山东大学离散数学题库及答案

合集下载

山东大学离散数学题库及答案

山东大学离散数学题库及答案

《离散数学》题库答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q →P (2)⌝Q=>P →Q (3)P=>P →Q (4)⌝P ∧(P ∨Q)=>⌝P答:(1),(4)2、下列公式中哪些就是永真式?( )(1)(┐P ∧Q)→(Q →⌝R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个就是永真蕴涵式?( )(1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q(4)P ∧(P →Q)=>Q (5) ⌝(P →Q)=>P (6) ⌝P ∧(P ∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧ ∃z C(y,z))→D(x)中,自由变元就是( ),约束变元就是( )。

答:x,y, x,z5、判断下列语句就是不就是命题。

若就是,给出命题的真值。

( )(1) 北京就是中华人民共与国的首都。

(2) 陕西师大就是一座工厂。

(3) 您喜欢唱歌不? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1) 就是,T (2) 就是,F (3) 不就是(4) 就是,T (5) 不就是 (6) 不就是6、命题“存在一些人就是大学生”的否定就是( ),而命题“所有的人都就是要死的”的否定就是( )。

答:所有人都不就是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1) P Q →⌝ (2) Q P ⌝→ (3) Q P ⌝↔ (4)Q P →⌝8、设个体域为整数集,则下列公式的意义就是( )。

离散数学---本科 山大20年考试题库及答案

离散数学---本科  山大20年考试题库及答案

填空题(1/11)1、设无向图G有24条边,有4个3度的顶点,期顶点度数均小于3,则G中至少有( 22 ) 个顶点。

2、假设4={x|x*<10.x∈正整数},B={x|x是素数,x<10},c={13.5}(1)(C-4)U(B-4)=(2)(B∩O-d=3、一棵树有2个2度顶点,1个3度顶点,3个4度顶点,则有( 9 )叶。

.4.假设P:今天天气好,Q:我就去锻炼身体。

命题“如果今天天气好,我就去锻炼身体"符号化为_ P Q学生答案:5.假设A={x|x2 <30.x∈正整数},B={x| x是正奇数,x<20},C={13.5}(1)(C-0U(B-4)=(2)(B∩Q)-d=学生答案:6、假设4=1.23),f,&8h是4倒4的的数,其中:(af0= f()=f(3)=1,(b>8(1)=1,g(2)=3,g()=2,(e)h0)=3,h2)=h(3)=1,则:(1)是满射;(2)____是双射;学生答案:7.假设A={a.b}({}},B={a}{0},{(}}试求出:“的幂集p(4)=8、设无向图G有12条边,有3个3度的顶点,其余顶点度数均小于3,则G中至少有_11_个顶点。

9假设d= 1.23.423上的关系R=<1.2>},则:(1)r(R)=_(2)s(R)=_(3)t(R)=_10、假设A={x|x2 <30.x∈整数},B={x[x是素数,x<20},C=13.5)(1)(A∩B)UC=(2)(B-AUC=(3)(C-4)U(B-4)=(4)(B∩9-4=11、-棵树有2个2度顶点,1个3度顶点,3个4度顶点,则有_7_片叶。

二、综合题(59分)12、假设4、B是非空集合,并且P(4)=P(B)。

证明:d=B.学生答案:13、m≤二n(n-D)假设图G是n个顶点m条边的简单无向图,则”2学生答案:S={<xyxxy∈R.x→是整数}证明定义在实数集合R.上的关系”3是一个等价关系。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。

A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。

A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。

A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。

A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。

答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。

答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。

答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。

答案:可达10. 命题逻辑中,合取(AND)的符号是______。

答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。

证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。

因此,若p∧q为真,则p和q都为真。

12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。

请找出f的值域。

答案:根据函数的定义,f的值域是其所有输出值的集合。

因此,f的值域为{4,5,6}。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

山东大学离散数学题库及答案(计本)解析

山东大学离散数学题库及答案(计本)解析

《离散数学》题库答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q →P (2)⌝Q=>P →Q (3)P=>P →Q (4)⌝P ∧(P ∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P ∧Q)→(Q →⌝R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q(4)P ∧(P →Q)=>Q (5) ⌝(P →Q)=>P (6) ⌝P ∧(P ∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y ,x))∧ ∃z C(y ,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1) 北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1) 是,T (2) 是,F (3) 不是(4) 是,T (5) 不是 (6) 不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P :我生病,Q :我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1) P Q →⌝ (2) Q P ⌝→ (3) Q P ⌝↔ (4)Q P →⌝8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x ∃y(x+y=0) (2) ∃y ∀x(x+y=0)答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=09、设全体域D 是正整数集合,确定下列命题的真值:(1) ∀x ∃y (xy=y) ( ) (2) ∃x ∀y(x+y=y) ( )(3) ∃x ∀y(x+y=x) ( ) (4) ∀x ∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x 是奇数,Q(x):x 是偶数,谓词公式 ∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是( )。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

山东大学网络教育离散数学卷(1)-参考答案

山东大学网络教育离散数学卷(1)-参考答案

山东大学网络教育离散数学卷(1)-参考答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN山东大学网络教育离散数学试卷 (参考答案)一、 选择题1、设}}8,7,6{},5,4{},3,2,1{{=A ,下列选项正确的是:(3)(1)A ∈1 (2)A ⊆}3,2,1{ (3)A ⊂}}5,4{{ (4)A ∈∅2、对任意集合C B A ,,,下述论断正确的是:(1)(1)若C B B A ⊆∈,,则C A ∈ (2)若C B B A ⊆∈,,则C A ⊆(3)若C B B A ∈⊆,,则C A ∈ (4)若C B B A ∈⊆,,则C A ⊆3、假设},,{c b a A =上的关系如下,具有传递性的关系是:(4)(1)},,,,,{>><><><><<a b b a a a a c c a(2)},,,{>><><<a a a c c a(3)},,{>><<a c c a(4)},{><c a4、非空集合A 上的空关系R 不具备下列哪个性质:(1)(1)自反性 (2)反自反性 (3) 对称性 (4)传递性5、假设},,{c b a A =,}2,1{=B ,令:B A f →:,则不同的函数个数为:(2)(1)2+3个 (2)32个 (3)32⨯个 (4)23个6、假设},,{c b a A =,}2,1{=B ,下列哪个关系是A 到B 的函数:(3)(1)}2,1,2,1,2,1,{>><><><><><<=c c b b a a f(2)},,,,,,{>><><><><><<=c c a c b b a b b a a a f(3)}1,2,1,{>><><<=c b a f(4)},1,2,1{>><><<=c b a f7、一个无向简单图G 有m 条边,n 个顶点,则图中顶点的总度数为:(3)(1)2m (2)2n (3)m 2 (4)n 28、一个图是欧拉图是指:(1)(1)图中包含一条回路经过图中每条边一次且仅一次;(2)图中包含一条路经过图中每条边一次且仅一次;(3)图中包含一条回路经过图中每个顶点一次且仅一次;(4)图中包含一条路经过图中每个顶点一次且仅一次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《离散数学》题库答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q →P (2)⌝Q=>P →Q (3)P=>P →Q (4)⌝P ∧(P ∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P ∧Q)→(Q →⌝R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q(4)P ∧(P →Q)=>Q (5) ⌝(P →Q)=>P (6) ⌝P ∧(P ∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式x((A(x)B(y ,x)) z C(y ,z))D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1) 北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1) 是,T (2) 是,F (3) 不是(4) 是,T (5) 不是 (6) 不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P :我生病,Q :我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1) P Q →⌝ (2) Q P ⌝→ (3) Q P ⌝↔ (4)Q P →⌝8、设个体域为整数集,则下列公式的意义是( )。

(1) x y(x+y=0) (2) y x(x+y=0)答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=09、设全体域D 是正整数集合,确定下列命题的真值: (1) x y (xy=y) ( ) (2) x y(x+y=y) ( ) (3) x y(x+y=x) ( ) (4) x y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x 是奇数,Q(x):x 是偶数,谓词公式 x(P(x)Q(x))在哪个个体域中为真?( )(1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是( )。

答:2不是偶数且-3不是负数。

12、永真式的否定是( )(1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能答:(2)13、公式(⌝P ∧Q)∨(⌝P ∧⌝Q)化简为( ),公式 Q →(P ∨(P ∧Q))可化简为( )。

答:⌝P ,Q →P14、谓词公式x(P(x)yR(y))→Q(x)中量词x的辖域是()。

答:P(x)yR(y)15、令R(x):x是实数,Q(x):x是有理数。

则命题“并非每个实数都是有理数”的符号化表示为()。

答:⌝x(R(x)→Q(x))(集合论部分)16、设A={a,{a}},下列命题错误的是()。

(1) {a}∈P(A) (2) {a}⊆P(A) (3) {{a}}∈P(A) (4) {{a}}⊆P(A)答:(2)17、在0()Φ之间写上正确的符号。

(1) = (2) ⊆(3) ∈(4) ∉答:(4)18、若集合S的基数|S|=5,则S的幂集的基数|P(S)|=()。

答:3219、设P={x|(x+1)2≤4且x∈R},Q={x|5≤x2+16且x∈R},则下列命题哪个正确()(1) Q⊂P (2) Q⊆P (3) P⊂Q (4) P=Q答:(3)20、下列各集合中,哪几个分别相等( )。

(1) A1={a,b} (2) A2={b,a} (3) A3={a,b,a} (4) A4={a,b,c}(5) A5={x|(x-a)(x-b)(x-c)=0} (6) A6={x|x2-(a+b)x+ab=0}答:A1=A2=A3=A6, A4=A521、若A-B=Ф,则下列哪个结论不可能正确?( )(1) A=Ф (2) B=Ф(3) A⊂B (4) B⊂A答:(4)22、判断下列命题哪个为真?( )(1) A-B=B-A => A=B (2) 空集是任何集合的真子集(3) 空集只是非空集合的子集 (4) 若A的一个元素属于B,则A=B答:(1)23、判断下列命题哪几个为正确?( )(1) {Ф}∈{Ф,{{Ф}}} (2) {Ф}⊆{Ф,{{Ф}}} (3) Ф∈{{Ф}}(4) Ф⊆{Ф} (5) {a,b}∈{a,b,{a},{b}}答:(2),(4)24、判断下列命题哪几个正确?( )(1) 所有空集都不相等 (2) {Ф}≠Ф (4) 若A为非空集,则A⊂A成立。

答:(2)25、设A∩B=A∩C,A∩B=A∩C,则B( )C。

答:=(等于)26、判断下列命题哪几个正确?( )(1) 若A∪B=A∪C,则B=C (2) {a,b}={b,a}(3) P(A∩B)≠P(A)∩P(B) (P(S)表示S的幂集)(4) 若A为非空集,则A≠A∪A成立。

答:(2)27、A,B,C是三个集合,则下列哪几个推理正确:(1) A ⊆B ,B ⊆C=> A ⊆C (2) A ⊆B ,B ⊆C=> A ∈B (3) A ∈B ,B ∈C=> A ∈C答:(1)(二元关系部分)28、设A={1,2,3,4,5,6},B={1,2,3},从A到B 的关系R={〈x,y 〉|x=y 2},求(1)R (2) R -1 。

答:(1)R={<1,1>,<4,2>} (2) R 1-={<1,1>,<2,4>}29、举出集合A 上的既是等价关系又是偏序关系的一个例子。

( )答:A 上的恒等关系30、集合A 上的等价关系的三个性质是什么?( )答:自反性、对称性和传递性31、集合A 上的偏序关系的三个性质是什么?( )答:自反性、反对称性和传递性32、设S={1,2,3,4},A上的关系R={〈1,2〉,〈2,1〉,〈2,3〉,〈3,4〉}求(1)R οR (2) R -1 。

答:R οR ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}R -1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}33、设A={1,2,3,4,5,6},R是A 上的整除关系,求R= {( )}。

答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}34、设A={1,2,3,4,5,6},B={1,2,3},从A到B 的关系R={〈x,y 〉|x=2y },求(1)R (2) R -1 。

答:(1)R={<1,1>,<4,2>,<6,3>} (2) R 1-={<1,1>,<2,4>,(36>}35、设A={1,2,3,4,5,6},B={1,2,3},从A到B 的关系R={〈x,y 〉|x=y 2},求R 和R -1的关系矩阵。

答:R 的关系矩阵=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡000000001000000001 R 1-的关系矩阵=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00000001000000000136、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x,y ∈A},则R 的性质为( )。

(1) 自反的 (2) 对称的 (3) 传递的,对称的 (4) 传递的答:(2)(代数结构部分)37、设A={2,4,6},A 上的二元运算*定义为:a*b=max{a,b},则在独异点<A,*>中,单位元是( ),零元是( )。

答:2,638、设A={3,6,9},A 上的二元运算*定义为:a*b=min{a,b},则在独异点<A,*>中,单位元是( ),零元是( );答:9,3(半群与群部分)39、设〈G,*〉是一个群,则(1) 若a,b,x ∈G ,a *x=b ,则x=( );(2) 若a,b,x ∈G ,a *x=a *b ,则x=( )。

答: (1) a *-1 b (2) b40、设a是12阶群的生成元,则a2是( )阶元素,a3是( )阶元素。

答: 6,441、代数系统<G,*>是一个群,则G的等幂元是( )。

答:单位元42、设a是10阶群的生成元,则a4是( )阶元素,a3是( )阶元素。

答:5,1043、群<G,*>的等幂元是( ),有( )个。

答:单位元,144、素数阶群一定是( )群, 它的生成元是( )。

答:循环群,任一非单位元45、设〈G,*〉是一个群,a,b,c∈G,则(1) 若c*a=b,则c=( );(2) 若c*a=b*a,则c=( )。

*a (2) b答:(1) b1-46、<H,,*>是<G,,*>的子群的充分必要条件是( )。

答:<H,,*>是群或 a,b ∈G, a*b∈H,a-1∈H 或 a,b ∈G,a*b-1∈H 47、群<A,*>的等幂元有( )个,是( ),零元有( )个。

答:1,单位元,048、在一个群〈G,*〉中,若G中的元素a的阶是k,则a-1的阶是( )。

答:k49、在自然数集N上,下列哪种运算是可结合的?()(1) a*b=a-b (2) a*b=max{a,b} (3) a*b=a+2b (4) a*b=|a-b|答:(2)50、任意一个具有2个或以上元的半群,它()。

(1) 不可能是群(2) 不一定是群(3) 一定是群(4) 是交换群答:(1)51、6阶有限群的任何子群一定不是()。

(1) 2阶(2) 3 阶 (3) 4 阶(4) 6 阶答:(3)(格与布尔代数部分)52、下列哪个偏序集构成有界格()(1) (N,≤)(2) (Z,≥)(3) ({2,3,4,6,12},|(整除关系))(4) (P(A),⊆)答:(4)53、有限布尔代数的元素的个数一定等于()。

相关文档
最新文档