离散数学习题1

合集下载

离散数学第一学期习题及答案

离散数学第一学期习题及答案

第一章部分习题及参考答案1 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)(2)(p↔r)∧(﹁q∨s)(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r)(4)(⌝r∧s)→(p∧⌝q)2.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”3.用真值表判断下列公式的类型:(1)(p→q) →(⌝q→⌝p)(2)(p∧r) ↔(⌝p∧⌝q)(3)((p→q) ∧(q→r)) →(p→r)4.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)5.用等值演算法证明下面等值式:(1)(p→q)∧(p→r)⇔(p→(q∧r))(2)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)6.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)7.在自然推理系统P中构造下面推理的证明:(1)前提:p→q,⌝(q∧r),r结论:⌝p(2)前提:q→p,q↔s,s↔t,t∧r结论:p∧q8.在自然推理系统P中用附加前提法证明下面推理:前提:p→(q→r),s→p,q结论:s→r9.在自然推理系统P中用归谬法证明下面各推理:前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p参考答案:1.(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0 (4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔12.p: π是无理数 1q: 3是无理数0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( B ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。

离散数学-习题集

离散数学-习题集

离散数学-习题集《离散数学》习题集第⼀部分判断题⼀、第⼀章—集合1、()已知集合A的元素个数为10,则集合A的幂集的基=102。

2、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。

2、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。

3、( ) 已知两个集合A={Ф,{Ф}},B={Ф},则A∩B={Ф}。

4、()已知两个集合A={Ф,{Ф}},B={Ф},则A∩B=Ф。

5、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。

6、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。

7、()已知集合A的元素个数为n,则A×A的幂集的元素个数为n2。

8、()已知两个集合A、B,则A-B是由属于B但不属于A的元素构成的集合。

⼆、第⼆章—⼆元关系1、()若R是A上的⼆元关系,I A是A上的恒等关系,则当且仅当I A∈R时,R是A上的⾃反关系。

2、(√)若R是集合A上的⼆元关系,且当(a,b)∈R且(a,c)∈R时,就有(b,c)∈R,则R是A 上的可传递关系。

3、()设A是集合,A1、A2、...A n都是A的⾮空⼦集,令S={A1,A2,...,A n},则如果S是集合A的⼀个划分,那么S⼀定是集合A的⼀个完全覆盖;反之亦然。

5、()R是⾮空集合A上的等价⼆元关系,则A关于R的商集A/R是集合A的⼀个划分,但不是A的⼀个完全覆盖。

6、()已知集合A有4元素,易知集合A共有24个互不相同的⼦集合,所以在集合A上⼀共可定义24个互不相同的⼆元关系。

7、()若R1和R2都是集合A上的可传递⼆元关系,则R1∪R2也是A上的传递关系。

8、()设R是有限的⾮空集合A上的偏序关系,则A必有极⼤(⼩)元和最⼤(⼩)元。

9、()若R1和R2都是集合A上的相容关系,则R1∩R2也是A上的相容关系。

10、()若R1和R2都是集合A的可传递⼆元关系,则R1∩R2也是A上的传递关系。

离散数学习题一,二参考答案

离散数学习题一,二参考答案

《离散数学》习题一参考答案第一节 集合的基数1.证明两个可数集的并是可数集。

证明:设A ,B 是两可数集,},,,,,{321 n a a a a A =,},,,,,{321 n b b b b B = ⎪⎩⎪⎨⎧-→j b i a N B A f j i 212: ,f 是一一对应关系,所以|A ∪B|=|N|=0ℵ。

2.证明有限可数集的并是可数集证:设k A A A A 321,,是有限个可数集,k i a a a a A in i i i i ,,3,2,1),,,,,(321 ==⎪⎩⎪⎨⎧+-→==i k j a N A A f ij k i i )1(:1,f 是一一对应关系,所以|A|=| k i i A 1=|=|N|=0ℵ。

3.证明可数个可数集的并是可数集。

证:设 k A A A A 321,,是无限个可数集, ,3,2,1),,,,,(321==i a a a a A in i i i i⎪⎪⎩⎪⎪⎨⎧+-+-+→=∞=i j i j i a N A A f ij i i )2)(1(21:1 , 所以f 是一一对应关系,所以|A|=| ∞=1i i A |=|N|=0ℵ。

4.证明整系数多项式所构成的集合是可数集。

证明:设整系数n 次多项式的全体记为}|{1110Z a a x a x a x a A i n n n n n ∈++++=--则整系数多项式所构成的集合 ∞==1N n A A ;由于k x 的系数k a 是整数,那么所有k x 的系数的全体所构成的集合是可数集,由习题2“有限个可数集的并是可数集”可得n A 是可数集,再又习题4“可数个可数集的并是可数集”得出整系数多项式所构成的集合 ∞==1N n A A 也是可数集。

5.证明不存在与自己的真子集等势的有限集合.证明:设集合A 是有限集,则|A|=n ,若B 是A 的真子集,则|B|≤|A|=n ,A-B ≠φ,即|A-B|=|A|-|AB|>0;又A=(A-B )∪B ,(A-B )B=φ,所以,,就是|A|>|B|,即得结论。

离散数学习题集(十五套) - 答案

离散数学习题集(十五套) - 答案

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c dA BCa b cda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。

10.下图所示的偏序集中,是格的为。

二、选择20% (每小题2分)1、下列是真命题的有()A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。

2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。

3、设A={1,2,3},则A上的二元关系有()个。

A.23 ;B.32 ;C.332⨯;D.223⨯。

4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的,则SR 是传递的。

5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下|}||(|)(,|,{tsApt st sR=∧∈><=则P(A)/ R=()A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)离散数学试题第一部分选择题1.下列命题变元p,q的小项是(C)。

A。

p∧┐p∧qB。

┐p∨qC。

┐p∧qD。

┐p∨p∨q2.命题“虽然今天下雪了,但是路不滑”可符号化为(D)。

A。

p→┐qB。

p∨┐qC。

p∧qD。

p∧┐q3.只有语句“1+1=10”是命题(A)。

A。

1+1=10B。

x+y=10___<0D。

x mod 3=24.下列等值式不正确的是(C)。

A。

┐(x)A(x)┐AB。

(x)(B→A(x))B→(x)A(x)C。

(x)(A(x)∧B(x))(x)A(x)∧(x)B(x)D。

(x)(y)(A(x)→B(y))(x)A(x)→(y)B(y) 5.量词x的辖域是“Q(x,z)→(x)(y)R(x,y,z)”(C)。

A。

(x)Q(x,z)→(x)(y)R(x,y,z))B。

Q(x,z)→(y)R(x,y,z)C。

Q(x,z)→(x)(y)R(x,y,z)D。

Q(x,z)6.设A={a,b,c,d},A上的等价关系R={。

}∪IA则对应于R的A的划分是(D)。

A。

{{a},{b,c},{d}}B。

{{a,b},{c},{d}}C。

{{a},{b},{c},{d}}D。

{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是(A)。

A。

{Ø,{Ø}}∈BB。

{{Ø,Ø}}∈BC。

{{Ø},{{Ø}}}∈BD。

{Ø,{{Ø}}}∈B8.集合相对补运算中,不正确的等式是(A)。

A。

(X-Y)-Z=X-(Y∩Z)B。

(X-Y)-Z=(X-Z)-YC。

(X-Y)-Z=(X-Z)-(Y-Z)D。

(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,不可结合的定义的运算是(D)。

A。

a*b=min(a,b)B。

a*b=a+bC。

a*b=GCD(a,b) (a,b的最大公约数)D。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学集合论综合练习作业辅导(10秋)离散数学作为信息科学和计算机科学的数学基础,是教育部指定的计算机科学与技术学科核心课程,也是电大计算机科学与技术专业的统设必修学位课程,因此它也是该专业的一门很重要的基础课程,也是该专业的许多专业课程(包括数据结构、操作系统、网络编程技术、数据库应用技术等)的先修课程.本课程4学分,课内72学时,第二学期开设,主要是介绍离散量的结构及其相互关系,其包含的理论与方法在各学科领域都有着广泛的应用.本课程的主要内容包括:集合论、图论、数理逻辑三个部分.本课程的学习目标:通过本课程的学习,使学生具有现代数学的观点和方法,并初步掌握处理离散结构所必须的描述工具和方法.同时,也要培养学生抽象思维和慎密概括的能力,使学生具有良好的开拓专业理论的素质和使用所学知识,分析和解决实际问题的能力,为学生以后学习计算机基础理论与专业课程打下良好的基础.本次教学活动是本学期的第一次综合作业辅导活动,主要是针对集合论单元的重点学习内容进行辅导,方式是通过讲解一些典型的综合练习题目,帮助大家进一步理解和掌握集合论的基本概念和方法,也使大家尽早地了解本课程期末考试的题型.下面是本学期第2,3次形考作业中的部分题目.一、单项选择题单项选择题主要是第2次形考作业的部分题目。

第2次作业由10个单项选择题组成,每小题10分,满分100分。

在每次作业关闭之前,允许大家反复多次练习,系统将保留您的最好成绩,希望大家要多练几次,争取好成绩。

需要提醒大家的是每次练习的作业题目可能不一样,请大家一定要认真阅读题目。

1.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A.{a,{a}}∈A B.{1,2}∉A C.{a}⊆A D.∅∈A 正确答案:C2.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A.A⊂B,且A∈B B.B⊂A,且A∈BC.A⊂B,且A∉B D.A⊄B,且A∈B正确答案:A注意:这两个题是重点,大家一定要掌握,还有灵活运用,譬如,将集合中的元素作一些调整,大家也应该会做.例如,2010年1月份考试的试卷的第1题若集合A={ a,{a}},则下列表述正确的是( ).A.{a}⊆A B.{{{a}}}⊆AC.{a,{a}}∈A D.∅∈A答案:A3.设集合A = {1, a },则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}正确答案:C注意:若A是n元集,则幂集P(A )有2 n个元素.当n=10时,A的幂集的元素有多少个?(应该是1024个)4.集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().A.不是自反的B.不是对称的C.传递的D.反自反的正确答案:C因为写出二元关系R的集合表达式为R = {<1 , 1>,<2 , 2>,<3 , 3>,<4 , 4>}显然,R是一个恒等关系,因此它是自反的、对称的、传递的,不是反自反的.要求大家能熟练地写出二元关系R的集合表达式,并能判别R具有的性质.5.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0 B.2 C.1 D.3正确答案:B教材第40页第三行指出,若R1和R2是A上的自反关系,则R1∪R2,R1∩R2也是A上的自反关系.6.设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S是R的()闭包.A.自反B.传递C.对称D.以上都不对正确答案:C利用教材第42页定义2.3.4可以判定S是R的对称闭包.由42页定义2.3.4知道,关系R的对称闭包s (R)是包含R并具有对称性的最小的关系,由此也可以判定S是R的对称闭包.7.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系的哈斯图如右图所示,若A的子集B = {3 , 4 , 5},则元素3为B的().A.下界B.最大下界C.最小上界D.以上答案都不对5正确答案:C由教材第4页的定义2.5.11知道,集合B的最大元一定是B的上界,而且是B的最小上界.因此可以判定选项C 正确.8.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( ).A.8、2、8、2 B.8、1、6、1C.6、2、6、2 D.无、2、无、2正确答案:D Array集合A上的整除关系R的哈斯图如右图所示.由哈斯图可知,集合B的无最大元和上界,最小元和下界都是2,因此,选项D正确9.设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={<a,2>, <b,2>},R2={<a,1>, <a,2>, <b,1>},R3={<a,1>, <b,2>},则()不是从A到B的函数.A.R1B.R2C.R3D.R1和R3正确答案:B由教材第55页的定义2.6.1知道,函数是单值性,也就是说,定义域A中任意一个a与值域B中唯一的b有关系,而R2中的a有两个值2,1与它有关系,所以而R2不是函数.10.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().A.2 B.3 C.6 D.8正确答案:D因为:f1= {<a , 1>,<b , 1>,<c , 1>},f2= {<a , 1>,<b , 1>,<c , 2>},f3={<a , 1>,<b , 2>,<c , 1>},f4= {<a , 2>,<b , 1>,<c , 1>},f5={<a , 1>,<b , 2>,<c , 2>},f6= {<a , 2>,<b , 1>,<c , 2>},f7={<a , 2>,<b , 2>,<c , 1>},f8=<a , 2>,<b , 2>,<c , 2>}.下面的内容主要是第3次形考作业的部分题目。

二、填空题1.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈∈xyR⋂且=且<>∈x{B,,x}AAyyB则R的有序对集合为.应该填写:R = {<2 , 2>,<2 , 3>,<3 , 2>,<3 , 3>}因为A∩B={2, 3 },所以从集合A,B中只能分别去2,3组成关系R.2.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}x∈y∈<y>=,,2,{ByxAx那么R-1=应该填写:{<6,3>,<8,4>}因为R={<3,6>,<4,8>},所以R-1={<6,3>,<8,4>}3.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则二元关系R具有的性质是.应该填写:反自反的根据教材第38页的定义2.3.1,若对任意a∈A,a与a都没有关系,即<a , a>∉R,则称R为A上反自反的关系.4.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素,则新得到的关系就具有对称性.应该填写:<c, b>, <d, c>注意:第3,4题是重点,我们不仅要熟练掌握,尤其是A和R的元素都减少的情况,而且如果新得到的关系具有自反性,那么应该增加哪两个元素呢?5.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为.应该填写:I A因为满足条件x∈A,y∈A, x+y =10的关系只有空关系,空关系的闭包是I A.6.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含等元素.应该填写:<1, 1>, <2, 2>, <3, 3>因为等价关系一定是自反的、对称的、传递的,由二元关系R是自反的,所以它至少包含<1, 1>, <2, 2>, <3, 3>等元素.7.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是.应该填写:{<1, a >, <2, b >},{<1, b >, <2, a >}想一想:集合A到B的不同函数的个数有几个?三、判断说明题(判断下列各题,并说明理由.)1.如果R1和R2是A上的自反关系,判断结论:“R-11、R1∪R2、R1∩R2是自反的”是否成立?并说明理由.解:正确.因为R1和R2是A上的自反关系,即I A⊆R1,I A⊆R2.由逆关系定义和I A⊆R1,得I A⊆ R1-1;由I A⊆R1,I A⊆R2,得I A⊆ R1∪R2,I A⊆ R1⋂R2.所以,R1-1、R1∪R2、R1⋂R2是自反的.2.若偏序集<A,R>的哈斯图如右图所示,则集合A的最大元为a,最小元不存在.解:错误.集合A的最大元不存在,a是极大元.οοοοab cd οοοg e fh ο结论不成立.因为a与g、h没有关系,由关于最大元、最小元、极大元和极小元的定义2.5.9知道,A的最大元应该大于等于A中其它各元素,而A的极大元应该大于等于A中的一些元素,可以与A中另一些元素无关系.所以集合A的最大元不存在,a应该是极大元.3.设集合A={1, 2, 3, 4},B={2, 4, 6, 8},判断下列关系f:A→B是否构成函数,并说明理由.(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>};(2) f ={<1, 6>, <3, 4>, <2, 2>};(3) f ={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1) f不能构成函数.因为A中的元素3在f中没有出现.(2) f不能构成函数.因为A中的元素4在f中没有出现.(3) f可以构成函数.因为f的定义域就是A,且A中的每一个元素都有B中的唯一一个元素与其对应,满足函数定义的条件.四、计算题1.设集合A={{1}, {2}, 1, 2},B={1, 2, {1, 2}},试计算(1)A-B;(2)A∩B;(3)A×B.解:(1)A-B={{1}, {2}, 1, 2}- {1, 2, {1, 2}}={{1}, {2}}(2)A∩B ={{1}, {2}, 1, 2}∩{1, 2, {1, 2}}={1, 2}(3)A⨯ B ={{1}, {2}, 1, 2}⨯{1, 2, {1, 2}}={<{1}, 1>, <{1}, 2>, <{1}, {1, 2 }>, <{2}, 1>, <{2}, 2>, <{2}, {1, 2 }>, <1, 1>, <1, 2>, <1, {1, 2 }>, < 2, 1>, < 2, 2>, < 2, {1, 2 }}2.设A={1,2,3,4,5},R={<x,y>|x∈A,y∈A且x+y≤4},S={<x,y>|x∈A,y∈A且x+y <0},试求R,S,R•S,S•R,R-1,S-1,r(S),s(R).解:R={<1, 1>, <1, 2>, <1, 3>, <2, 1>, <2, 2>, <3, 1>}, S= ∅,R•S=∅,S•R=∅,R-1= R,S-1= ∅,r(S)=I A.s(R) ={<1, 1>, <1, 2>, <1, 3>, <2, 1>, <2, 2>, <3, 1>}3.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6}.(1)写出关系R的表示式;(2)画出关系R的哈斯图;(3)求出集合B的最大元、最小元.解:(1)R=I⋃{<1, 2>, <1, 3>, <1, 4>, <1, 5>,<1, 6>, <1, 7>, <1, 8>, <2, 4>,<2, 6>, <2, 8>, <3, 6>, <4, 8>}(2)关系R的哈斯图如下图所示7(3)集合B没有最大元,最小元是:2.五、证明题1.试证明集合等式:A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).证:若x∈A⋃ (B⋂C),则x∈A或x∈B⋂C,即x∈A或x∈B且x∈A或x∈C.即x∈A⋃B且x∈A⋃C,即x∈T=(A⋃B) ⋂ (A⋃C),所以A⋃ (B⋂C)⊆ (A⋃B) ⋂ (A⋃C).反之,若x∈(A⋃B) ⋂ (A⋃C),则x∈A⋃B且x∈A⋃C,即x∈A或x∈B且x∈A或x∈C,即x∈A或x∈B⋂C,即x∈A⋃ (B⋂C),所以(A⋃B) ⋂ (A⋃C)⊆ A⋃ (B⋂C).因此.A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).注意:第1题也是重点,我们要熟练掌握.想一想:等式A⋂ (B⋃C)=(A⋂B) ⋃ (A⋂C)如何证明?2.对任意三个集合A, B和C,试证明:若A⨯B = A⨯C,且A则B = C.证明:设x∈A,y∈B,则<x,y>∈A⨯B,因为A⨯B = A⨯C,故<x,y>∈ A⨯C,则有y∈C,所以B⊆ C.设x∈A,z∈C,则<x,z>∈ A⨯C,因为A⨯B = A⨯C,故<x,z>∈A⨯B,则有z∈B,所以C⊆B.故得A=B.注意:这个题09秋学期的教学辅导活动重点强调了,但2010年1月份考卷中的证明题:设A,B是任意集合,试证明:若A⨯A=B⨯B,则A=B.许多同学不会做,是不应该的.我们看一看证明:设x∈A,则<x,x>∈A⨯A,因为A⨯A=B⨯B,故<x,x>∈B⨯B,则有x∈B,所以A⊆B.设x∈B,则<x,x>∈B⨯B,因为A⨯A=B⨯B,故<x,x>∈A⨯A,则有x∈A,所以B⊆A.故得A=B.大家可以看到,这两个题的证明方法是不仅类似,而且1月份考题更容易.3.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.证明:设∀x∈A,因为R自反,所以xRx,即< x, x>∈R;又因为S自反,所以xSx,即< x, x >∈S.即< x, x>∈R∩S故R∩S自反.。

相关文档
最新文档