密度和相对密度数字式密度计法

合集下载

密度的特殊测量方法

密度的特殊测量方法

密度测量方法纵观多年的中考试卷,密度是中考的一个重点,同时又是中考的热点,密度的考查主要以操作性的实验题型出现,在考查知识的同时兼顾实验操作技能的考查,按照教科书,根据密度的计算公式ρ=m/v ,利用天平和量筒,分别测出被测物的质量m 和体积v ,则可算出被测物的密度,这是最基本的测定物质密度的方法。

近年来的中考试题,则往往是天平、量筒不会同时具备,此时只要适当有些辅助器材,同样可以完成测定物质的密度,现将几种测定物质密度的方法提供如下。

一、测固体密度基本原理:ρ=m/V1. 常规法:器材:天平、量筒、水、金属块、细绳步骤:1)、用天平称出金属块的质量m ;2)、往量筒中注入适量水,读出体积为V 1,3)、用细绳系住金属块放入量筒中,浸没,读出体积为V 2。

表达式:ρ=m/(V 2-V 1)测固体体积:不溶于水 密度比水大 排水法测体积密度比水小 按压法、捆绑法、吊挂法、埋砂法。

溶于水 饱和溶液法、埋砂法整型法 如果被测物体容易整型,如土豆、橡皮泥,可把它们整型成正方体、长方体等,然后用刻度尺测得有关长度,易得物体体积。

例:正北牌方糖是一种用细白沙糖精制而成的长方体糖块,为了测出它的密度,除了一些这种糖块外还有下列器材:天平、量筒、毫米刻度尺、水、白沙糖、小勺、镊子、玻璃棒,利用上述器材可有多种测量方法。

请你答出两种测量方法,要求写出(1)测量的主要步骤及所测的物理量。

(2)用测得的物理量表示密度的式子。

饱和溶液法:方案一:用天平测出糖块的质量m ,再把糖块放入量筒里,倒入适量白沙糖埋住方糖,晃动量筒,使白沙糖表面变平,记下白沙糖和方糖的总体积V 1,用镊子取出方糖,再次晃动量筒,使白沙糖表面变平,记下白沙糖的体积V 2,则ρ=21V V m - 方案二:用天平测出糖块的质量。

用橡皮泥将糖块包好放入水中,测出水、橡皮泥、糖块的总体积V 1,取出糖水,测出水和橡皮泥的体积V 2,算出糖块体积V=V 1-V 2。

ASTM D4052-18 数字式密度计标准 中文

ASTM D4052-18 数字式密度计标准 中文

名称:D4052-18用数字式密度计测定液体密度、相对密度和API比重的标准试验方法本标准以固定名称D4052发布;紧接在指定之后的数字表示最初采用的年份,如果是订正,则表示最后订正的年份。

括号内的数字表示上次重新批准的年份。

上角标(')表示自上次修订或重新批准后的编辑更改。

这个标准已经被美国国防部的机构批准使用。

该标准已被美国国防部的机构批准使用。

1.范围1.1 本试验方法包括使用手动或自动进样设备,测定石油馏分油和稠油的密度、相对密度和API比重,和在试验温度下可作为液体正常处理的稠油。

本试验方法的应用仅限于在试验温度下,总蒸汽压(参见测试方法D5191)通常低于100kpa,粘度(参见测试方法D445或者D7042)通常低于15000mm2 /s的液体。

然而,总蒸汽压限制可以扩展到> 100kpa,前提是首先确定U形振荡管中没有气泡形成,这可以影响密度测定。

本方法可测试的产品包括:汽油和汽油-氧合混合物、柴油、煤精、碱性燃料、蜡和润滑油。

1.1.1蜡和高粘度样品未纳入1999年实验室间研究(ILS)样品集,用来确定该方法的当前精度声明,因为分析了当时在15°C的测试温度下评估的所有样品。

蜡和高粘性样品需要一个升温的温控过程,必须确保引入液体试样以进行分析。

有关1999年ILS的更详细信息,请参阅该方法的精度和偏差部分和注9。

1.2在有争议的情况下,参照6.3或6.4中手动引入样品的仲裁方法,视样品类型而定。

1.3检测不透明样品时,以及不使用能够自动检测气泡的设备时,应制定适当的程序,以确定样品池中是否存在气泡。

原油样品中密度的测定采用D5002试验方法。

1.4除非另有说明,否则以SI单位表示的值为标准。

密度的公认计量单位为克/毫升(g/mL)或千克/立方米(kg/m3)。

1.5本标准并非旨在解决与使用本标准有关的所有安全问题(如果有的话)。

本标准的使用者有责任建立适当的安全、健康和环境规范,并在使用前确定法规限制的适用性。

第二章 密度的测定(2009)

第二章  密度的测定(2009)
20 20 d 4 = d 20×0.99823
t 同理,若要将 d tt12 换算为 d 41 ,可按 下式计算: t2 t1 d 4 = d t1 × ρ t 2
式中: 温度t 式中:ρ t 2 ——温度t2时水的密度,g/cm3。 温度 时水的密度, 意义: 各种液态食品都有其一定的相对密 意义: 当其组成成分及其浓度发生改变时 成分及其浓度发生改变时, 度,当其组成成分及其浓度发生改变时,其相 对密度也发生改变, 对密度也发生改变,故测定液态食品的相对密 度可以检验食品的纯度和浓度。 度可以检验食品的纯度和浓度。
d =d
15 15
20 4
+ 0.002
使用乳稠汁时,若测定温度不是标准温度,应 使用乳稠汁时,若测定温度不是标准温度, 将读数校正为标准温度下的读数。 20°/4° 将读数校正为标准温度下的读数。对于 20°/4°乳 稠计,在 10~25℃ 范围内,温度每升高1℃,乳稠计 稠计, 10~25℃ 范围内,温度每升高1 读数平均下降0.2 读数平均下降0.2 °,即相当于相对密度值平均减小 0.0002。故当乳温高于标准温度20℃ 0.0002。故当乳温高于标准温度20℃时,每高一度 0.2,乳温低于20 应在得出的乳稠计读数上加 0.2,乳温低于20 ℃时 每低1 0.2° 每低1℃ 应减去 0.2°。
2.密度计法
2.1原理和结构 2.1原理和结构 密度计是根据阿基米德原理制 成的,其种类很多、但结构和形式基本相同, 成的,其种类很多、但结构和形式基本相同, 都是由玻璃外壳制成。头部呈球形或圆锥形, 都是由玻璃外壳制成。头部呈球形或圆锥形, 里面灌有铅珠 水银或其它重金属, 铅珠、 里面灌有铅珠、水银或其它重金属,使其能立 于溶液中,中部是胖肚空腔, 于溶液中,中部是胖肚空腔,内有空气故能浮 尾部是一细长管.内附有刻度标记, 起,尾部是一细长管.内附有刻度标记,刻度 是利用各种不同密度的的液体标度的

8、ASTM D4052液体密度和相对密度测定法(数字式密度计法)

8、ASTM D4052液体密度和相对密度测定法(数字式密度计法)

8、ASTM D4052液体密度和相对密度测定法(数字式密度计法)1 方法概要将约0.7mL液体样品加入到一U形振荡管中,管中的质量发生变化引起振荡频率的改变,由频率的改变与标准数据进行比较确定样品的密度。

2 仪器及仪器2.1 数字式密度分析仪;2.2恒温池;温度控制±0.5℃2.3注射器:注射体积为2mL,配有针头。

2.4真空泵:将样品用真空泵引至密度分析仪中。

2.5温度计:经校准,最小分度值为0.1℃。

3 试剂和材料3.1水:重蒸馏水3.2石脑油:3.3丙酮:3.4干燥空气:4 仪器的校准4.1 将恒温池恒温,测定样品温度与调校仪器温度相一致。

4.2池中装满空气和重蒸馏水,利用振荡周期计算常量A和B。

4.3在U形管中通入干燥空气,并与测定温度保持热量平衡,记下空气的振荡周期。

4.4 在U形管中加入重蒸馏水0.7mL左右,气泡尽量赶尽,样品管内不要完全充满液体,只要液面的内下弯弧线与刻度线相切即可。

当显示器读数稳定后,记录下水的振荡周期。

4.5用下式计算在测定温度下,空气的密度:Da , g/mL = 0.001293[273.15/T][P/760]式中:T = 温度,k;P = 气体压力,torr。

表1中列出了在不同温度下测得的水的密度:4.6 利用测得的T值及水与空气的参考值,按下式计算常量A与常量B:A=[Tw 2-Ta2]/[Dw-Da]B=Ta 2-(A×Da)式中:Tw=池中装满水时测得的周期;Ta=池中装满空气时测得的周期;Dw=在测定温度下水的密度;Da=在测定温度下空气的密度。

4.7当显示器读数稳定后,记录下读数。

若在大气下测定空气密度,显示器读数不正确时,则重复清洗过程或调整常数B,直至所显示的密度正确。

4.8 用测定数据和水及空气的参数按下式计算常量K:对于密度:K1= A=[Dw -Da]/[Tw2-Ta2]对于相对密度:K2= A=[1.0000-Da ]/[Tw2-Ta2]式中:Tw=池中装满水时测得的周期;Ta=池中装满空气时测得的周期;Dw=在测定温度下水的密度;Da=在测定温度下空气的密度。

测量物体密度的方法

测量物体密度的方法

测量物体密度的方法一、测固体密度基本原理:ρ=m/V:1、称量法:器材:天平、量筒、水、金属块、细绳步骤:1、用天平称出金属块的质量;2、往量筒中注入适量水,读出体积为V1,3、用细绳系住金属块放入量筒中,浸没,读出体积为V2;计算表达式:ρ=m/V2-V12、比重杯法:器材:烧杯、水、金属块、天平、步骤:1、往烧杯装满水,放在天平上称出质量为 m1;2、将属块轻轻放入水中,溢出部分水,再将烧杯放在天平上称出质量为m2;3、将金属块取出,把烧杯放在天平上称出烧杯和剩下水的质量m3;计算表达式:ρ=ρ水m2-m3/m1-m33、阿基米德定律法:器材:弹簧秤、金属块、水、细绳步骤:1、用细绳系住金属块,用弹簧秤称出金属块的重力G;2、将金属块完全浸入水中,用弹簧秤称出金属块在水中的视重G水;计算表达式:ρ=Gρ水/G-G水4、浮力法一:器材:木块、水、细针、量筒步骤:1、往量筒中注入适量水,读出体积为V1;2、将木块放入水中,漂浮,静止后读出体积 V2;3、用细针插入木块,将木块完全浸入水中,读出体积为V3;计算表达式:ρ=ρ水V2-V1/V3-V15、浮力法二:器材:刻度尺、圆筒杯、水、小塑料杯、小石块步骤:1、在圆筒杯内放入适量水,再将塑料杯杯口朝上轻轻放入,让其漂浮,用刻度尺测出杯中水的高度h1;2、将小石块轻轻放入杯中,漂浮,用刻度尺测出水的高度h2;3、将小石块从杯中取出,放入水中,下沉,用刻度尺测出水的高度h3.计算表达式:ρ=ρ水h2-h1/h3-h16、密度计法:器材:鸡蛋、密度计、水、盐、玻璃杯步骤:1、在玻璃杯中倒入适量水,将鸡蛋轻轻放入,鸡蛋下沉; 2、往水中逐渐加盐,边加边用密度计搅拌,直至鸡蛋漂浮,用密度计测出盐水的密度即等到于鸡蛋的密度;二、液体的密度:1、称量法:器材:烧杯、量筒、天平、待测液体步骤:1、用天平称出烧杯的质量M1;2、将待测液体倒入烧杯中,测出总质量M2;3、将烧杯中的液体倒入量筒中,测出体积V;计算表达:ρ=M2-M1/V2、比重杯法器材:烧杯、水、待液体、天平步骤:1、用天平称出烧的质量M1;2、往烧杯内倒满水,称出总质量M2;3、倒去烧杯中的水,往烧杯中倒满待测液体,称出总质量M3;计算表达:ρ=ρ水M3-M1/M2-M13、阿基米德定律法:器材:弹簧秤、水、待测液体、小石块、细绳子步骤:1、用细绳系住小石块,用弹簧秤称出小石块的重力G;2、将小块浸没入水中,用弹簧秤称出小石的视重G水;3、将小块浸没入待测液体中,用弹簧秤称出小石块的视重G液;计算表达:ρ=ρ水G-G液/G-G水4、 U形管法:器材:U形管、水、待测液体、刻度尺步骤:1、将适量水倒入U形管中;2、将待测液体从U形管的一个管口沿壁缓慢注入;3、用刻度尺测出管中水的高度h1,待测液体的高度h2.如图计算表达:ρ=ρ水h1/h2注意:用此种方法的条件是:待测液体不溶于水,待测液体的密度小于水的密度5、密度计法:器材:密度计、待测液体方法:将密度计放入待测液体中,直接读出密度;另一、天平量筒法方法:直接用天平测质量m,量筒测体积v;注意点:1、固体1密度大于水的固体质量在体积前测量,避免沾水后质量偏大;放入水中要排除去气泡,避免体积偏大;2密度小于水的固体1按入法:用细铁丝和大头针将物体恰好全部按入水中,便于测体积;2助沉法:在量筒中先将助沉物全部浸没水中,测出总体积V1;然后将待测物体和助沉物一起浸没,测出总体积V2,求出待测物体体积V=V2-V1;2、液体方法:先测出烧杯和液体的总质量m1,再倒入一部分到量筒中,测出剩余液体和烧杯的总质量m2,求出倒入一部分到量筒中一部分液体的质量m= m1- m2;同时从量筒读出量筒中一部分液体的体积v,求出液体的密度ρ= m1- m2/v;此时质量和体积相应,误差较小;若先测出烧杯的质量m1,再测出烧杯和液体的总质量m2,求出液体的质量m2;全部倒入量筒中测出液体的体积v,求出液体的密度ρ也可;但由于烧杯沾有液体,体积偏小,密度偏大;若先倒入量筒测出液体的体积v,然后测出烧杯的质量m1,再测出烧杯和液体的总质量m2,求出液体的质量m,又质量偏小,故密度偏小;二、漂浮法1、漂浮的质地均匀的规则柱体可用刻度尺量出物体的长度L1,让物体漂浮在水中,测出物体漂浮在水中时,测出物体露出水面的长度L2,设底面积为S,根据漂浮条件和所测数据,可推出密度L1-L2/ L1;ρ=ρ水若再将其放入另一种待测液体中使其漂浮,测出物体露出水面的长度L3,根据漂浮条件,可求出待测液体的密度ρ液=ρL1/L1-L3;注:也可直接测出水下部分的长度;2、不规则物体在量筒中放入适量水,记下体积V1;将物体放于量筒中,使其漂浮,记下总体积V2;再将其放入水中,便其浸没在水中,记下总体积V3;则可计算出密度ρ=ρ水V2-V1/V3-V1;注意:如是下沉物,可想法使其漂浮如橡皮泥可捏成空心碗状;若用柱形容器代替量筒,则可按上述步骤用刻度尺分别量出水的深度h1、h2、h3,设容器底面积为S,如上可推导求出密度ρ=ρ水h2-h1/h3-h1;三、称重法用弹簧测力计和水测量水中下沉物体的密度步聚:1、用弹簧测力计测中空气中物体的重力G,2、将其浸没在水中,读出弹簧测力计的示数F,3、计算密度为:ρ=Gρ/G-F水四、替代法 1、固体方法1:用天平称出物体的质量m ;将烧杯中装满水,用天平称出总质量m1,把物体浸没水中后取出,称出出剩余水和烧杯的总质量m2,则溢出水的质量为两者之差m1-m2,求出溢出水的体积即为物体的体积;求出物体的密度;方法2:用天平称出物体的质量m ;将烧杯中放入适量的水,用天平称出总质量,用线吊着物体浸没水中不碰容器底,称出总质量m2,则两者之差为排开水的体积即为物体的体积v= m2-m1/ ρ水,求出物体的密度ρ=mρ水/ m2-m1; 2、液体用天平称出空烧杯的质量m ;将烧杯中装满水或作好标记,用天平称出总质量m1:将水倒干,装入同样多的待测液体,用天平称出总质量m2:计算密度ρ= m2-m ρ水/ m1-m;五、U 型管法压强平衡法1、U 型管法:适用于与水不相容的液体在U型管法中注入一定量的注水,再注入一定量的被测液体,分别测出液体交界面到达水面和液体面的深度h1、h2,根据两液体对交界面的压强相等,由p 1=p2求出h1/ h2;待测液体的密度ρ=ρ水另21、没有量筒时测牛奶密度步骤:①用调好的天平测出空杯的质量Mo;②用这个杯子盛满水,用天平测出杯和水的总质量M1;③将杯里的水倒出,用这个杯子盛满牛奶,用天平测出杯和牛奶的总质量M2;计算牛奶密度的表达式:ρ奶=M2-Moρ水/M1-Mo推导计算牛奶密度的表达式:同一个杯子分别盛满水和牛奶,水和牛奶的体积相等;水的体积 V 水=M1-Mo/ρ水牛奶的体积 V奶=M2-Mo/ρ奶V水=V奶M1-Mo/ρ水=M2-Mo/ρ奶ρ奶=M2-Moρ水/M1-Mo2、用弹簧秤测矿石的密度步骤:①用线拴住矿石,线的另一端挂在弹簧秤的秤钩上,用弹簧秤测出矿石在空气中的重力G;②将矿石浸没在杯子里的水中,记下此时弹簧秤的示数F;计算矿石密度的表达式:ρ石=Gρ水/G-F推导计算矿石密度的表达式:浮力 F浮=G-F F浮=ρ水V排g矿石排开水的体积 V排=G-F/ρ水g浸没时,V排=V石矿石的体积V石=G-F/ρ水g矿石的密度ρ石=M石/V石=G/gV石=Gρ水/G-F3、没有天平测木块的密度步骤:①往量筒倒入适量的水,记下水面所对的刻度Vo;②用线拴住木块,将木块放入量筒里的水中,待木块静止时,记下水面所对的刻度V1;③用一根细铁丝对木块施加向下的压力,使木块浸没在水中,记下水面所对的刻度V2;计算木块密度的表达式:ρ木=ρ水V1-Vo/V2-Vo;推导计算木块密度的表达式:木块的重力,G木=M木g木块在水中漂浮时受到的浮力,F浮=ρ水V排g=ρ水V1-Vog木块漂浮时,F浮=G木, ρ水V1-Vog=M木g,木块的质量M 木=ρ水V1-Vo,木块的体积V木=V2-Vo,木块的密度ρ木=M木/V木=ρ水V1-Vo/V2-Vo;。

《数字密度计测试液体密度、相对密 度和 API 比重的试验方法

《数字密度计测试液体密度、相对密 度和 API 比重的试验方法

间接法 射线法
可实现非接触测量,可测量多 需要放射性射线源,稳定时间较长,
相液体
分辨率不高
超声法
可实现非接触测量,响应快、 液体中的杂质使测量不稳定,精密测 精度高、无放射、稳定性好 量时需考虑粘性介质的影响
其中,射线法由于对人体有潜在的危害作用,现在已经基本不用;虽然目前并未见
超声法在液体密度测定方面的相关标准,但由于其可以实现非接触高精度密度动态测
0.82805
0.86418
1.05662
0.82805
0.86420
1.05662
0.82804
0.86419
1.05662
7
实验室 i

空气
1(汽油) 0.72610
水平 j
2(柴油)
3(润滑油)
0.82804
0.86408
4(冷却液) 1.05658
0.72620
1
0.99816 0.00110
在我国的标准中也增加相应的内容,和翻译应注意准确通顺,同时建议进行重复性和再 现性的验证试验。课题组根据专家意见,调整下一步的工作内容,重点按照试验方案用 代表性的样品进行测试。
(四)方法的精密度验证试验,试验样品收集、发放、数据收集及统计处理阶段 (2010 年 4 月~7 月)
征集协同实验室 9 个,参加实验室间精密度试验。发放样品后收集反馈测试数据 进行统计分析。
三、主要起草过程
本标准的编制经历了以下阶段: (一) 资料收集阶段(2010 年 1 月前) 搜集液体密度测定的方法,相关的国际国外标准;搜集 U 型振动管式密度计的主要 技术内容和国内外的相关标准;搜集国内液体密度测定的方法及相关的方法标准,了解 国家标准的情况,编制形成了标准草案稿初稿,在此期间,因为得知 ASTM D4052 即将 发布实施新标准,编制组推迟了草案稿研讨会的召开,等待 ASTM D4052:2009 新标准的 发布实施,以作相应的更新。 (二)资料分析总结比较形成草案稿(2010 年 1 月~2 月)

植物油相对密度四种检测方法的比较与分析

植物油相对密度四种检测方法的比较与分析
实验样品基本情况表编号品名品牌等级来源菜籽油散装四级菜籽油散装四级菜籽油散装四级菜籽油散装四级菜籽油散装四级菜籽油散装四级菜籽油散装四级大豆油联华一级超市购买大豆油金龙鱼一级超市购买10花生油一级超市购买11花生油一级超市购买12菜籽油一级超市购买13菜籽油一级超市购买14山茶油一级超市购买液体比重天平法实验方法
根据笔者经验, 比重瓶重和水重一次称量准确后, 可 以作为常数, 不需每次称量。 ( 3 ) 在数字密度计法中, 不管进水还是进油, 一 定要注意排空气泡, 缓慢而匀速的进样。 清洗测量 池时要反复抽洗多次, 确保空气检测通过。 ( 4 ) 在密度计法中, 油样弯月面上缘与密度计 刻度相切的点即为检测结果 ( 上缘读数法 ) 。 读数 时, 油面接触的密度计周围可能会有小气泡 , 可以用 脱脂棉轻轻拨去, 不会影响测定结果。读数后, 稍稍 提起密度计, 擦去最上部的油痕重复测定一次。 连 续两次测定的温度不应超过 0. 5℃ , 读数不应超过 0. 0005 , 否则需重新检测。 ( 5 ) 在这四种检测方法中, 比重检测结果均符 合双试要求, 数字密度计法检测结果重复性最好 、 精 度最高, 检测速度最快, 特别在储备油轮换出入库较 为频繁时, 可以减少因为检测比重的等待时间 , 大大 提高储备油的出入库效率; 检测结果客观准确, 避免 了买卖双方的利益之争。 ( 6) 比 重 天 平 法 和 比 重 瓶 法 重 复 性、 精确度 好, 可检 测 速 度 较 慢 , 检测过程易受主观因素影 响, 对检测人 员 有 较 高 的 技 巧 和 经 验 要 求 。 但购 买价格便宜, 目前多数粮油检测单位均采用这两种 方法。 ( 7 ) 密度计法虽然检测速度快, 但精度低, 影响 植物油数量计量的准确性, 一般较适用于清仓查库 时粗略测算库存植物油的数量。 参考文献:

0601相对密度测定法

0601相对密度测定法

0601 相对密度测定法密度系指在规定的温度下,单位体积内所含物质的质量数,即质量与体积的比值;相对密度系指在相同的温度、压力条件下,某物质的密度与水的密度之比。

除另有规定外,温度为20℃。

纯物质的相对密度在特定的条件下为不变的常数。

但如物质的纯度不够,则其相对密度的测定值会随着纯度的变化而改变。

因此,测定药品的相对密度,可用以检查药品的纯杂程度。

液体药品的相对密度,一般用比重瓶(图1)测定;测定易挥发液体的相对密度,可用韦氏比重秤(图2)。

液体药品的相对密度也可采用振荡型密度计法测定。

用比重瓶测定时的环境(指比重瓶和天平的放置环境)温度应略低于20℃或各品种项下规定的温度。

图1、图2略。

1.比重瓶法略2.韦氏比重秤法略3. 振荡型密度计法振荡型密度计主要由U型振荡管(一般为玻璃材质,用于放置样品)、电磁激发系统(使振荡管产生振荡)、频率计数器(用于测定振荡周期)和控温系统组成。

通过测定U型振荡管中液体样品的振荡周期(或频率)可以测得样品的密度。

振荡频率(T)与密度(ρ)、测量管常数(c)、振荡管的质量(M)和体积(V)之间存在下述关系:T2=M+ρ×Vc×4π2如果将c / (4π2 ×V)定义为常数A,M/V定义为常数B,则上述公式可简化如下:ρ =A×T2−B常数A和B可以通过往振荡管中加入两种已知密度的物质进行测定,常用的物质为新沸放冷的水和空气。

分别往样品管中加入干燥空气和新沸放冷的水,记录测得的空气的振动周期T a和水的振动周期T w,由下式计算出空气的密度值d a:d a=0.001293×273.15t×p101.3式中d a为测试温度下的空气密度,g/mL;t为测试温度,K;p为大气压,kPa。

从附表中查出测得温度下水的密度值d w,照下述公式可分别计算出常数A和常数B:A=T w2−T a2 d w−d aB=T a2−(A×d a)式中T w为试样管内为水时观测的振荡周期,s;T a为试样管内为空气时观测的振荡周期,s;d w为测试温度下水的密度,g/mL;d a为测试温度下空气的密度,g/mL。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

密度和相对密度数字式密度计法警告:本内容涉及某些有危害性的材料、操作和设备,但使用本内容并不意味着和所有安全问题有联系。

本内容使用者应在操作前建立起适当的安全和保健措施及规章制度。

范围本内容规定了使用数字式密度计测定液体化工品的密度和相对密度的测定方法。

本内容适用于蒸气压低于100 kPa,测试温度下的运动粘度低于15000 mm2/s的液体化工品。

规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅所注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 6680 液体化工产品采样通则术语和定义下列术语和定义适用于本文件。

1.1密度 density指定温度下单位体积物质的质量,单位为g/mL或kg/m3。

1.2相对密度 relative density指定温度下某物质的密度和参考温度下水密度的比值。

方法概要把少量(约1 mL~2 mL)液体样品注入到振动试样管中,试样管质量的变化引起振动频率的变化,结合标定数据计算样品的密度或相对密度,手动进样或自动进样均可。

注1:由于液体化工品种类繁多,测定时确保样品不会损伤数字式密度计(如腐蚀进样头或试样管等),并易清洗。

注2:蜡类和高粘度样品则需要有能升温的分析池,以确保样品的测试部分在分析池通过升温后以液体的形式进行分析。

仪器1.3 数字式密度计:装有U型振动试样管并具有电子激发、振动频率计数及显示功能。

测定过程中,能精确测定试样的温度或具有如5.2所述的控制样品温度的能力,同时应达到本内容所要求的精度。

注:在确定样品在U形振荡管中没有形成气泡的前提下,本法也可适用蒸气压高于100 kPa的液体化工品。

1.4 循环恒温水浴(可选):能使循环液体的温度保持在要求温度±0.05 ℃的范围内,温度控制单元可作为密度计的一部分。

1.5 注射器:手动进样的主要设备,容积至少2 mL,带有尖嘴或与振动管口相配套的接口。

1.6 流量或压力调节器:作为用压入或吸入模式把样品注入密度计的一种可选设备。

注:为避免形成气泡,建议对轻组分较易流失的样品,不要采用抽真空的取样方式,而是为样品瓶配制一种特制的盖子使空气将样品压入U型振荡管中。

1.7 自动进样器:用于自动进样。

在分析过程中,应确保进入仪器的测试部分是代表性样品。

1.8 温度传感器:通用显示精度在±0.05 ℃范围内,如采用玻璃液体温度计,精度可为0.1 ℃分度。

1.9 超声波仪:不加热型。

试剂和材料除非另有说明,在分析中仅使用确认为分析纯的试剂。

1.10 洗涤溶剂使用合适的溶剂(如石脑油、丙酮、乙醇和水等),对仪器无腐蚀。

1.11 标定物质1.11.1 标定试样管至少需要两种标定物质,标定物质的密度应能溯源到国家标准或采用国际公认的数值。

1.11.2 当使用水和空气时,应符合下列要求:a)水:经二次蒸馏,使用前煮沸除去溶解的空气并冷却的新鲜水作为标定物质。

b)干燥空气:用于标定和吹干试样管。

取样1.12 从管道、储罐或其他系统,按GB/T 6680规定的方法取得代表性样品,并分装在两个容器中,按下述方法制成两份试样。

1.13 试样是指从实验室样品中取得并转移至数字式密度计试样管中的那部分样品。

按GB/T 6680描述的方法进行混匀,因在室温下开放容器混合样品会引起挥发性物质的损失,建议在密闭容器或低温条件,如低于10 ℃的环境温度下进行混合;如对于某些粘度较大的样品,混合样品时很容易在样品中出现气泡,可使用超声波仪(5.7)处理样品,能够有效去除气泡。

1.14 手动进样时,可使用合适的注射器(5.3)从混匀的实验室样品中吸取试样。

如数字密度计装有流量或压力调节器(5.4),可直接将试样从混样容器转移至试样管中。

1.15 自动进样时,将混匀的实验室样品转移至自动进样器样品瓶中,直到试样装满样品瓶容量(80±5)%,然后立刻将样品瓶密封,并保持密闭状态,直到自动进样器将试样转移至U型试样管中。

对于高度挥发性试样,在测试之前将试样冷却。

注:自动进样时,过度充满的样品瓶可导致交叉污染。

仪器准备按照仪器操作说明设置仪器和恒温浴,并把恒温浴和试样管设定到要求的测试温度,在同一温度下标定仪器。

注:试样管测试温度的精确设置和控制是及其重要的,0.1 ℃的误差能引起密度(以g/mL 计)小数点后第四位值的变化。

仪器标定 1.16 标定频次仪器首次安装、测试温度改变、维修或系统受干扰后都应进行标定。

至少每周一次对仪器进行标定。

注:可以采用一个适当储存条件下均匀稳定的物质作为质控样品,采用控制图的方式对仪器进行核查。

1.17 标定步骤1.17.1 当需要对仪器进行标定时,应根据试样管里分别充满空气和水(6.2.2)时测定的振动周期计算常数A 和常数B 。

其他像正壬烷、正十三烷、环己烷和正十六烷(用于高温条件)之类的标定物也可以使用。

1.17.2 当测定振动周期T 时,用洗涤溶剂(6.1)冲洗试样管,再用干燥空气(6.2.2)吹干。

污染或潮湿的空气会影响标定结果,因此当存在这些情况时,应将用于标定的空气预先通过一系列的净化和干燥装置。

同时为了防止标定过程中引入潮湿空气,应塞住U 型管的入口和出口。

1.17.3 当U 型管中的干燥空气,在测试温度下达到热平衡时,记录空气的T 值。

1.17.4 用注射器(5.3)将少量(约1 mL ~2 mL )水(6.2.2)从试样管底部入口注入到U 型试样管中,当仪器配有流量或压力调节器附件或采用自动进样时,将水从适当容器或样品瓶中转移至U 型试样管中。

试样管中的水应均质、不含空气或气泡。

当读数稳定时,记录水的T 值。

1.17.5 根据式(1)计算测试温度下的空气密度:3.10115.273001293.0PT d a ⨯⨯=………………………………(1) 式中:a d ——测试温度下的空气密度,单位为克每毫升(g/mL);T ——测试温度,单位为开(K ); P ——大气压力,单位为千帕(kPa )。

1.17.6 参照附录A 表A1,查得测试温度下水的密度。

1.17.7 根据测定的水和空气的T 值和密度参考值,按式(2)和式(3)计算常数A 值和常数B 值:22w a w aT T A d d -=- ...................................................(2) 2()a a B T A d =-⨯ (3)式中:a T ——试样管内为空气时的振动周期; w T ——试样管内为水时的振动周期;a d ——测试温度下的空气密度,单位为克每毫升(g/mL); w d ——测试温度下的水密度,单位为克每毫升(g/mL)。

当用其他参考物质时,则使用相应的T 值和d 值。

1.17.8 若仪器能根据常数A 值和常数B 值以及样品的T 值自动计算密度,则按照仪器说明书的要求往仪器存储器中输入常数值。

1.17.9 检查标定情况,如需要则按9.3部分所述的常规标定检查步骤进行调整。

1.17.10 按照9.2.2~9.2.8步骤用相对密度来标定仪器,用1.0000代替式(2)中d w 。

1.17.11 有些型号的仪器仅能显示振动周期T ,它们的标定需要测定仪器常数K ,而常数K 是通过密度或相对密度计算得到的。

则按9.2.3所述清洗和干燥试样管,直至得到稳定的读数,记录空气的T 值。

按9.2.4所述将水(6.2.2)注入试样管中,待读数达到稳定值,记录水的T 值。

利用测得的水和空气的T 值和由9.2.5和9.2.6得到的密度值,根据式(4)和式(5)计算仪器常数K 值:122w aw a d d K T T -=- (4)2221.0000aw ad K T T -=-……………………………………………(5) 式中:1K ——密度测试时的仪器常数;w d ——测试温度下的水密度,单位为克每毫升(g/mL); a d ——测试温度下的空气密度,单位为克每毫升(g/mL); w T ——试样管内为水时的振动周期; a T ——试样管内为空气时的振动周期; 2K ——相对密度测试时的仪器常数。

1.18 标定核查1.18.1 要求每周一次标定并调整常数A 和常数B 。

如果试样管中含有不能用常规清洗方法冲走的沉积物,就需要对仪器进行标定,尽管能通过调整常A 和常数B 值的方法解决这种问题,但当需要大的调整时,建议用强氧化酸(警告——能导致严重灼伤)或表面清洁液冲洗试样管。

1.18.2 按9.2.2所述的方法清洗和干燥试样管,直到读数达到稳定值。

如果所显示温度下的空气密度值不正确,则重复清洗过程,或从小数点后最后一位开始调整常数B 值,直到仪器显示正确的密度值。

1.18.3 若在9.3.2中必须对常数B 进行调整,则需按9.2.4所述用水(6.2.2)进行再标定以取得稳定读数。

如果已标定仪器显示的密度值不正确,则从常数A 的小数点后最后一位开始调整,直到显示该温度下的正确密度值,如已标定仪器显示的是相对密度值,则调整读数至1.0000。

注:在进行每周一次的标定时,通常的选择取决于结果读数接近上界值还是下界值,通过这种方法确定的设置能对样品结果的第四位产生影响。

分析步骤 1.19 手动进样1.19.1 采用注射器(5.3)或密度计附带的调节器配件(5.4)将少量试样(约1 mL ~2 mL )注入到洁净、干燥的U 型试样管内。

1.19.2 也可以通过虹吸的方式加入试样。

将特氟隆毛细管的一段插入到试样管的底部入口,把毛细管的另一段浸入样品中,然后用注射器或真空管路在试样管上部入口抽气,使试样管充满试样。

1.19.3 使用目测或物理方法检查所填充样品的完整性,确认试样管内无气泡,如发现有气泡,将试样管清空并重新填满,并重新检查是否还有气泡。

1.19.4 对于采用照明灯的数字式密度计,由于照明灯产生的热量会影响测试温度,在注入样品,并确认试样管内无气泡后,应尽快关闭照明灯。

1.19.5 当仪器显示第四位有效数字的密度值或第五位有效数字的T 值的稳定读数时,表明已达到温度平衡,记录密度值或T 值。

1.20 自动进样1.20.1 采用自动进样法时,要求使用自动进样器(5.5)。

1.20.2 按照7.2的步骤将试样转移至自动进样器样品瓶中,放在自动进样器中,并按10.1.3~10.1.5的步骤进行测试。

计算1.21 自动计算型密度计:记录两份试样测试结果的平均值为最终结果,以密度或相对密度表示。

1.22 非自动计算型密度计:利用所测得的样品和水的T 值以及9.4.3部分得到的仪器常数,按式(6)和式(7) 计算密度[单位为克每毫升(g/mL)或千克每立方米(kg/m 3)]或相对密度。

相关文档
最新文档