普通物理学程守洙第五版第九章答案
程守洙《普通物理学》(第5版)(上册)课后习题-气体动理论(圣才出品)

.
5-12 设 N 个粒子系统的速率分布函数为
dNυ=Kdυ (υ0>υ>0,K 为常量)
dN=0
(υ>υ0)
(1)画出分布函数图;
(2)用 N 和υ0 定出常量 K;
(3)用υ0 表示出算术平均速率和方均根速率.
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 5 章 气体动理论
5-1 有一水银气压计,当水银柱为 0.76 m 高时,管顶离水银柱液面为 0.12 m.管的
截面积为 2.0×10-4 m2.当有少量氦气混入水银管内顶部,水银柱高下降为 0.60 m.此时温度
为 27℃,试计算有多少质量氦气在管顶?(氦的摩尔质量为 0.004 kg/mol,0.76 m 水银柱
2 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台
(1)平均速率;(2)方均根速率;(3)最概然速率. 解:(1)平均速率:
.
(2)方均根速率:
.
(3)由于速率 3 v0 的质点有 5 个,是各速率中拥有质点数最多的一个,因此最概然速
率为:
.
5-5 计算在 300 K 温度下,氢、氧和水银蒸气分子的方均根速率和平均平动动能.
1 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台
由理想气体物态方程,有:
根据道尔顿分压定律,可得容器内总压强: .
5-3 一个封闭的圆筒,内部被导热的、不漏气的可移动活塞隔为两部分.最初,活塞位
于筒中央,则圆筒两侧的长度 l1=l2.当两侧各充以 T1、P1 与 T2、P2 的相同气体后,问平衡 时活塞将在什么位置上(即 l1/l2 是多少)?已知 P1=1.013×105 Pa,T1=680 K,P2=2.026 ×105 Pa,T2=280K.
普通物理学程守洙第五版 答案

18-1 18-2 18-3 18-4 18-5 18-6 18-7 18-8 18-9 18-10 18-11 18-12 18-13 18-14 18-15 18-16 18-17 18-18 18-19 18-20 18-21 18-22 18-23 18-24 18-25 18-26 18-27 18-28 18-29 18-30 18-31 18-32 18-33 18-34 18-35 18-36 18-37 18-38 18-39 18-40 18-41 18-42 18-43 18-44 18-45
结束 目录
9-8 有直径为16cm及10cm的非常薄的两 个铜制球壳,同心放置时,内球的电势为 2700V,外球带有电荷量为8.0×10-9C,现 把内球和外球接触,两球的电势各变化多少?
结束 目录
解:设内球电势为U1 ,电量为q1,外球 电势为U2 ,电量为q2
U1
=
1
4pe0
q1 R1
+
q2 R2
4pe0
r2 2
结束 目录
9-7 点电荷q =4.0×10-10C,处在导体球 壳的中心,壳的内外半径分别为R1=2.0cm 和R2=3.0cm ,求:
(1)导体球壳的电势; (2)离球心r =1.0cm处的电势; (3)把点电荷移开球心1.0cm后导体 球壳的电势。
结束 目录
解:(1)
UR2=
= 6.7×102(V) ΔU外 =0 外球电势不变。
结束 目录
9-9 半径为R1=1.0cm的导体球,带有电荷 q1=1.0×10-10C,球外有一个内、外半径分别 为R2=3.0cm 、 R3=4.0cm的同心导体球壳, 壳上带有电荷Q =11×10-10C,试计算:
程守洙《普通物理学》(第5版)辅导系列-章节题库-第10章 机械振动和电磁振荡【圣才出品】

所以,振动方程为
在a点 所以
即
7 / 52
圣才电子书
方法二
十万种考研考证电子书、题库视频学习平 台
旋转矢量法
由曲线知,t=0, ,可知旋转矢量在 P0 点,如图 10-4(b)所示,所以
。
从
矢量旋转过角度为
【答案】
三、问答题
1.两个摆长不同的单摆 A、B 各自做简谐振动,若
将两单摆向右拉开一个相
同的小角度 θ,然后释放任其自由摆动。问:
(1)这两个单摆在刚释放时相位是否相同?
(2)当单摆 B 达到平衡位置并向左运动时,单摆 A 大致在什么位置和向什么方向运
动?A 比 B 相位是超前还是落后?超前或落后多少?
答:弹簧振子的频率只与振子的质量和劲度系数有关,而与振子的放置方法无关,所 以两振子的频率相同。
4.两个简谐振动的振动频率相同,振动方向也相同,若两个振动的振动相位关系为 反相,则合振动的振幅为多少?合振动的初相位为多少?两者为同相关系又如何?
答:合振幅为两者振幅之差,初相位取决于两者的初相位;若为同相,合振幅为两者 之和。
有下述两种情况。
对图 10-2(a)情况为( ). A.1/2π B.3/2π C.π D.-1/2π E.-3/2π
4.对图 10-2(b)情况为( )。 A.1/2π B.3/2π C.π D.-1/2π E.-3/2π
2 / 52
圣才电子书
十万种考研考证电子书、题库视频学习平 台
【答案】BD;AE
图 10-2
5.已知弹簧的劲度系数为 1.3N/cm,振幅为 2.4cm,这一弹簧振子的机械能为( )。
普通物理学第五版第9章导体和电介质中的静电场章答案

解: (1)由于静电感应,外球内表面电量为 -q,外表面电量为+q q 外球的电势为: U2 = 4pe0 r2 (2)外球内表面电量仍为-q,外表面电量为零 外球的电势为: ´ U2 = 0
(3)设内球电量为q1,内球电势为零 q1 q r1 U1 = q1 = r q 4pe0 r1 + 4pe0 r2 =0 2 q1 q U外 = 4pe0 r2
q1 q2 U1 = 4pe0 R1 + R2 q2 q1 = R1 4pe0 U1 R2
1
2700 -2 = 5.0×10 9.0×109 = 1.0×10-8(C) 8.0×10-9 8.0×10-2
结束 目录
两球接触后,内球电荷q1全部移至外球 壳,两球为等势体。
q1 + q2 U= = 2.03×103(V) 4pe0R2 ΔU内 = 2.7×103 2.03×103 = 6.7×102(V)
d +q
结束 目录
9-6 半径为r1 、 r2 (r1 < r2 )的两个同心导 体球壳互相绝缘,现把+q 的电荷量给予内 球,求: (1)外球的电荷量及电势; (2)把外球接地后再重新绝缘,外球的 电荷量及电势; (3)然后把内球接地,内球的电荷量及 外球的电势的改变(设内球离地球很远)。
结束 目录
结束 目录
9-11 三平行金属板A、B 、C面积均为 200cm2,A、B 间相距4.0mm, A、C 间 相距2.0mm,B 和C 两板都接地。如果使A 板带正电3.0×10-7C ,求: (1)B 、C 板上感应电荷; (2)A 板的电势。 2mm 4mm C A B
目录
解:设A板带电为q =q1+q2,B、C两板的感 应电荷分别为- q1及- q2 。 EAB dAB = EAC dAC UA UB = UA UC q2 q1 EAC = EAB = e0S 2mm 4mm e0 S q1 EAB dAC 1 C A B = E =d = 2 q2 AC AB q1 q2 q1= 1.0×10-7(C) -q1 -q2 q2= 2.0×10-7(C) qB= -q1= -1.0×10-7(C) qC= -q2= -2.0×10-7(C)
程守洙《普通物理学》(第5版)笔记和课后习题(含考研真题)详解(光 学)【圣才出品】

如果计算所得 m 是正值,表示像是正立的;m 是负值,表示像是倒立的。丨 m 丨 >1 表示像是放大的,丨 m 丨<1 表示像是缩小的。
(5)作图法 作图时可选择下列三条特殊光线。 ①平行于主光轴的光线它的反射线必通过焦点(凹球面)或其反射线的延长线通过焦 点(凸球面)。 ②通过曲率中心的光线它的反射线和入射线是同一条直线而方向相反。 ③通过焦点的光线或入射光的延长线通过焦点的光线它的反射线平行于主光轴。 (6)光在球面上的折射 ①物像公式
这就是在傍轴光线条件下球面折射的物像公式。 折射球面的横向放大率为
②像方焦距 如果平行于主光轴的入射光线,经球面折射后,与主光轴的交点称为像方焦点。从球 面顶点到像方焦点的距离称为像方焦距,以 f'表示,则有下式:
6 / 112
圣才电子书
十万种考研考证电子书、题库视频学习平 台
3 / 112
圣才电子书
①三棱镜偏向角
十万种考研考证电子书、题库视频学习平 台
三棱镜截面呈三角形的透明棱柱称为三棱镜(prism),与其棱边垂直的平面称为主截
面。出射光线与入射光线间的来角,称为偏向角(ang1e of deviation),用 δ 表示偏向
角,δ 与棱镜顶角 α 之间有如下的关系
图 12-1 光的反射和折射
1 / 112
圣才电子书
实验表明:
十万种考研考证电子书、题库视频学习平 台
(a)反射光线和折射光线都在入射光线和界面法线所组成的入射面内。
(b)反射角等于入射角。
i` i
(c)入射角 i 与折射角 r 的正弦之比与人射角无关,而与介质的相对折射率有关,即
③物方焦距 如果把物点放在主轴上某一点时,发出的光经球面折射后将产生平行于主轴的平行光 束,这一物点所在点称为物方焦点,从球面顶点到物方焦点的距离称为物方焦距以 f 表示, 则:
程守洙《普通物理学》(第5版)笔记和课后习题(含考研真题)详解(相对论基础)【圣才出品】

第4章 相对论基础4.1 复习笔记一、狭义相对论原理及运动学1.基本原理电磁理论发展的过程中曾认为光传播介质是绝对静止的参考系“以太”。
爱因斯坦在前人实验的基础上提出了狭义相对论的两条基本原理。
(1)相对性原理物理定律在一切惯性参考系中都具有相同的数学表达形式,即所有惯性系对于描述物理现象都是等价的。
(2)光速不变原理在彼此相对作匀速直线运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。
相对性原理说明了所有物理定律(除引力外)在不同惯性系间的联系,包括力学定律和电磁定律在内;光速不变原理以光速测量实验为基础,直接否定了伽利略变换,建立了新的坐标变换公式,即洛伦兹变换。
2.洛伦兹变换狭义相对论有相对运动的惯性系间的坐标变换,称为洛伦兹变换。
下面用两个做相对运动的惯性系为例来说明。
图4-1 洛伦兹坐标变换如图4-1所示,坐标系K'(O'x'y'z')已速度v 相对于坐标系K(Oxyz )作匀速直线运动,三对坐标轴分别平行,v 沿Ox 轴正方向,并设Ox 轴与Ox’轴重合,且当t'=t=0时O'与O 点重合。
设P 为被观察的某一事件,在K 系中的观察者看来,它是在t 时刻发生在(x,y,z )处的,而在K'系中的观察者看来,它却是在t'时刻发生在(x',y',z')处的。
这样的同一事件在不同时空坐标之间所遵从的洛伦兹变换为其中v 是两个参考系相对运动速度的大小,且v≤c。
当v<<c 时,式中的分母近似为1,洛伦兹变换就转化为伽利略变换,这正说明洛伦兹变换是对高速运动与低速运动都成立的变换,它包括了伽利略变换。
因此,相对论并没有把经典力学推翻,而只是揭示了它的局限性。
3.狭义相对论的时空观在经典力学中,相对于一个惯性系来说,在不同地点、同时发生的两个事件,相对于另一个与之相对运动的惯性系来说,也是同时发生的。
程守洙《普通物理学》(第5版)笔记和课后习题(含考研真题)详解(刚体和流体的运动)【圣才出品】

飞轮转过的角度:
飞轮转过的转数: (2)由转动定律:
. ,可得拉力:
拉力矩的功为:
.
(3)当 t 10s 时,飞轮的角速度:
点的速度:
,则有:
t 10s 时,飞轮边缘的法向加速度:
t 10s 时,飞轮边缘的切向加速度:
总加速度大小:
uur 由于 an at ,因此总加速度方向几乎与 an 相同.
,飞轮边缘一
3-2 飞轮的质量为 60 kg,直径为 0.50 m,转速为 1 000 r/min,现要求在 5 s 内 使其制动,求制动力 F.假定闸瓦与飞轮之间的摩擦因数 μ=0.4,飞轮的质量全部分布在轮 的外周上,尺寸如图 3.1 所示.
6 / 44
圣才电子书
2.刚体的自由度 决定一个系统在空间的位置所需要的独立坐标的数目称为该系统的自由度。对于刚体 来说,最多有 6 个自由度,其中 3 个是平动自由度,3 个是转动自由度(其中 2 个是表示 转动轴的方向的坐标,剩余一个则表示绕转动轴转过的角度)。
二、力矩,转动惯量,定轴转动定律 在讨论质点的运动时,我们首先引入位移、速度、加速度等运动学量,然后引入力这
1 / 44
圣才电子书
十万种考研考证电子书、题库视频学习平
台
个动力学量,最后通过运动定律将二者联系起来。同样在研究刚体的转动时,也需要相应
的运动学量、动力学量以及运动方程。
1.运动学量
定轴转动中,有三个运动学量,即转过的角位移 θ ,角速度矢量 ω ,角加速度 α 。
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 3 章 刚体和流体的运动
3.1 复习笔记
一、刚体、刚体的运动 1.刚体模型及其运动 由牛顿运动定律和守恒定律可以方便地得到质点的运动,但对于质点系的研究,特别 是分布连续的质点系,分别对每个质点求解很不方便。可以利用一些物理模型将问题简化, 刚体和理想流体就属于此类模型。 刚体是一种特殊的质点系,无论它在多大外力的作用下,其大小和形状都保持不变, 亦即系统内两质点间的距离不变。刚体两种简单的运动形式是平动和转动,在平动中,各 个质点在同一段时间通过相同的位移,且具有相同的速度和加速度;在转动中,各个质点 都绕同一直线运动。如果转轴是固定不动的,就叫做定轴转动。
程守洙《普通物理学》(第5版)(上册)课后习题-电磁感应 电磁场理论(圣才出品)

第9章电磁感应电磁场理论9-1如图9-1所示,通过回路的磁感应线与线圈平面垂直,且指向图面,设磁通量依如下关系变化:φ=6t2+7t+1式中φ的单位为mWb,t的单位为s.求t=2时,回路中的感生电动势的量值和方向.图9-1解:由题意可知,回路中的感生电动势为:当时,电动势为:,方向为逆时针方向(即与设定的回路绕行t s2方向相反).9-2在两平行导线的平面内,有一矩形线圈,如图9-2所示.如导线中电流,随时间变化,试计算线圈中的感生电动势.图9-2解:根据题意建立坐标系,取坐标轴Ox,如图9-3所示.图9-3两电流在x处的磁感应强度大小为:,方向垂直纸面向里.取顺时针为回路的绕行方向,通过面元dS=l1dx的磁通量为:通过矩形线圈的磁通量为:矩形线圈中的感生电动势为:.9-3如图9-4所示,具有相同轴线的两个导线回路,小的回路在大的回路上面距离y 处,y远大于回路的半径R,因此当大回路中有电流,按图示方向流过时,小回路所围面积πr2之内的磁场几乎是均匀的.现假定y以匀速v=dy/dt而变化.(1)试确定穿过小回路的磁通量φ和y之间的关系;(2)当y=NR时(N为整数),小回路内产生的感生电动势;(3)若v>0,确定小回路内感应电流的方向.图9-4解:(1)根据导电线圈轴线上的磁感应强度分布,可得大回路在小回路处产生的磁感应强度:.由题意知,因此在距离大线圈平面y处的磁场可近似为均匀磁场,其次感应强度,则穿过小回路中的磁通量和y之间的关系为:.(2)小回路内产生的感生电动势为:.(3)由榜次定律可判定,当从上向下看时小回路的感应电流为逆时针方向.9-4PM和MN两段导线,其长均为10cm,在M处相接成30°角,若使导线在均匀磁场中以速度v=15m/s运动,方向如图9-5所示,磁场方向垂直纸面向内,磁感应强度为B=25×10-2T,问P、N两端之间的电势差为多少?哪一端电势高?图9-5解:由题意可知,P、N两端之间产生的动生电动势为:即运动导线上P端的电势高,N端电势低.9-5一均匀磁场与矩形导体回路面法线单位矢量e n间的夹角为θ=π/3(如图9-6),已知磁感应强度B随时间线性增加,即B=kt(k>0),回路的MN边长为l,以速度V向右运动,设t=0时,MN边在x=0处.求任意时刻回路中感应电动势的大小和方向.图9-6解:如图9-6所示,回路的面法线e n表明,回路的绕行方向为逆时针,则回路中感应电动势为:.又由题意知:则回路中感应电动势:方向由M指向N,即沿顺时针方向.9-6如图9-7所示,一长直导线通有电流,I=0.5A,在与其相距d=5.0cm处放有一矩形线圈,共1000匝.线圈以速度v=3.0m/s沿垂直于长导线的方向向右运动时,线圈中的动生电动势是多少?(设线圈长l=4.0cm,宽b=2.0cm.)图9-7解:由题意可知,线圈中的动生电动势为:.9-7如图9-8所示,导线MN在导线架上以速度V向右滑动.已知导线MN的长为50cm,V=4.0m/s,R=0.20Ω,磁感应强度B=0.50T,方向垂直于回路平面.试求:(1)MN运动时所产生的动生电动势;(2)电阻R上所消耗的功率;(3)磁场作用在MN上的力.图9-8解:(1)导线上产生的电动势为:.(2)电阻R上所消耗的功率为:.(3)由安培定理,可得回路中电流:导线MN上的安培力:,方向向左.9-8如图9-9所示,PQ和MN为两根金属棒,各长1m,电阻都是R=4Ω,放置在均匀磁场中,已知B=2T,方向垂直纸面向里.当两根金属棒在导轨上分别以v1=4m/s 和v2=2m/s的速度向左运动时,忽略导轨的电阻,试求:(1)两棒中动生电动势的大小和方向,并在图上标出;(2)金属棒两端的电势差;(3)两金属棒中点O1和O2之间的电势差.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4pe0
r2 2
结束 目录
9-7 点电荷q =4.0×10-10C,处在导体球 壳的中心,壳的内外半径分别为R1=2.0cm 和R2=3.0cm ,求:
(1)导体球壳的电势; (2)离球心r =1.0cm处的电势; (3)把点电荷移开球心1.0cm后导体 球壳的电势。
结束 目录
解:(1)
UR2=
= 6.7×102(V) ΔU外 =0 外球电势不变。
结束 目录
9-9 半径为R1=1.0cm的导体球,带有电荷 q1=1.0×10-10C,球外有一个内、外半径分别 为R2=3.0cm 、 R3=4.0cm的同心导体球壳, 壳上带有电荷Q =11×10-10C,试计算:
(1)两球的电势U1和U2; (2)用导线把球和壳联接在一起后U1和 V2分别是多少? (3)若外球接地,U1和U2为多少?
=2.7×102(V)
结束 目录
(2)联接后
U1´=
U2´=
q1 +Q
4pe0 R3
=2.7×102(V)
(3)外球接地
U2´´=0 内球电势
U1´´=
1
4pe0
q1 q1 R1 R2
=60(V)
结束 目录
9-10 两块无限大带电平板导体如图排列, 证明在(1)相向的两面上(图中的2和3), 其电荷面密度总是大小相等而符号相反; (2)背向的两面上(图中的1和4),其电 荷面密度总是大小相等且符号相同。
r
q
q
d +q
结束 目录
E+ =E
q
= 4pe0 r2
E+ E 表面
E表面 = 2E+cosq
E
r
sE
=
2q
4pe0
r2
cosq
.dS = E表面Scos1800
σ=
=
=
Sσ
e0
e E 0 表面
q
=
e0
q
2pe0
cos3q
2pd2
r2
q
q
d
σ
+q
E表面
cosq
d =r cosq
结束 目录
9-6 半径为r1 、 r2 (r1 < r2 )的两个同心导 体球壳互相绝缘,现把+q 的电荷量给予内 球,求:
UA UB = UA UC
EAB dAB = EAC dAC
EAB
=
q1
e0S
EAC
=
q2
e0S
2mm 4mm
q1 q2
=
EAB EAC
=
dAC dAB
=
1 2
q1= 1.0×10-7(C)
q2= 2.0×10-7(C)
C AB q1 q2 -q1 -q2
qB= -q1= -1.0×10-7(C)
qC= -q2= -2.0×10-7(C)
+
1 C6
=
41.0+
1 4.0
Cb =2.0mF
CAB = Ca + Cb =2.86mF
Q5 =Q6 = CbUAB = 2.0×10-6×200
=4.0×10-4(C)
Q2 =Q4 = Q13 =CaUAB= 0.86×10-6×200
=1.72×10-4(C)
结束 目录
Q1=
C1 C1 + C3
导体与电介质习题
18-1 18-2 18-3 18-4 18-5 18-6 18-7 18-8 18-9 18-10 18-11 18-12 18-13 18-14 18-15 18-16 18-17 18-18 18-19 18-20 18-21 18-22 18-23 18-24 18-25 18-26 18-27 18-28 18-29 18-30 18-31 18-32 18-33 18-34 18-35 18-36 18-37 18-38 18-39 18-40 18-41 18-42 18-43 18-44 18-45
QC442=7.3×10-3(J)
W5=W6 =
1 2
QC552=2.0×10-2(J)
结束 目录
9-16 一块相对电客率er =5的扁平电介质,
垂直放置于D =1C/m2的均匀电场中,已知 电介质的体积为0.1m3,并且是均匀极化, 求: (1)电介质里的电极化强度; (2)电介质总的电偶极矩。
A
C1
C2
C2
B
结束 目录
证:
1 CAB
=
1 C1
+
1 C1+
C2
=
2C1+ C2 C1( C1+ C2 )
CAB
=
C1( C1+ C2 2C1+ C2
)
=
C2
C22+ C2C2 C12 = 0 A
C1
C2 = 0.618C1
C2 C2 B
结束 目录
9-14 如图,C1=10mF, C2=5.0mF, C3=5.0mF。
(1)外球的电荷量及电势; (2)把外球接地后再重新绝缘,外球的 电荷量及电势; (3)然后把内球接地,内球的电荷量及 外球的电势的改变(设内球离地球很远)。
结束 目录
解: (1)由于静电感应,外球内表面电量为
-q,外表面电量为+q
外球的电势为:
U2
=
q
4pe0 r2
(2)外球内表面电量仍为-q,外表面电量为零
(1)求A、B 间的电容; (2)如A、B 间的电压为200V,求每块 板上的电荷量;
(3)求出每一电容器中贮藏的能量。
A C3
C2
C1 C3 B
C3 C3
结束 目录
解:
1 Ca
=
1 C2
+
1 C13
+
1 C4
=
1 2.0
+
1 6.0
+
21.0 =
7.0 6.0
Ca =0.86mF
1 Cb
=
1 C5
q1 =R1 4pe0 U1
q2 R2
= 5.0×10-2
2700 9.0×109
= 1.0×10-8(C)
8.0×10-9 8.0×10-2
结束 目录
两球接触后,内球电荷q1全部移至外球 壳,两球为等势体。
U
=
q1 V)
ΔU内 = 2.7×103 2.03×103
结束 目录
解:(1)内球电势为
U1
=
1
4pe0
q1 R1
q1 R2
+
q1+Q R2
=9.0×109
1×10-10 1×10-2
1×10-10
3×10-2 +
12×10-10 4×10-2
=3.3×102(V)
外球电势
e U2
=
q1 +Q 4p 0 R3
=9.0×109×142××1100-2-10
1 2 34
结束 目录
解:设两个板四个面的电荷面密度分别为
s1, s2, s3, s4,
σ σ σ σ q1
1
2
q2
3
4
.a
.b
E 3 E2 E4
E1 E 4 E 1 E 2 E3
静电平衡时,导体内部任意一点的场强为零
ε ε ε ε σ σ σ σ ∴
a点:
1
2o
2
2o
3
2o
2
4=0
o
ε ε ε ε b点:
结束 目录
解:
(1)
P = (er
1)
D
er
=
(5-1)
1 5
= 0.8(C/m2)
(2) ΣP =PΔV = 0.8×0.1= 0.08(C.m)
结束 目录
9-17 一扁平的电介质板er =5垂直放在
一均匀电场里,如果电介质表面上的极化
目录
9-12 两个半径相同的金属球,其中一 个是实心的,另一个是空心的,电容是否相 同?如果把地球看作半径为6400km的球形 导体,试计算其电容。
结束 目录
解:两导体的电容相同
地球的电容为:
C地
=
4pe0
R
=
600×102 9.0×109
=7.1×10-4(F)
结束 目录
9-13 如图所示,证明A、B间的总电容等 于C2的条件是C2=0.618C1。
外球的电势为: U2´ = 0
(3)设内球电量为q1,内球电势为零
U1
=
q1
4pe0
r1
q
+ 4pe0 r2
=0
U外
=
q1 q
4pe0 r2
q1
=
r1 r2
q
结束 目录
U外
=
q1 q
4pe0 r2
外球的电势改变为:
ΔU = U外
U2
=
r1q
4pe0
r2 2
=
(r1 2r2 ) q
4pe0
r2 2
2r2q
习题总目录
结束
9-1 一块很大的带电金属薄板,其电荷
面密度为σ,离金属板为d处有一质量为m、
电荷量为-q的点电荷从静止释放,计算电荷 的加速度及落到板上时的速度和时间。 (忽略重力和-q 对金属板上电荷分布的影 响)
σ
-q dm
结束 目录
解:
F =qE =ma
σ
2e 0 q =ma
a