人教版七年级数学上册教案《一元一次方程》

合集下载

人教版数学七年级上册第三章一元一次方程(教案)

人教版数学七年级上册第三章一元一次方程(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
本节课的核心素养目标主要包括以下几方面:
1.理解与运用:使学生理解一元一次方程的概念,掌握其解法,并能将其应用于解决实际问题。
2.思维能力:培养学生逻辑思维和分析问题的能力,提高他们从实际问题中抽象出一元一次方程的能力。
3.数学表达:训练学生运用数学语言表达问题和解决问题的过程,提高他们的数学表达能力。
举例:在讲解移项难点时,可以使用数轴辅助教学,让学生直观地看到移项时数字的正负变化。对于合并同类项,可以通过具体的例题,如2x+3x-5x=4,让学生通过实际计算来理解合并的过程。在方程建模方面,可以给出如“小明买了3本书和一支笔花了32元,已知每本书的价格相同,求每本书的价格”这样的问题,引导学生如何设未知数并建立方程。至于解的检验,通过具体方程的解,如x=2,展示如何将x=2代入原方程进行验证,确保解的正确性。
-解方程的步骤:详细讲解移项、合并同类项、化简等基本解法,确保学生能够熟练运用。
-实际问题的方程建模:通过具体例题,展示如何从实际问题中抽象出一元一次方程,并运用解方程的方法求解。
-方程解的检验:教授并强调解方程后必须进行检验,确保解是正确的。
举例:在教学过程中,以方程3x-7=11为例,重点讲解移项(将-7移至等号右边)、合并同类项(将11和-7合并)和化简(求解x)的过程。

《一元一次方程》教案 人教数学七年级上册

《一元一次方程》教案 人教数学七年级上册

第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程一、教学目标【知识与技能】1.了解什么是方程,什么是一元一次方程;2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;【过程与方法】初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;【情感态度与价值观】经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。

二、课型新授课三、课时1课时四、教学重难点【教学重点】1.了解什么是方程、一元一次方程;2.分析实际问题中的数量关系,利用其中的相等关系列出方程。

【教学难点】分析实际问题中的数量关系,利用其中的相等关系列出方程。

五、课前准备教师:课件、直尺、客车模型等。

学生:三角尺、练习本、圆珠笔或钢笔、铅笔。

六、教学过程 (一)导入新课一起来思考下面的问题?教师问1:汽车匀速行驶途径王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。

王家庄到翠湖的路程有多远?(出示课件2-3)学生回答:15−13×(13-10)+50教师问2:如果设王家庄到翠湖的路程为x 千米,你会用方程方法解决这个实际问题吗?(出示课件4)师生共同解答如下:设王家庄到翠湖的路程为x 千米,由题意得:x−5013−10=x+7015−10 (二)探索新知1.师生互动,探究一元一次方程的定义教师问3:在小学,我们已经见过像 2x=50,3x+1=4,5x-7=8 这样简单的方程,还有前面列出的式子:x−5013−10=x+7015−10,即x−503=x+705(出示课件6)又如: 6x-11=12,x+1=2x-5,x 2 –8x+2=0,|x+5| =2请同学们给方程下个定义.学生回答:含有未知数的等式叫做方程.教师出示问题:一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是60 km/h,快车比慢车早1 h 经过B地,A,B两地间的路程是多少?(出示课件7)教师问4:上述问题中涉及到了哪些量?(出示课件8)师生共同讨论后解答如下:已知条件:路程:AB之间的路程.速度:快车70 km/h,慢车60 km/h.快车每小时比慢车多走10km.时间:快车比慢车早1h经过B地.相同的时间,快车比慢车多走60km.快车走了6h.教师问5:请同学们想一想,如何列算式呢?学生回答:算式:60 ÷(70-60)×70=420(km).教师问6:如果将AB之间的路程用x表示,用含x的式子表示下列时间关系:(出示课件9)(1)快车行完AB全程所用时间:(2)慢车行完AB全程所用时间:(3)两车所用的时间关系为:快车比慢车早到1h, 即:()- ()=1学生回答:(1)x70h ;(2)x60h ;(3)慢车用时-快车用时=1 教师问7:如何列方程解答呢?学生讨论后:设AB 之间的路程为x 千米,由题意得:x60-x70=1教师问8:如果用y 表示快车行完AB 的总时间,你能从快车与慢车的路程关系中找到等量关系,从而列出方程吗?(出示课件10)学生讨论后回答:等量关系: 快车y 小时路程=慢车(y+1)小时路程.方程: 70 y =60(y+1).教师问9:如果用z 表示慢车行完AB 的总时间,你能找到等量关系列出方程吗?(出示课件11)学生回答:等量关系:慢车z 小时路程=快车提前1小时走的路程.方程:70(z-1)=60z. 总结点拨:(出示课件12) 比较:列算式和列方程.列算式:列出的算式表示解题的计算过程, 只能用已知数.对于较复杂的问题,列算式比较困难.列方程:方程是根据题中的等量关系列出的等式. 既可用已知数,又可用未知数,解决问题比较方便.教师出示问题:(出示课件13) 观察下列方程,它们有什么共同点? x60-x70=1,70 y =60(y+1),70(z-1)=60z. 教师问10:每个方程中,各含有几个未知数? 学生回答:1个.教师问11:说一说每个方程中未知数的次数是几次?. 学生回答:一次.教师问12:等号两边的式子有什么共同点? 学生回答:都是整式.教师问13:向上边的方程叫做一元一次方程,请同学们想一想一元一次方程的定义,并且口述一下.学生回答:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。

2024一元一次方程教案人教版数学七年级上册教案

2024一元一次方程教案人教版数学七年级上册教案

2024一元一次方程教案人教版数学七年级上册教案一、教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。

2.能够运用一元一次方程解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

二、教学重难点重点:一元一次方程的解法。

难点:实际问题中的一元一次方程的应用。

三、教学准备1.教学课件2.实物投影仪3.小组讨论材料四、教学过程(一)导入新课1.情景引入:同学们,你们在生活中有没有遇到过这样的问题,比如:一个物品的价格是多少?一个物品的重量是多少?这些问题都可以通过一元一次方程来解决。

2.提问:同学们,你们知道什么是一元一次方程吗?(二)探究新知1.讲解一元一次方程的定义(1)引导学生观察一元一次方程的一般形式:ax+b=0(a、b是常数,a≠0)。

(2)讲解一元一次方程的解法:将方程两边同时加上或减去一个常数,使得方程的左边变为未知数的系数,右边变为常数。

2.讲解一元一次方程的解法(1)教师示范:解方程2x6=0。

(2)引导学生模仿:解方程3x+4=7。

(3)学生独立完成:解方程5x9=2。

3.小组讨论:如何将实际问题转化为方程?(1)引导学生观察实际问题,找出未知数和等量关系。

(2)小组讨论,给出解决方案。

4.练习:解下列方程(1)2x5=3(2)3x+4=11(3)4x7=5(4)5x+2=0(2)教师点评,强调注意事项。

(三)巩固提高1.小组讨论:如何运用一元一次方程解决实际问题?2.学生展示:展示解题过程,讲解思路。

3.练习:解决实际问题(1)一个物品的价格是50元,如果降价x元后,售价为45元,求x的值。

(2)一个水果摊上的苹果每斤5元,小明买了3斤,花费了y元,求y的值。

(3)一个长方形的长是宽的2倍,如果宽为x厘米,求长方形的长。

(四)课堂小结五、课后作业1.解下列方程(1)3x4=7(2)4x+5=9(3)5x3=2(4)2x+7=02.解决实际问题(1)一辆汽车行驶了x小时,平均速度为60千米/小时,求行驶的距离。

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。

人教版七年级数学上册教案《一元一次方程》

人教版七年级数学上册教案《一元一次方程》

人教版七年级数学上册教案《一元一次方程》本节课将探究一元一次方程,即只有一个未知数且未知数的次数为一的方程。

2.方程的解:使方程成立的数值叫做方程的解。

要点二:实际问题中的方程通过实际问题的分析,我们可以将问题转化为方程,进而求解问题。

三、练巩固:请同学们根据实际问题列出方程,并求解。

四、拓展延伸:通过举例子和练巩固,让学生进一步理解方程的应用,拓展到更复杂的实际问题中。

五、课堂总结:本节课我们研究了方程的定义和解的概念,以及如何将实际问题转化为方程进行求解。

同时,我们还进行了练和拓展,希望同学们能够在今后的研究中更好地掌握和应用方程的知识。

判断一个式子是否为方程,只需看两点:一是等式;二是是否含有未知数。

方程的两个特征是:(1)方程是等式;(2)方程中必须含有字母(或未知数)。

在老师和同学一起研究课本的问题时,有一个问题是:一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70km/h,慢车的行驶速度是60 km/h,快车比慢车早1 h经过B地,A,B两地间的路程是多少?教师从路程、时间、速度三个方面对问题进行深入的分析,列出了以下三个方程:x/70 = y+1x/60 = y70(z-1) = 60z通过对此问题的分析,学生明白了从算式到方程是数学的进步。

观察上面的三个方程,教师引导学生从未知数的个数、含未知数项的次数以及等式两边的特点三个方面去分析,从而得到一元一次方程的定义。

一元一次方程的定义是:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程。

要点诠释:(1)“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数。

(2)一元一次方程的标准形式是:ax+b=0(其中a≠0,a、b 是已知数)。

(3)一元一次方程的最简形式是:ax=b(其中a≠0,a、b是已知数)。

2024年人教版七年级上册教学设计 第五章 一元一次方程第五章 一元一次方程

2024年人教版七年级上册教学设计 第五章  一元一次方程第五章  一元一次方程

一、单元学习主题本单元是“数与代数”领域“方程与不等式”主题中的“一元一次方程”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.方程与不等式的教学应当让学生经历对现实问题中量的分析,借助用字母表达的未知数,建立两个量之间关系的过程,知道方程或不等式是现实问题中含有未知数的等量关系或不等关系的数学表达,引导学生关注既含有已知数,又含有未知数的方程,感悟用字母表示数的意义,体会算术与代数的差异.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律;经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第五章“一元一次方程”,本章包括三个小节:5.1方程;5.2解一元一次方程;5.3实际问题与一元一次方程.“方程与不等式”是义务教育阶段数学课程中数与代数领域的一个重要内容,它揭示了数学中最基本的数量关系(相等关系和不等关系),是一类应用广泛的数学工具.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展;从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础;从应用数学的角度看,方程是一个既方便又强大的数学工具,它能够有效地刻画现实世界中的数量关系,将实际问题转化为数学模型加以解决.本单元主要内容包括:一元一次方程及其相关概念、一元一次方程的解法和利用一元一次方程解决实际问题.其中,以方程为工具分析问题、解决问题,即根据问题中的相等关系建立方程模型是本单元的重点之一,同时也是主要难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于本单元的主线.对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的,它们在本单元前两节中占重要地位.解方程中蕴含的“化归思想”和列方程中蕴含的“数学建模思想”,是本单元中包含的主要数学思想,对于它们的体悟与内化,不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,与提高学生自身的数学素养有非常密切且直接的关系,更是促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量的重要保障.三、单元学情分析本单元内容是人教版教材数学七年级上册第五章一元一次方程,从学生的认知基础上看,学生在前面学段中已经学过有关于简单方程的内容,对方程有了初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,同时通过对整式的学习,学生能够进行合并同类项,去括号等整式的加减运算,即对方程的认识已经历了入门阶段,又具备了一定的基础.这些基本的、朴素的认识为进一步学习方程奠定了基础.本单元的内容是在前面对方程学习的基础之上的进一步发展,是更系统、更深入、更复杂的讨论,更强调数学思想、数学模型的渗透,结合七年级学生的思维习惯,他们虽然已经具备了一定的学习能力,但仍处于感性认识向理性认识过渡的时期,抽象思维能力还有待提高,因此教学中对问题情境的选取要符合学生的认知水平,在学生的最近发展区创设情境,给他们创造自主学习、合作探究的机会,让学生在主动参与中体验到探索成功的喜悦,在经历数学知识的形成过程中逐步体会、感悟和理解这些数学内容的内涵.四、单元学习目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,通过了解一元一次方程及其相关概念,完成从算式数学到方程式数学的进步,从而发展学生的抽象能力,培养学生的模型意识.2.掌握等式的性质,能利用它们探究一元一次方程的解法,进一步夯实学生的理论基础,培养学生的应用意识.3.了解解方程的基本目标,理解并掌握解一元一次方程的一般步骤和解法,培养学生的运算能力,进一步体会解法中蕴含的化归思想.4.能够通过“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”来体会数学建模的思想,培养学生的模型观念.5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决实际问题的基本过程,感受数学的应用价值,提高学生分析问题、解决问题的能力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。

2024年人教版七年级上册教学设计 第五章 一元一次方程方程

2024年人教版七年级上册教学设计 第五章  一元一次方程方程

5.1.1从算式到方程课时目标1.通过引入实际问题情境,让学生在算式、代数两种方式下解决问题,体会由算术到代数是数学的一大进步,从而培养学生分析、归纳和抽象概括的思维能力,初步认识建立数学模型的思想.2.经历用含有未知数的等式表示实际问题中的相等关系,感悟方程的现实意义,理解方程的概念,培养学生获取信息、分析问题、处理问题的能力,提升方程模型的应用意识.3.通过数学背景材料,让学生理解并掌握方程、一元一次方程及其相关概念的内涵,培养学生的阅读理解、拓展探究的能力,增强学生的数学应用意识,调动学生学习数学的主动性.学习重点寻找相等关系列出方程,方程、一元一次方程及其相关概念.学习难点寻找相等关系列出方程的意识和过程.课时活动设计情境引入问题:甲、乙两支登山队沿同一条路线同时向一山峰进发.甲队从距大本营1 km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km.多长时间后,甲队在途中追上乙队?学生先独立思考、作答,然后小组交流合作,最后选派学生代表板演展示,教师巡视指导.解:甲队追上乙队所用的时间为3−11.2−0.8=20.4=5(小时).教师适时追问:(1)这是算术解法,同学们,你们知道这样做的根据吗?(2)你还有其它的解决方法吗?教师引导学生尝试通过列方程的方法来解决这个问题.解:设x小时后,甲队在途中追上乙队.当甲队追上乙队时,甲队距大本营的路程为(1.2x+1)km,乙队距大本营的路程为(0.8x+3)km.因为甲队在途中追上乙队,即甲队距大本营的路程=乙队距大本营的路程,于是1.2x+1=0.8x+3.设计意图:通过设置这个学生熟悉的行程问题,让学生尝试用自身拥有的数学知识(算术方法)解决,然后逐步引导学生用含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式——方程,目的在于突出方程的根本特征,为引出方程的概念作铺垫.探究新知探究1方程的概念和列方程教师请同学们按照教学活动1中的方法,先设出未知数,再根据问题中的相等关系列出含有未知数的等式.学习先独立思考解答下列两个问题,然后再进行小组谈论,最后选派代表板演展示.问题1:用买3个大水杯的钱,可以买4个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?分析:根据题意,可知3个大水杯的总价=4个小水杯的总价,大水杯的单价-小水杯的单价=5,总价=数量×单价.因此,只要设出大水杯的单价或小水杯的单价,就可以列出方程了.解:设大水杯的单价为x元,那么小水杯的单价为(x-5)元.因为用买3个大水杯的钱,可以买4个小水杯,所以3x=4(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.问题2:如图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为85(即宽是长的58).这枚纪念币的长和宽分别是多少毫米?分析:根据题意,可知这个长方形的宽=58×长方形的长,长方形的面积=长×宽,因此,只要设出长方形的长或宽,就可以列出方程了.解:设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,面积可以表58x2mm2.已知纪念币的面积为4000mm2,所以58x2=4000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.教师引导学生归纳:像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.教师适时追问:(1)你能解释这些方程的左边、右边各表示什么意思吗?(2)对于根据问题中的相等关系列方程,说说你的体会?学生思考,小组讨论交流.教师引导学生归纳:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.这个过程可以表示如下:教师进一步指出:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.探究2解方程和方程的解问题3:请同学们尝试解方程1.2x+1=0.8x+3.学生先独立解答,然后再小组交流,教师巡视指导.解:可以发现,当x=5时,左边=1.2×5+1=7,右边=0.8×5+3=7,这时方程左右两边的值相等.教师引导学生归纳:一般地,使方程左、右两边的值相等的未知数的值,叫作方程的解.例如,x=5就是方程1.2x+1=0.8x+3的解.求方程的解的过程,叫作解方程.判断未知数是否为方程的解的具体步骤:(1)把未知数的值分别代入方程的左、右两边进行计算;(2)若左边=右边,则这个未知数是方程的解;反之,则不是.探究3一元一次方程的概念问题4:观察下列方程,你有什么发现.1.2x+1=0.8x+3;3x=4(x-5).先让学生独立思考,自主探索,然后将分析结果在小组内进行交流,形成共识,最后由学生代表回答问题,教师巡视指导学生的学习情况.解:这些方程中只有1个未知数x,且未知数x的次数都是1.引导学生归纳出一元一次方程的概念:一般地,如果方程中只含有一个未知数(元),且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫作一元一次方程.设计意图:通过设置一系列问题,突出方程的根本特征,使学生认识到从算式到方程是更有力、更方便的数学工具,从算术方法到代数方法是数学的一大进步.初步培养了学生由实际问题抽象出方程模型的能力.典例精讲例1根据下列问题,设未知数并列出方程:(1)某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?(2)如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.分析:(1)根据题意,可知女生人数-男生人数=80,并且女生人数=全体学生数×52%,因此,只需设出全体学生数就可以列出方程了;(2)由题意,可知扩大后的绿地的长=正方形绿地的长+5,扩大后的绿地面积=500,所以只需设出原来绿地的长就可以列出方程了.解:(1)设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x-(1-0.52)x=80.(2)设正方形绿地的边长为x m,那么扩大后的绿地面积为(x2+5x)m2,根据“扩大后的绿地面积是500m2”,列得方程x2+5x=500.例2(1)x=2,x=32是方程2x=3的解吗?(2)x=10,x=20是方程3x=4(x-5)的解吗?解:(1)当x=2时,方程2x=3的左边=2×2=4,右边=3,方程左、右两边的值不相等,所以x=2不是方程2x=3的解;当x=32时,方程2x=3的左边=2×32=3,右边=3,方程左、右两边的值相等,所以x=32是方程2x=3的解.(2)当x=10时,方程3x=4(x-5)的左边=3×10=30,右边=4×(10-5)=20,方程左、右两边的值不相等,所以x=10不是方程3x=4(x-5)的解;当x=20时,方程3x=4(x-5)的左边=3×20=60,右边=4×(20-5)=60,方程左、右两边的值相等,所以x=20是方程3x=4(x-5)的解.例32x+1=0.8x+3,3x=4(x-5),0.52x-(1-0.52)x=80,它们有什么共同特征?解:(1)只含有一个未知数x;(2)未知数x的次数都是1;(3)整式方程.设计意图:将列方程解决实际问题这一本章的教学难点分散在本章教学的每一节课中是设置这一系列教学活动的目的,化整为零地培养学生由实际问题抽象出方程模型的能力,持续渗透建模思想.教学中,通过先让学生独立思考、然后再进行小组合作的学习活动,既能培养学生的阅读理解能力、分析问题、解决问题的能力,又能提高学生的抽象思维能力.巩固训练1.x=3是下列哪个方程的解(B)A.2x+7=11B.5x-8=2x+1C.3x=1D.-x=32.小芬买了15份礼物,共花了900元,已知每份礼物内都有1包饼干及每支售价20元的棒棒糖2支,若每包饼干的售价为x元,则依题意可列出下列哪一个一元一次方程(C)A.15(2x+20)=900B.15x+20×2=900C.15(x+20×2)=900D.15×x×2+20=9003.当m=3或1时,关于x的方程x|2-m|+1=0是一元一次方程.4.下列式子中,哪些是方程,哪些是一元一次方程?并说明理由.①2x+1;②2m+15=3;③3x-5=5x+4;④x2+2x-6=0;⑤-3x+1.8=3y;⑥3a+9>15.解:上述式子是方程的有②③④⑤,其中②③是一元一次方程.理由:①是含有未知数的式子,不是等式;⑥是不等式;而②③④⑤是含有未知数的等式,符合方程的定义,其中④未知数的次数是2,⑤含有两个未知数,只有②③符合一元一次方程的定义,因此它们是一元一次方程.5.根据下列问题,设未知数并列出方程:(1)某长方形足球场的周长为310米,长和宽之差为25米,求这个足球场的宽;(2)《数学学习方法报》每份0.6元,《数学周报》每份0.5元,小明用10元钱买了两种报纸共18份,他买的两种报纸各多少份?解:(1)设这个足球场的宽为x米,则长为(x+25)米,依题意,得2x+2(x+25)=310.(2)设《数学学习方法报》买了x份,则《数学周报》买了(18-x)份,则有0.6x+0.5(18-x)=10.设计意图:通过练习,巩固方程及一元一次方程的概念,促进学生对知识的理解,使学生更加深刻地把握概念的内涵和外延,持续体会数学建模思想.课堂小结1.这节课你学到了哪些知识?2.在探寻方程的有关概念的学习过程中,你学到了哪些数学方法?积累了哪些活动经验?3.在利用列方程解实际问题的过程中,对你有哪些启示?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯.课堂8分钟.1.教材第118页习题5.1第1,2,3,5,6题.2.七彩作业.5.1.1从算式到方程1.解决数学实际问题的方式:(1)算式方法.(2)用含有未知数的等式表示问题中的相等关系.2.方程:含有未知数的等式叫作方程.3.用方程的方法解决实际问题是更方便的数学工具.4.方程的解、解方程的概念.5.一元一次方程的概念.教学反思5.1.2等式的性质课时目标1.通过使学生亲身经历运用所学知识探索等式的性质的过程,激发学生的数学学习兴趣,增强学生学好数学的信心,进而培养学生自主探究和实践能力.2.通过让学生从事自主学习、合作交流等数学活动,理解并掌握等式的性质,在实际操作中学习知识,在解决问题中深化认知,发展和提高学生的应用意识.3.通过使学生经历利用等式的性质解方程的过程,逐步培养学生观察、分析、概括的逻辑思维能力,从而渗透“化归”的思想.学习重点等式的性质和运用.学习难点应用等式的性质把简单的一元一次方程化成“x=m”的形式.课时活动设计情境引入用观察的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.解:对于(1),通过观察,可以看出x=9是方程的解;但是(2)不容易直接看出来.追问:既然不容易直接看出来,那么我们还能借助哪些知识来解这个方程呢?设计意图:设置悬念,引出等式的性质的讨论,为后面逐步过渡到用等式的性质讨论方程的解法作铺垫.探究新知探究1等式的性质问题1:请同学们填空,使式子成立.(1)如果m=n,那么n=m;(2)如果x+2x=3x,那么3x=x+2x;(3)如果a=3,b=3,那么a= b.(填“>”“=”或“<”)学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师归纳:诸如m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式.我们可以用a=b表示一般的等式.首先,给出关于等式的两个基本事实:(1)等式两边可以交换.如果a=b,那么b=a;(2)相等关系可以传递.如果a=b,b=c,那么a=c.思考:在小学,我们已经知道:等式两边同时加(或减)同一个正数,同时乘同一个正数,或同时除以同一个不为0的正数,结果仍相等.引入负数后,这些性质还成立吗?完成下列题目,试试你的猜想是否成立.问题2:用适当的数或整式填空,使所得结果仍是等式.(1)如果3x=-2x-1,那么3x+2x=-1,两边同时加2x;(2)如果12x=5,那么x=10,两边同时乘2;(3)如果13x-2=x-12,那么13x-x=-12+2,两边同时加2-x.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师根据学生回答情况作出评价,适时进行追问:(1)在运用等式的性质时,等式的两边要做怎样的变化?(2)在等式两边同除以一个数时,应注意什么?师生共同归纳:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.用符号语言描述:如果a=b,那么a±c=b±c.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用符号语言描述:如果a=b,那么ac=bc;如果a=b,c≠0,那么=.探究2利用等式的性质解方程问题3:利用等式的性质解下列方程:(1)x+3=5;(2)3x+2=8.学生独立思考,小组交流讨论,并派学生代表上台板演.解:(1)方程两边减3,得x+3-3=5-3.于是x=2.(2)方程两边减2,得3x+2-2=8-2.化简,得3x=6.方程两边除以3,得x=2.教师引导学生归纳:一般地,从方程解出未知数的值从后,通常需要代入原方程检验,看这个值能否使方程左、右两边的值相等.例如,将x=2代入方程3x+2=8的左边,得3×2+2=8.方程左、右两边的值相等,所以x=2是方程3x+2=8的解.解以x为未知数的方程,就是把方程逐步转化为x=m(常数)的形式,等式的性质是转化的重要依据.设计意图:设置上述教学环节,让学生借助具体的式子来验证等式的两条性质,加深对等式的性质的认知,同时又用文字语言和符号语言两种形式来描述这些性质,目的在于让学生切实理解等式的性质,体会如何用数学的符号语言抽象概括地表示它们.典例精讲例1根据等式的性质填空,并说明依据:(1)如果2x=5-x,那么2x+=5;(2)如果m+2n=5+2n,那么m=;(3)如果x=-4,那么·x=28;(4)如果3m=4n,那么32m=·n.解:(1)2x+x=5;根据等式的性质1,等式两边加x,结果仍相等.(2)m=5;根据等式的性质1,等式两边减2n,结果仍相等.(3)-7·x=28;根据等式的性质2,等式两边乘-7,结果仍相等.(4)32m=2·n;根据等式的性质2,等式两边除以2,结果仍相等.例2利用等式的性质解下列方程:(1)x+7=26;(2)-5x=20;(3)-13x-5=4.分析:要使方程x+7=26转化为x=m(常数)的形式,需要去掉方程左边的7,利用等式的性质1,方程两边减7就得出x的值.类似地,利用等式的性质,可以将另外两个方程转化为x=m的形式.解:(1)方程两边减7,得x+7-7=26-7.于是x=19.(2)方程两边除以-5,得-5-5=20-5.于是x=-4.(3)方程两边加5,得-13x-5+5=4+5.化简,得-13x=9.方程两边乘-3,得x=-27.设计意图:通过例题,让学生在观察等式的两边的变化情况后运用等式的性质做题,进一步加深学生对等式性质的准确把握,同时有助于引导学生利用等式的性质研究方程的解法,对于需要运用两次等式的性质来解方程的题目,需要学生有一定的思维顺序,能够锻炼学生的思维能力.巩固训练1.如果mx=my,那么下列等式中不一定成立的是(D)A.mx+1=my+1B.mx-3=my-3C.-12mx=-12myD.x=y2.下列方程的变形,符合等式的性质的是(D)A.由2x-3=7得2x=7-3B.由-3x=5得x=5+3C.由2x-3=x-1得2x-x=-1-3D.由-14x=1得x=-43.用适当的数或整式填空,使所得的式子仍是等式,并注明根据.(1)如果x+2=3,那么x=3+-2,根据是等式的性质1;(2)如果4x=3x-7,那么4x-3x=-7,根据是等式的性质1;(3)如果-2x=6,那么x=-3,根据是等式的性质2;(4)如果12x=-4,那么x=-8,根据是等式的性质2.4.利用等式的性质解方程:(1)x-4=1;(2)3x+5=0.解:(1)方程两边加4,得x-4+4=1+4.于是x=5.(2)方程两边减5,得3x+5-5=0-5.整理,得3x=-5.方程两边除以3,33=-53.于是x=-53.设计意图:通过巩固训练,进一步巩固学生对等式的性质的认识,让学生充分认识到如何应用等式的性质去解题.课堂小结1.本节课你学到了什么知识?2.在运用等式的性质解题时,应该注意什么?3.在运用等式的性质解方程时,你获得了哪些宝贵的经验?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯,让学生在对课堂所学有系统认知的基础上,深化对知识的理解程度.课堂8分钟.1.教材第118页习题5.1第4,7,8,10,11题.2.七彩作业.5.1.2等式的性质1.关于等式的两个基本事实:等式两边可以交换.如果a=b,那么b=a.相等关系可以传递.如果a=b,b=c,那么a=c.2.等式的基本性质:等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.教学反思。

人教版七年级上册数学教案:一元一次方程

人教版七年级上册数学教案:一元一次方程

人教版七年级上册数学教案:一元一次方程一元一次方程是初中数学中的一个基础概念,是代数学中的一种重要的解题方法。

本教案将重点介绍一元一次方程的基本概念、解法及其应用。

一、一元一次方程的基本概念一元一次方程是指只包含一个未知数x,且各项次数均为1的代数式,形式如下:ax + b = 0其中a、b为已知数,并且a ≠ 0。

其中,ax表示x的系数,b表示常数项。

二、一元一次方程的解法1. 移项法移项法是解一元一次方程的一种基本方法。

将方程中的项转移至等式另一侧,最终求出未知数的数值,如下:例1: 3x + 7 = 16解: 3x = 9x = 32. 相加减法相加减法是解一元一次方程的一种常用方法。

将两个方程相加或相减,去掉未知数的项后,可求出未知数的数值,如下:例2:4x + 2y = 202x - y = 2解: 4x + 2y = 202(2x - y) = 4x - 2y = 46x = 24x = 43. 代入法代入法也是解一元一次方程的一种常用方法。

将一个已知的数值代入到方程中,求出未知数的数值,如下:例3: 2x - 3 = 7解: 2x = 10x = 5三、一元一次方程的应用1. 物理问题一元一次方程可以用于解决物理问题,例如:汽车从A地到B地共行驶了120千米,速度为60千米/小时,求该汽车行驶的时间。

解:设时间为t,列方程为 60t=120,解得 t=2 ,汽车行驶的时间为2小时。

2. 经济问题一元一次方程也可以用于解决经济问题,例如:某商店冬季销售的毛衣平均售价为340元,共售出了1200件毛衣,求该商店冬季毛衣销售额。

解:设毛衣销售额为x元,则有x=340*1200=408000该商店冬季毛衣销售额为408000元。

四、教学方法1. 形象化教学法一元一次方程是初中数学的一门基础课程,学生们对其基本概念及解题方法可能缺乏实际的认识,教师可以通过形象化的教学方法进行教学,例如通过画图等方式,让学生更直观地理解一元一次方程的概念及解题方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元一次方程》
◆教材分析
方程是应用广泛的数学工具,是代数学的核心内容,在义务教育阶段的数学课程中占有重要地位。

本节课选自人教版数学七年级上册第三章第一节的内容,是一节引入课,对于激发学生学习方程的兴趣,获得解决实际问题的基本方法具有十分重要的作用。

本节课是结合学生已有学习经验,从算式到方程,继而对一元一次方程及方程的解进行了探究,让学生体验未知数参与运算的好处,用方程分析问题、解决问题(即培养学生建模的思想),体会学习方程的意义和作用。

本节课是在承接小学学习的简易方程和刚刚学习的整式的加减的基础上进行学习的,同时又是后续学习二元一次方程、一元二次方程的重要基础。

因此,这节课在教材中起到了承上启下的作用。

◆教学目标
【知识与能力目标】
1、掌握方程、一元一次方程的定义,知道什么是方程的解。

2、体会字母表示数的好处,会根据实际问题的条件列方程,能检验出一个数值是否是方程的解。

【过程与方法目标】
1、通过将实际问题抽象成数学问题,分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透数学建模的思想,认识到从算式到方程是数学的一种进步。

2、通过具体情境贴近学生生活,在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化,会利用一元一次方程的知识解决一些实际问题。

【情感态度价值观目标】
1、通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考的意识。

2、激发学生的求知欲和学习数学的热情,培养独立思考和合作交流的能力,让他们享受成功的喜悦。

3、经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,增强用数学的意识,体会数学的应用价值。

◆教学重难点

【教学重点】
1.方程、一元一次方程、方程的解的概念。

2.根据实际问题的条件列出方程。

【教学难点】
分析实际问题中的数量关系,利用其中的相等关系列出方程。

收集相关文本资料,相关图片,相关动画等碎片化资源。

一、创设情境,引入课题:
学生阅读课件中的问题,引入新课。

二、探究新知:
小学我们已经学过方程,请大家判断下列各式哪些是方程。

要点一:方程的有关概念
1。

定义:含有未知数的等式叫做方程。

要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数。

2。

方程的两个特征:(1)方程是等式;(2)方程中必须含有字母(或未知数)。

要点二:一元一次方程的有关概念
老师和同学一起研究课本的问题。

辆快车和一辆慢车同时从A 地出发沿同一公路同方向行驶,快车的行驶速度是70 km/h ,慢车的行驶速度是60 km/h ,快车比慢车早1 h 经过B 地,A ,B 两地间的路程是多少?
教师分别从路程时间速度三个方面对问题进行深入的分析,分别列算式和得到以下三个方程 16070
x x -= 70 y =60(y+1) 70(z-1)=60z 通过对此问题的分析,学生明白从算式到方程是数学的进步!
观察上面的三个方程,教师引导学生从未知数的个数,含未知数项的次数以及等式两边的特点三个个方面去分析从而得到一元一次方程的定义。

定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程。

要点诠释:
◆课前准备

◆教学过程
(1)“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:
①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数。

(2)一元一次方程的标准形式是:ax+b=0(其中a ≠0,a,b 是已知数)
(3)一元一次方程的最简形式是: ax =b (其中a ≠0,a,b 是已知数)。

三、练一练:
下列哪些是一元一次方程?
(1)12+x ; (2)3152=+m ;
(3) ; (4) ;
(5) ; (6) ;
(7)116x =- .
四、例题讲解
例1 若关于x 的方程是一元一次方程,则n 的值为?
注:一元一次方程中求字母的值,需谨记两个条件:
①未知数的次数为1;②未知数的系数不为0。

例2 根据下列问题,设未知数并列出方程:
(1) 用一根长24 cm 的铁丝围成一个正方形,正方形的边长是多少?
(2) 一台计算机已使用1700 h ,预计每月再使用150 h ,经过多少月这台计算机的使用时间 达到规定的检修时间2450 h ?
(3) 某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
请同学们思考:
1、怎样将一个实际问题转化为方程问题?
2、列方程的依据是什么?
结论: 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

知识要点:方程的解:使方程左右两边相等的未知数的值叫方程的解。

求方程解的过程叫做解方程
4553+=-x x 0622=-+x x y x 38.13=+-1593>+a 0921=--n x
例3 x=1000和x=2000中哪一个是方程 0.52x-(10.52)x =80的解?
方法归纳 判断一个数值是不是方程的解的步骤:
1、将数值代入方程左边进行计算,
2、将数值代入方程右边进行计算,
3、 若左边=右边,则是方程的解,反之,则不是。

练一练:检验 x = 3是不是方程 2x -3 = 5x -15的解. (当x = 4,5,6时呢?)
五、课堂练习:
1. x =1是下列哪个方程的解 ( )
A. B.
C. D.
2. 若 x =1是方程x2 -2mx +1=0的一个解,则m 的值为( )
A. 0
B. 2
C. 1
D. -1
3. 根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程。

(1)环形跑道一周长400m ,沿跑道跑多少周,可以跑3000m ?
(2)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元,用 9元钱买了两种铅笔共20 支,两种铅笔各买了多少支?
(3)一个梯形的下底比上底多2cm ,高是5cm ,面积是40cm2,求上底。

4. 已知方程 是关于x 的一元一次方程,求m 的值,并写出其方程。

五、课堂小结:
1. 一元一次方程的概念:
只含有一个未知数,未知数的次数是1,等号两边都是整式,这样的方程叫做一元一次方程。

2. 方程的解:
解方程就是求出使方程中等号两边相等的未知数的值,这个值就是方程的解。

略。

21=-x x x 3412-=-221-=+x x 254-=-x x 53)2()1(-=+--m x
m m ◆教学反思。

相关文档
最新文档