要多少小时?解:此船顺流而下的速度是:260÷6.5=40(千米/小时)
此船在静水中的速度是:
40-8=32(千米/小时)
此船沿岸边逆水而行的速度是:
32-6=26(千米/小时)
此船沿岸边返回原地需要的时间是:
260÷26=10(小时)
综合算式:
260÷(260÷6.5-8-6)
=260÷(40-8-6)
=260÷26
=10(小时)
答略。
*例8一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时。
顺水行150千米需要多少小时?
解:此船逆水航行的速度是:
120000÷24=5000(米/小时)
此船在静水中航行的速度是:
5000+2500=7500(米/小时)
此船顺水航行的速度是:
7500+2500=10000(米/小时)
顺水航行150千米需要的时间是:
150000÷10000=15(小时)
综合算式:
150000÷(120000÷24+2500×2)
=150000÷(5000+5000)
=150000÷10000
=15(小时)
答略。
*例9一只轮船在208千米长的水路中航行。
顺水用8小时,
逆水用13小时。
求船在静水中的速度及水流的速度。
*例10 A、B两个码头相距180千米。
甲船逆水行全程用18小时,乙船逆水行全程用15小时。
甲船顺水行全程用10小时。
乙船顺水行全程用几小时?
练习1、一只油轮,逆流而行,每小时行12千米,7小时可以到达乙港。
从乙港返航需要6小时,求船在静水中的速度和水流速度?。
练习2、某船在静水中的速度是每小时15千米,河水流速为每小时5千米。
这只船在甲、乙两港之间往返一次,共用去6小时。
求甲、乙两港之间的航程是多少千米?
练习3、一只船从甲地开往乙地,逆水航行,每小时行24千米,到达乙地后,又从乙地返回甲地,比逆水航行提前2. 5小时到达。
已知水流速度是每小时3千米,甲、乙两地间的距离是多少千米?
练习4、一轮船在甲、乙两个码头之间航行,顺水航行要8小时行完全程,逆水航行要10小时行完全程。
已知水流速度是每小时3千米,求甲、乙两码头之间的距离?。