普通物理学第五版光学答案
光学第五版课后答案.doc

光学第五版课后答案【篇一:第五版有机化学-华北师范大学-李景宁-全册-习题答案】3、指出下列各化合物所含官能团的名称。
(1) ch3ch=chch3 答:碳碳双键(2) ch3ch2cl 答:卤素(氯) (3) ch3chch3答:羟基(4) ch3ch2 c=o 答:羰基(醛基)ch3cch3(5)o答:羰基(酮基)(6) ch3ch2cooh 答:羧基(7) 2 答:氨基(8) ch3- c≡c-ch3 答:碳碳叁键4、根据电负性数据,用和标明下列键或分子中带部分正电荷和负电荷的原子。
答:6、下列各化合物哪个有偶极矩?画出其方向(1)br2 (2)ch2cl2 (3)hi (4)chcl3 (5)ch3oh (6)ch3och3 答:以上化合物中(2)、(3)、(4)、(5)、(6)均有偶极矩(2)h2c (6)h3ccl (3 )i(4)cl3 (5)h 3cohch37、一种化合物,在燃烧分析中发现含有84% 的碳[ar (c)=12.0] 和16 的氢[ar (h)=1.0] ,这个化合物的分子式可能是(1)ch4o (2)c6h14o2 (3)c7h16 (4)c6h10 (5)c14h22答:根据分析结果,化合物中没有氧元素,因而不可能是化合物(1)和(2);在化合物(3)、(4)、(5)中根据碳、氢的比例计算(计算略)可判断这个化合物的分子式可能是(3)。
习题解答1、用系统命名法命名下列化合物(1)2,5-二甲基-3-乙基己烷(3)3,4,4,6-四甲基辛烷(5)3,3,6,7-四甲基癸烷(6)4-甲基-3,3-二乙基-5-异丙基辛烷2、写出下列化合物的构造式和键线式,并用系统命名法命名之。
(3)仅含有伯氢和仲氢的c5h12答:符合条件的构造式为ch3ch2ch2ch2ch3 ;键线式为;命名:戊烷。
3、写出下令化合物的构造简式(2) 由一个丁基和一个异丙基组成的烷烃(4) 相对分子质量为100,同时含有伯、叔、季碳原子的烷烃答:该烷烃的分子式为c7h16 。
普通物理学第五版02牛顿定律习题答案

解题思路与技巧
解题思路
首先理解牛顿第一定律的基本概念,即惯性。然后分析题目中的物理情境,判 断物体是否受到外力作用,以及外力对物体的运动状态有何影响。最后根据牛 顿第一定律得出结论。
解题技巧
在解题过程中,要特别注意区分外力和惯性。外力是改变物体运动状态的原因, 而惯性是物体保持其运动状态不变的性质。同时,要掌握摩擦力和阻力的概念 及其对物体运动状态的影响。
习题答案
• 题目1:一个在平直轨道上行驶的火车,关闭发动机后逐渐停下来,请问火车受 到的阻力与火车前进方向是什么关系?
• 答案:阻力与火车前进方向相反。根据牛顿第一定律,火车在关闭发动机后, 如果没有阻力作用,将保持匀速直线运动。然而,由于阻力作用,火车逐渐减 速并停下来。因此,阻力必须与火车前进方向相反。
04 牛顿定律的应用
习题答案
题目1
一个质量为2kg的物体在光滑的水平面上受到一个大小 为10N的外力作用,求物体的加速度。
答案
根据牛顿第二定律,$F = ma$,得$a = frac{F}{m} = frac{10}{2} = 5m/s^2$。
题目2
一个质量为5kg的物体在斜面上静止,受到一个与斜面成 30°的外力作用,求物体的加速度。
1. 题目
一质量为2kg的质点,在力F=2N的作用下,由静止开始运动, 求质点在2秒末的速度。
习题答案
答案
2m/s
2. 题目
一质量为1kg的质点,在力矩M=2N·m的作用下,围绕原点做匀速圆周运动,求质点转动一周的时间 。
习题答案
答案:2s
3. 题目:一质量为5kg的物体,在水平地面上受到大小为10N的水平推 力作用,求物体在2秒末的速度。
案例2
普通物理学第五版第 章牛顿定律答案

60 +100
×9.8
=
0.12m/s 2
结束 目录
(2) T = mAa + mAg sin a
= 100 ×0.2
+100 ×9.8
1 ×2
=12 + 490 = 520N
结束 目录
2-3 一辆铁路平车装有货物,货物与车 底板之间的静摩擦系数为0.25 ,如果火车以 30km /h 的速度行驶。问要使货物下发生滑 动,火车从刹车到完全静止所经过的最短路 程是多少?
g
T T
aA A
m Ag
F
T T
B aB
m Bg
结束 目录
(1) 当:F 1 = 98N
a A=
98 2 ×20
a
B
=
2
98 ×10
9.8 = -7.5m/s 2 9.8 = -4.9m/s 2
a A= a B= 0
T
=
F1 2
=
49N
两者均为负值,表示根本提不起。
(2) 当:F 2 = 196N
a = (sinβ tga cosβ )g
结束 目录
斜面长
L=
h
sinβ
=
1 2
at 2
t
2=
a
2h
sinβ
=
2h
sinβ
(sinβ
1
tga cosβ )
=
sinβ
2 h cos a (sinβ cos a sin acosβ
)g
=
2 h cos a g sinβ sin (β
a)
t=
2 h cos a g sinβ sin (β
普通物理学程守洙第五版 答案

18-1 18-2 18-3 18-4 18-5 18-6 18-7 18-8 18-9 18-10 18-11 18-12 18-13 18-14 18-15 18-16 18-17 18-18 18-19 18-20 18-21 18-22 18-23 18-24 18-25 18-26 18-27 18-28 18-29 18-30 18-31 18-32 18-33 18-34 18-35 18-36 18-37 18-38 18-39 18-40 18-41 18-42 18-43 18-44 18-45
结束 目录
9-8 有直径为16cm及10cm的非常薄的两 个铜制球壳,同心放置时,内球的电势为 2700V,外球带有电荷量为8.0×10-9C,现 把内球和外球接触,两球的电势各变化多少?
结束 目录
解:设内球电势为U1 ,电量为q1,外球 电势为U2 ,电量为q2
U1
=
1
4pe0
q1 R1
+
q2 R2
4pe0
r2 2
结束 目录
9-7 点电荷q =4.0×10-10C,处在导体球 壳的中心,壳的内外半径分别为R1=2.0cm 和R2=3.0cm ,求:
(1)导体球壳的电势; (2)离球心r =1.0cm处的电势; (3)把点电荷移开球心1.0cm后导体 球壳的电势。
结束 目录
解:(1)
UR2=
= 6.7×102(V) ΔU外 =0 外球电势不变。
结束 目录
9-9 半径为R1=1.0cm的导体球,带有电荷 q1=1.0×10-10C,球外有一个内、外半径分别 为R2=3.0cm 、 R3=4.0cm的同心导体球壳, 壳上带有电荷Q =11×10-10C,试计算:
普通物理学第五版第9章导体和电介质中的静电场章答案

解: (1)由于静电感应,外球内表面电量为 -q,外表面电量为+q q 外球的电势为: U2 = 4pe0 r2 (2)外球内表面电量仍为-q,外表面电量为零 外球的电势为: ´ U2 = 0
(3)设内球电量为q1,内球电势为零 q1 q r1 U1 = q1 = r q 4pe0 r1 + 4pe0 r2 =0 2 q1 q U外 = 4pe0 r2
q1 q2 U1 = 4pe0 R1 + R2 q2 q1 = R1 4pe0 U1 R2
1
2700 -2 = 5.0×10 9.0×109 = 1.0×10-8(C) 8.0×10-9 8.0×10-2
结束 目录
两球接触后,内球电荷q1全部移至外球 壳,两球为等势体。
q1 + q2 U= = 2.03×103(V) 4pe0R2 ΔU内 = 2.7×103 2.03×103 = 6.7×102(V)
d +q
结束 目录
9-6 半径为r1 、 r2 (r1 < r2 )的两个同心导 体球壳互相绝缘,现把+q 的电荷量给予内 球,求: (1)外球的电荷量及电势; (2)把外球接地后再重新绝缘,外球的 电荷量及电势; (3)然后把内球接地,内球的电荷量及 外球的电势的改变(设内球离地球很远)。
结束 目录
结束 目录
9-11 三平行金属板A、B 、C面积均为 200cm2,A、B 间相距4.0mm, A、C 间 相距2.0mm,B 和C 两板都接地。如果使A 板带正电3.0×10-7C ,求: (1)B 、C 板上感应电荷; (2)A 板的电势。 2mm 4mm C A B
目录
解:设A板带电为q =q1+q2,B、C两板的感 应电荷分别为- q1及- q2 。 EAB dAB = EAC dAC UA UB = UA UC q2 q1 EAC = EAB = e0S 2mm 4mm e0 S q1 EAB dAC 1 C A B = E =d = 2 q2 AC AB q1 q2 q1= 1.0×10-7(C) -q1 -q2 q2= 2.0×10-7(C) qB= -q1= -1.0×10-7(C) qC= -q2= -2.0×10-7(C)
程守洙《普通物理学》(第5版)辅导系列-名校考研真题-第12章 光 学【圣才出品】

A.2,3,4,5......
B.2,5,8,11......
C.2,4,6,8......
D.3,6,9,12......
【答案】D
【解析】设 1 、 2 的衍射明条纹级次分别为 k1 、 k2 。光栅方程为: (a b) sin k ,要使两不同波长的光谱重合,就是要求衍射角 相同,即需要满足:
k11
k22 ,带入数值得: k1
k2
5 3
,所以当 k1 取
5
的倍数, k2 取
3
的倍数时两波长
的光谱重合。
2.一束光强为 I0 的自然光,相继通过三个偏振片 P1、P2、P3 后,出射光的光强为 I=I0/8。己知 P1 和 P3 的偏振化方向相互垂直,若以入射光线为轴,旋转 P2,要使出射 光的光强为零,P2 最少要转过的角度是( )。[华南理工大学 2011 研]
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 12 章 光 学
一、选择题
1.某元素的特征光谱中含有波长分别为 λ1=450nm 和 λ2=750nm(1nm=10-9m)的光谱线。在光栅光谱中,这两种波长的谱线有重叠现象,
重叠处 λ2 的谱线的级数将是( )。[华南理工大学 2011 研]
射的暗纹条件,这些主明纹将消失。即 同时满足
( a b ) sin a sin k
k
k
a
a
b
k
k 1,2,3,...
由题意 k=3、6、9 等级次的主极大均不出现即缺级,即
2 / 27
圣才电子书
十万种考研考证电子书、题库视频学习平
台
k 3k
a
b
3
程守洙《普通物理学》(第5版)笔记和课后习题(含考研真题)详解(光 学)【圣才出品】

如果计算所得 m 是正值,表示像是正立的;m 是负值,表示像是倒立的。丨 m 丨 >1 表示像是放大的,丨 m 丨<1 表示像是缩小的。
(5)作图法 作图时可选择下列三条特殊光线。 ①平行于主光轴的光线它的反射线必通过焦点(凹球面)或其反射线的延长线通过焦 点(凸球面)。 ②通过曲率中心的光线它的反射线和入射线是同一条直线而方向相反。 ③通过焦点的光线或入射光的延长线通过焦点的光线它的反射线平行于主光轴。 (6)光在球面上的折射 ①物像公式
这就是在傍轴光线条件下球面折射的物像公式。 折射球面的横向放大率为
②像方焦距 如果平行于主光轴的入射光线,经球面折射后,与主光轴的交点称为像方焦点。从球 面顶点到像方焦点的距离称为像方焦距,以 f'表示,则有下式:
6 / 112
圣才电子书
十万种考研考证电子书、题库视频学习平 台
3 / 112
圣才电子书
①三棱镜偏向角
十万种考研考证电子书、题库视频学习平 台
三棱镜截面呈三角形的透明棱柱称为三棱镜(prism),与其棱边垂直的平面称为主截
面。出射光线与入射光线间的来角,称为偏向角(ang1e of deviation),用 δ 表示偏向
角,δ 与棱镜顶角 α 之间有如下的关系
图 12-1 光的反射和折射
1 / 112
圣才电子书
实验表明:
十万种考研考证电子书、题库视频学习平 台
(a)反射光线和折射光线都在入射光线和界面法线所组成的入射面内。
(b)反射角等于入射角。
i` i
(c)入射角 i 与折射角 r 的正弦之比与人射角无关,而与介质的相对折射率有关,即
③物方焦距 如果把物点放在主轴上某一点时,发出的光经球面折射后将产生平行于主轴的平行光 束,这一物点所在点称为物方焦点,从球面顶点到物方焦点的距离称为物方焦距以 f 表示, 则:
物理学答案(第五版)(可编辑)

物理学答案(第五版)物理学答案第五版 --马文蔚txt人和人的心最近又最远真诚是中间的通道试金可以用火试女人可以用金试男人可以用女人--往往都经不起那么一试面向 21 世纪课程教材学习辅导书物理学第五版习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材《物理学》第五版一书中的习题而作的分析与解答与上一版相比本书增加了选择题更换了约25%的习题所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的《非大学物理课程教学基本要求讨论稿》中全部核心内容并选有少量扩展内容的习题所选习题尽可能突出基本训练和联系工程实际此外为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法本书还为力学电磁学波动过程和光学热物理相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法以期帮助学生启迪思维提高运用物理学的基本定律来分析问题和解决问题的能力物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的解题之前必须对所研究的物理问题建立一个清晰的图像从而明确解题的思路只有这样才能在解完习题之后留下一些值得回味的东西体会到物理问题所蕴含的奥妙和涵义通过举一反三提高自己分析问题和解决问题的能力有鉴于此重分析简解答的模式成为编写本书的指导思想全书力求在分析中突出物理图像引导学生以科学探究的态度对待物理习题初步培养学生即物穷理的精神通过解题过程体验物理科学的魅力和价值尝试做学问的乐趣因此对于解题过程本书则尽可能做到简明扼要让学生自己去完成具体计算编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助本书采用了1996 年全国自然科学名词审定委员会公布的《物理学名词》和中华人民共和国国家标准GB3100~3102 -93 中规定的法定计量单位本书由马文蔚教授主编由殷实沈才康包刚韦娜编写西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见在此编者致以诚挚的感谢由于编者的水平有限敬请读者批评指正编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科它研究物质运动的各种基本规律.由于不同运动形式具有不同的运动规律从而要用不同的研究方法处理.力学是研究物体机械运动规律的一门学科而机械运动有各种运动形态每一种形态和物体受力情况以及初始状态有密切关系.掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础.但仅仅记住一些公式是远远不够的.求解一个具体物理问题首先应明确研究对象的运动性质选择符合题意的恰当的模型透彻认清物体受力和运动过程的特点等等.根据模型条件和结论之间的逻辑关系运用科学合理的研究方法进而选择一个正确简便的解题切入点在这里思路和方法起着非常重要的作用.1.正确选择物理模型和认识运动过程力学中常有质点质点系刚体等模型.每种模型都有特定的含义适用范围和物理规律.采用何种模型既要考虑问题本身的限制又要注意解决问题的需要.例如用动能定理来处理物体的运动时可把物体抽象为质点模型.而用功能原理来处理时就必须把物体与地球组成一个系统来处理.再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说必须把它视为刚体并用角量和相应规律来进行讨论.在正确选择了物理模型后还必须对运动过程的性质和特点有充分理解如物体所受力矩是恒定的还是变化的质点作一般曲线运动还是作圆周运动等等以此决定解题时采用的解题方法和数学工具.2叠加法叠加原理是物理学中应用非常广泛的一条重要原理据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成.例如质点作一般平面运动时通常可以看成是由两个相互垂直的直线运动叠加而成而对作圆周运动的质点来说其上的外力可按运动轨迹的切向和法向分解其中切向力只改变速度的大小而法向力只改变速度的方向.对刚体平面平行运动来说可以理解为任一时刻它包含了两个运动的叠加一是质心的平动二是绕质心的转动.运动的独立性和叠加性是叠加原理中的两个重要原则掌握若干基本的简单运动的物理规律再运用叠加法就可以使我们化复杂为简单.此外运用叠加法时要注意选择合适的坐标系选择什么样的坐标系就意味着运动将按相应形式分解.在力学中对一般平面曲线运动多采用平面直角坐标系平面圆周运动多采用自然坐标系而对刚体绕定轴转动则采用角坐标系等等.叠加原理在诸如电磁学振动波动等其他领域内都有广泛应用是物理学研究物质运动的一种基本思想和方法需读者在解题过程中不断体会和领悟.3类比法有些不同性质运动的规律具有某些相似性理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性.而且还应在学习中善于发现并充分利用这种相似性以拓宽自己的知识面.例如质点的直线运动和刚体绕定轴转动是两类不同运动但是运动规律却有许多可类比和相似之处如与与其实它们之间只是用角量替换了相应的线量而已这就可由比较熟悉的公式联想到不太熟悉的公式.这种类比不仅运动学有动力学也有如与与与可以看出两类不同运动中各量的对应关系十分明显使我们可以把对质点运动的分析方法移植到刚体转动问题的分析中去.当然移植时必须注意两种运动的区别一个是平动一个是转动状态变化的原因一个是力而另一个是力矩.此外还有许多可以类比的实例如万有引力与库仑力静电场与稳恒磁场电介质的极化与磁介质的磁化等等.只要我们在物理学习中善于归纳类比就可以沟通不同领域内相似物理问题的研究思想和方法并由此及彼触类旁通.4.微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算在力学中较为突出也是初学大学物理课程时遇到的一个困难.要用好微积分这个数学工具首先应在思想上认识到物体在运动过程中反映其运动特征的物理量是随时空的变化而变化的.一般来说它们是时空坐标的函数.运用微积分可求得质点的运动方程和运动状态.这是大学物理和中学物理最显著的区别.例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数.另外对物理量数学表达式进行合理变形就可得出新的物理含义.如由借助积分求和运算可求得在t1 -t2 时间内质点速度的变化同样由也可求得质点的运动方程.以质点运动学为例我们可用微积分把运动学问题归纳如下第一类问题已知运动方程求速度和加速度第二类问题已知质点加速度以及在起始状态时的位矢和速度可求得质点的运动方程.在力学中还有很多这样的关系读者不妨自己归纳整理一下从而学会自觉运用微积分来处理物理问题运用时有以下几个问题需要引起大家的关注1 运用微积分的物理条件.在力学学习中我们会发现和等描述质点运动规律的公式只是式和式在加速度为恒矢量条件下积分后的结果.此外在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题而在大学物理中则主要研究在变力和变力矩作用下的力学问题微积分将成为求解上述问题的主要数学工具.2 如何对矢量函数进行微积分运算.我们知道很多物理量都是矢量如力学中的rvap 等物理量矢量既有大小又有方向从数学角度看它们都是二元函数在大学物理学习中通常结合叠加法进行操作如对一般平面曲线运动可先将矢量在固定直角坐标系中分解分别对xy 轴两个固定方向的分量可视为标量进行微积分运算最后再通过叠加法求得矢量的大小和方向对平面圆周运动则可按切向和法向分解对切线方向上描述大小的物理量atvs 等进行微积分运算.3 积分运算中的分离变量和变量代换问题.以质点在变力作用下作直线运动为例如已知变力表达式和初始状态求质点的速率求解本问题一条路径是由F =m a 求得a的表达式再由式dv = adt 通过积分运算求得v其中如果力为时间t 的显函数则a =a t 此时可两边直接积分即但如果力是速率v 的显函数则a = a v 此时应先作分离变量后再两边积分即又如力是位置x 的显函数则a=a x 此时可利用得并取代原式中的dt再分离变量后两边积分即用变量代换的方法可求得v x 表达式在以上积分中建议采用定积分下限为与积分元对应的初始条件上限则为待求量.5求解力学问题的几条路径综合力学中的定律可归结为三种基本路径即1 动力学方法如问题涉及到加速度此法应首选.运用牛顿定律转动定律以及运动学规律可求得几乎所有的基本力学量求解对象广泛但由于涉及到较多的过程细节对变力矩问题还将用到微积分运算故计算量较大.因而只要问题不涉及加速度则应首先考虑以下路径.2 角动量方法如问题不涉及加速度但涉及时间此法可首选.3 能量方法如问题既不涉及加速度又不涉及时间则应首先考虑用动能定理或功能原理处理问题.当然对复杂问题几种方法应同时考虑.此外三个守恒定律动量守恒能量守恒角动量守恒定律能否成立往往是求解力学问题首先应考虑的问题.总之应学会从不同角度分析与探讨问题.以上只是原则上给出求解力学问题一些基本思想与方法其实求解具体力学问题并无固定模式有时全靠悟性.但这种悟性产生于对物理基本规律的深入理解与物理学方法掌握之中要学会在解题过程中不断总结与思考从而使自己分析问题的能力不断增强.第一章质点运动学1 -1 质点作曲线运动在时刻t 质点的位矢为r速度为v 速率为vt 至 t +Δt 时间内的位移为Δr 路程为Δs 位矢大小的变化量为Δr 或称Δ|r|平均速度为平均速率为.1 根据上述情况则必有A |Δr|Δs ΔrB |Δr|≠Δs ≠Δr当Δt→0 时有|dr| ds ≠ drC |Δr|≠Δr ≠Δs当Δt→0 时有|dr| dr ≠ dsD |Δr|≠Δs ≠Δr当Δt→0 时有|dr| dr ds2 根据上述情况则必有A ||||B ||≠||≠C ||||≠D ||≠||分析与解 1 质点在t 至 t +Δt 时间内沿曲线从P 点运动到P′点各量关系如图所示其中路程Δs =PP′位移大小|Δr|=PP′而Δr =|r|-|r|表示质点位矢大小的变化量三个量的物理含义不同在曲线运动中大小也不相等注在直线运动中有相等的可能.但当Δt→0 时点P′无限趋近P点则有|dr|=ds但却不等于dr.故选 B .2 由于|Δr |≠Δs故即||≠.但由于|dr|=ds故即||=.由此可见应选 C .1 -2 一运动质点在某瞬时位于位矢r xy 的端点处对其速度的大小有四种意见即1 2 3 4 .下述判断正确的是A 只有 1 2 正确B 只有 2 正确C 只有 2 3 正确D 只有 3 4 正确分析与解表示质点到坐标原点的距离随时间的变化率在极坐标系中叫径向速率.通常用符号vr表示这是速度矢量在位矢方向上的一个分量表示速度矢量在自然坐标系中速度大小可用公式计算在直角坐标系中则可由公式求解.故选 D .1 -3 质点作曲线运动r 表示位置矢量 v表示速度a表示加速度s 表示路程 at表示切向加速度.对下列表达式即1 d v dt =a2 drdt =v3 dsdt =v4 d v dt|=at.下述判断正确的是A 只有 1 4 是对的B 只有 2 4 是对的C 只有 2 是对的D 只有 3 是对的分析与解表示切向加速度at它表示速度大小随时间的变化率是加速度矢量沿速度方向的一个分量起改变速度大小的作用在极坐标系中表示径向速率vr 如题1 -2 所述在自然坐标系中表示质点的速率v而表示加速度的大小而不是切向加速度at.因此只有 3 式表达是正确的.故选 D .1 -4 一个质点在做圆周运动时则有A 切向加速度一定改变法向加速度也改变B 切向加速度可能不变法向加速度一定改变C 切向加速度可能不变法向加速度不变D 切向加速度一定改变法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用而法向分量an起改变速度方向的作用.质点作圆周运动时由于速度方向不断改变相应法向加速度的方向也在不断改变因而法向加速度是一定改变的.至于at是否改变则要视质点的速率情况而定.质点作匀速率圆周运动时 at恒为零质点作匀变速率圆周运动时 at为一不为零的恒量当at改变时质点则作一般的变速率圆周运动.由此可见应选 B .1 -5 如图所示湖中有一小船有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0 收绳绳不伸长且湖水静止小船的速率为v则小船作A 匀加速运动B 匀减速运动C 变加速运动D 变减速运动E 匀速直线运动分析与解本题关键是先求得小船速度表达式进而判断运动性质.为此建立如图所示坐标系设定滑轮距水面高度为ht 时刻定滑轮距小船的绳长为l则小船的运动方程为其中绳长l 随时间t 而变化.小船速度式中表示绳长l 随时间的变化率其大小即为v0代入整理后为方向沿x 轴负向.由速度表达式可判断小船作变加速运动.故选 C .讨论有人会将绳子速率v0按xy 两个方向分解则小船速度这样做对吗1 -6 已知质点沿x 轴作直线运动其运动方程为式中x 的单位为mt 的单位为 s.求1 质点在运动开始后40 s内的位移的大小2 质点在该时间内所通过的路程3 t=4 s时质点的速度和加速度.分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到而在求路程时就必须注意到质点在运动过程中可能改变运动方向此时位移的大小和路程就不同了.为此需根据来确定其运动方向改变的时刻tp 求出0~tp 和tp~t 内的位移大小Δx1 Δx2 则t 时间内的路程如图所示至于t =40 s 时质点速度和加速度可用和两式计算.解 1 质点在40 s内位移的大小2 由得知质点的换向时刻为t=0不合题意则所以质点在40 s时间间隔内的路程为3 t=40 s时1 -7 一质点沿x 轴方向作直线运动其速度与时间的关系如图 a 所示.设t=0 时x=0.试根据已知的v-t 图画出a-t 图以及x -t 图.分析根据加速度的定义可知在直线运动中v-t曲线的斜率为加速度的大小图中ABCD 段斜率为定值即匀变速直线运动而线段BC 的斜率为0加速度为零即匀速直线运动.加速度为恒量在a-t 图上是平行于t 轴的直线由v-t 图中求出各段的斜率即可作出a-t 图线.又由速度的定义可知x-t 曲线的斜率为速度的大小.因此匀速直线运动所对应的x -t 图应是一直线而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x t 求出不同时刻t 的位置x采用描数据点的方法可作出x-t 图.解将曲线分为ABBCCD 三个过程它们对应的加速度值分别为匀加速直线运动匀速直线运动匀减速直线运动根据上述结果即可作出质点的a-t 图〔图 B 〕.在匀变速直线运动中有由此可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内质点是作的匀速直线运动其x -t 图是斜率k=20的一段直线〔图 c 〕.1 -8 已知质点的运动方程为式中r 的单位为mt 的单位为s.求1 质点的运动轨迹2 t =0 及t =2s时质点的位矢3 由t =0 到t =2s内质点的位移Δr 和径向增量Δr4 2 s内质点所走过的路程s.分析质点的轨迹方程为y =f x 可由运动方程的两个分量式x t 和y t 中消去t 即可得到.对于rΔrΔrΔs 来说物理含义不同可根据其定义计算.其中对s的求解用到积分方法先在轨迹上任取一段微元ds则最后用积分求s.解 1 由x t 和y t 中消去t 后得质点轨迹方程为这是一个抛物线方程轨迹如图 a 所示.2 将t =0s和t =2s分别代入运动方程可得相应位矢分别为图 a 中的PQ 两点即为t =0s和t =2s时质点所在位置.3 由位移表达式得其中位移大小而径向增量4 如图 B 所示所求Δs 即为图中PQ段长度先在其间任意处取AB 微元ds 则由轨道方程可得代入ds则2s内路程为1 -9 质点的运动方程为式中xy 的单位为mt 的单位为s.试求 1 初速度的大小和方向 2 加速度的大小和方向.分析由运动方程的分量式可分别求出速度加速度的分量再由运动合成算出速度和加速度的大小和方向.解 1 速度的分量式为当t =0 时 vox =-10 ms-1 voy =15 ms-1 则初速度大小为设vo与x 轴的夹角为α则α=123°41′2 加速度的分量式为则加速度的大小为设a 与x 轴的夹角为β则β=-33°41′或326°19′1 -10 一升降机以加速度122 ms-2上升当上升速度为244 ms-1时有一螺丝自升降机的天花板上松脱天花板与升降机的底面相距274 m.计算 1 螺丝从天花板落到底面所需要的时间 2 螺丝相对升降机外固定柱子的下降距离.分析在升降机与螺丝之间有相对运动的情况下一种处理方法是取地面为参考系分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动列出这两种运动在同一坐标系中的运动方程y1 =y1 t 和y2 =y2 t 并考虑它们相遇即位矢相同这一条件问题即可解另一种方法是取升降机或螺丝为参考系这时螺丝或升降机相对它作匀加速运动但是此加速度应该是相对加速度.升降机厢的高度就是螺丝或升降机运动的路程.解 1 1 以地面为参考系取如图所示的坐标系升降机与螺丝的运动方程分别为当螺丝落至底面时有y1 =y2 即2 螺丝相对升降机外固定柱子下降的距离为解2 1 以升降机为参考系此时螺丝相对它的加速度大小a′=g +a螺丝落至底面时有2 由于升降机在t 时间内上升的高度为则1 -11 一质点P 沿半径R =30 m的圆周作匀速率运动运动一周所需时间为200s设t =0 时质点位于O 点.按 a 图中所示Oxy 坐标系求 1 质点P 在任意时刻的位矢2 5s时的速度和加速度.分析该题属于运动学的第一类问题即已知运动方程r =r t 求质点运动的一切信息如位置矢量位移速度加速度.在确定运动方程时若取以点 03 为原点的O′x′y′坐标系并采用参数方程x′=x′ t 和y′=y′ t 来表示圆周运动是比较方便的.然后运用坐标变换x =x0 +x′和y =y0 +y′将所得参数方程转换至Oxy 坐标系中即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 1 如图 B 所示在O′x′y′坐标系中因则质点P 的参数方程为坐标变换后在Oxy 坐标系中有则质点P 的位矢方程为2 5s时的速度和加速度分别为1 -12 地面上垂直竖立一高200 m 的旗杆已知正午时分太阳在旗杆的正上方求在下午2∶00 时杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至200 m分析为求杆顶在地面上影子速度的大小必须建立影长与时间的函数关系即影子端点的位矢方程.根据几何关系影长可通过太阳光线对地转动的角速度求得.由于运动的相对性太阳光线对地转动的角速度也就是地球自转的角速度.这样影子端点的位矢方程和速度均可求得.解设太阳光线对地转动的角速度为ω从正午时分开始计时则杆的影长为s=htgωt下午2∶00 时杆顶在地面上影子的速度大小为当杆长等于影长时即s =h则即为下午3∶00 时.1 -13 质点沿直线运动加速度a=4 -t2 式中a的单位为ms-2 t的单位为s.如果当t =3s时x=9 mv =2 ms-1 求质点的运动方程.分析本题属于运动学第二类问题即已知加速度求速度和运动方程必须在给定条件下用积分方法解决.由和可得和.如a=a t 或v =v t 则可两边直接积分.如果a 或v不是时间t 的显函数则应经过诸如分离变量或变量代换等数学操作后再做积分.解由分析知应有得 1由得 2将t=3s时x=9 mv=2 ms-1代入 1 2 得v0=-1 ms-1x0=075 m.于是可得质点运动方程为1 -14 一石子从空中由静止下落由于空气阻力石子并非作自由落体运动现测得其加速度a=A -Bv式中AB 为正恒量求石子下落的速度和运动方程.分析本题亦属于运动学第二类问题与上题不同之处在于加速度是速度v 的函数因此需将式dv =a v dt 分离变量为后再两边积分.解选取石子下落方向为y 轴正向下落起点为坐标原点.1 由题意知 1用分离变量法把式 1 改写为2将式 2 两边积分并考虑初始条件有得石子速度由此可知当t→∞时为一常量通常称为极限速度或收尾速度.2 再由并考虑初始条件有得石子运动方程1 -15 一质点具有恒定加速度a =6i +4j式中a的单位为ms-2 .在t =0时其速度为零位置矢量r0 =10 mi.求 1 在任意时刻的速度和位置矢量 2 质点在Oxy 平面上的轨迹方程并画出轨迹的示意图.分析与上两题不同处在于质点作平面曲线运动根据叠加原理求解时需根据加速度的两个分量ax 和ay分别积分从而得到运动方程r的两个分量式x t 和y t .由于本题中质点加速度为恒矢量故两次积分后所得运动方程为固定形式即和两个分运动均为匀变速直线运动.读者不妨自己验证一下.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
4×589 1.58-1
=4062
(nm)
结束 返回
17-8 在空气中垂直入射的白光从肥皂膜 上反射,在可见光谱中630nm处有一干涉极 大,而在525nm处有一干涉极小,在这极大 与极小之间没有另外的极小。假定膜的厚度 是均匀的,求这膜的厚度。肥皂水的折射率 看作与水相同,为1.33。
结束 返回
两式相减Δ得x到´=:DD´dbDb´
+
d D
(x ´
x )=0
(x´ x )<0
即条纹向下移动,而条纹间距不变
结束 返回
17-7 用单色光源S照射双缝,在屏上形
成干涉图样,零级明条纹位于O 点,如图所
示。若将缝光源 S 移至位置S ´,零级明条
纹将发生移动。欲使零级明条纹移回 O 点,
必须在哪个缝处覆盖一薄云母片才有可能?
17-10 白光垂直照射在空气中厚度为
0.40mm的玻璃片上,玻璃的折射率为1.50,
试问在可见光范围内 (l =400~700nm),
哪些波长的光在反射中增强?哪些波长的光 在透射中增强?
结束 返回
解:若反射光干涉加强
2ne
+
l
2
=kl
k=1,2,3...
l
=
4ne 2k-1
k=1
l1
=
4×1.5×0.4×103 2×1-1
结束 返回
解:由暗纹条件
2ne
=
(2k+1)
l
2
=(k+
1 2
)l
设 l 1 =500nm 为第k级干涉极小
l2 =700nm 为第(k-1)级干涉极小
(k+
1 2
)l
1
=
(k
1)
1 2
+
1 2
l2
k=
l 1+ l 2 2(l2 l1 )
=
500+700 2(700-200)
=637 (nm)
结束 返回
解:
2ne
+
l1
2
= kl1
2ne
+
l2
2
=
(2k+1)
l2
2
由上两式得到:
k
=
l1 l1 l2
=
630 2(630-525)
=3
将 k =3 代入
e=
kl2 2n
=
32××51.2353=5.921×10-4 (mm)
结束 返回
17-9 一平面单色光波垂直照射在厚度 均匀的薄油膜上,油 膜 覆盖在玻璃板上, 所用 单色光的波长可以连续变化,观察到 500nm与7000nm这两个波长的光在反射 中消失,油的折射率为 1.30,玻璃的折射 率为1.50。试求油膜的厚度 。
17-1 在双缝干涉实验中,两缝的间距为 0.6mm,照亮狭缝S 的光杠杆汞弧灯加上绿 色滤光片,在2.5m远处的屏幕上出现干涉条 纹,测得相邻两明条纹中心的距离为2.27 mm。试计算入射光的波长。
结束 返回
解:由杨氏双缝干涉条件
Δx
=
Dl d
l
=
dΔx D
=
0.60×2.27 2500
=5.45×10-4 (mm) =5450 (Å)
=2400(nm) k=2 l2 =800(nm)
红外光
k=3 l3 =480(nm) k=4 l4 =343(nm)
可见光 紫外光
结束 返回
若透射光干涉增强则反射光干涉相消
由干涉相消条件
2ne
+
l
2
=(k+
1 2
)l
取k=2
l2
=
2ne k
=
屏 b S S1
d
D ´ S2 D
结束 返回
解:当光源向上移动后的光程差为
d ´= r´2 r´1 =dsinj + dsinq
d(tgj + tgq )
=d
b D´
+
x´ D
x ´为k 级新的明条纹位置
S´ S 1 r 1
b S
j
d
q
r2
D´ S 2 D
x´
o
原来的光程差为
d = r2 r1 = dsinj =dDx = kl
q
h
结束 返回
解:
d =a
acos2q
+
l
2
=l
2asin2q
=
l
2
asinq =h
q sinq =4lh
a 2q
q
h
结束 返回
17-6 在杨氏双线实验中,如缝光源与双 缝之间的距离为 D ´, 缝光源离双缝对称轴 的距离为b, 如图所示(D ´>> d )。求在这情 况下明纹的位置。试比较这时的干涉图样和 缝光源在对称轴时的干涉图样。
若用波长589nm的单
色光,欲使移动了4个 明纹间距的零级明纹 S´
移回到O点,云母片的 S 厚度应为多少?云母片 的折射率为1.58。
S1
屏
O
S2
结束 返回
解:欲使条纹不移动,需在缝S1上覆盖云母片
原来 r2 r1 =4l
现在 r2 (r1 e +ne ) =0
(n 1)e =4l
e
=
4l n1
(1)对于什么波长的光,这个双线装置所 得相邻两条纹的角距离比用钠黄光测得的角 距离大10%?
(2)假想将此整个装置没入水中(水的折射 率n =1·33),用钠黄光照射时,相邻两明条 纹的角距离有多大?
结束 返回
解:
(1) 对于钠光 dsinj0 =l j0 =0.20
对于l1光 dsinj = l1 j =0.220 l1= ssiinnjj0l = ssinin00..22200×5894
结束 返回
17-2 用很薄的云母片(n=1.58)覆盖在 双缝实验中的一条缝上,这时屏幕上的零级 明条纹移到原来的第七级明条纹的位置上, 如果入射光波长为 l =550 nm。 试问此云 母片的厚度为多少?
结束 返回
解:设云母片的厚度为e
无云母片时
r 2 r 1 =0
放置云母片后 (r2 e)+ne r1=7l
联立两式
e (n 1) = 7l
e
=
7l (n 1)
=
7×5.5×10-7 1.58 1
=6.6×10-6 (m)
结束 返回
17-3 在双缝干涉实验装置中,屏幕到 双缝的距高D 远大于双缝之间的距离d,对 于钠黄光(l = 589.3nm),产生的干涉条纹, 相邻两明纹的角距离(即相邻两明纹对双缝处 的张角)为0.200 。
结束 返回
解: x2
x
1=
2D d
(l2
l1 )
= 0.22×5×1.100-3×(760-400)
=2.88 (mm)
结束 返回
17-5 一射电望远镜的天线设在湖岸上, 距湖面高度为h 对岸地平线上方有一恒星刚 在升起,恒星发出波长为l 的电磁波。试求 当天线测得第一级干涉极大时恒星所在的角
位置 q (提示:作为洛埃镜干涉分析)
=684.2×10-4 (nm)
(2) 放入水中后
l2
=
l nsinjBiblioteka =sinj0n
=
sin0.20
1.33
j =0.150
结束 返回
17-4 (1)用白光垂直入射到间距为d = 0.25mm的双链上,距离缝1.0m处放置屏 幕。求第二级干涉条纹中紫光和红光极大点 的间距(白光的波长范围是400—760nm)。