2019_2020学年新教材高一数学寒假作业(1)集合新人教B版
高一数学(人教A版2019)寒假作业:(1)集合、

寒假作业(1)集合1下列命题中正确的是()① 0 -「0 ?;②由1,2,3组成的集合可以表示为{1, 2,3 / 或「3, 2,仁;;③方程(x —1)2(x —2)=0的所有解构成的集合可表示为(1,1,2 [;④集合]x| 2 :::x :::5?可以用列举法表示.A.①和④B.②和③C.②D.以上命题都不对2、若X,A,则—• A,就称A是伙伴集合.其中M二-2, -1,0,丄,2,3的所有非空子集中具有x [ 2J伙伴关系的集合个数是()A.1B.3C.7D.13、若集合 A ={x|0 £X c a,x€ N }有且只有一个元素,则实数a的取值范围为()A. (1,2)B.1,2]C. 1,2D. 1,2]4、设集合 A _2,1 B -〔-1,2 /,定义集合 A : B = |x = X1X2 ,X1 三A,X2 三 B ?,则A: B 中所有元素之积为()A.七B. -16C.8D.165、已知M - \x|x_5,x Rf,a - 11,b二26,则()A. a MR^MB. aEM,b'MC.a -M,b MD. a 'M,b 'M6、已知集合 A = :1,2B = lx | x =a • b,a • A,b • A ?,则集合B中元素的个数为()A.1B.2C.3D.47、设集合 A -〔a • N | -1 ::: a _ 2 1 B -〔b • Z | —2 _ b ::: 3 ?,则A ^ ()A. 9,1?B.\-1,0,1?C.'0,1,2? D< -1,0,1, 2?8、已知集合 A - lx | -1 ::: x ::: 2 B - lx | x 1 ?,则A- B=()9、已知集合A 非空集合B 满足A_. B 」:1,2二则满足条件的集合 B 有()A.1个B.2个C.3个D.4个 10、 定义集合运算:A ^B =「z|z=x 2-y 2x Ay B?,设集合 A =「1,.. 2 > B 二「_1,0?,则集合 A ^B 的元素之和为()A.2B.1C.3D.411、 ______________________________________________________________若 A = {x|ax 2 —ax+1 兰0,xw R }=0 ,则 a 的取值范围是 _____________________________________.12、 已知集合 A ={_1,3,2 m _1 },集合 B ={3,m 2},若 B u A ,则实数 m = _________________ .13、 已知集合 A - \x|x 2 • x -6 =0f,B - 1x|mx •仁0?,且B_ A ,则m 的取值构成的集合为14、 若AQ B, A 匸C, B ={0,1,2,3,4},C =S,2,4,8},则满足上述条件的集合A 有__________ 个.15、 已知集合 A = {-1,3,2m-1,集合 B={3,m 2},若 BG A ,则实数 m 二 ______________16、 设 M £[X, y |mx ny = 4?且〈2,1 , -2, 5 ?? M 则m = __________ , n = __________ .17、 设A 」x|1 vxc2},B={x|xca},若A 匚B ,则a 的取值范围是 _____________________ .18、 设全集U 二R ,集合A ^' x|x • 1, B ・x| x ::: -a?,且B u e U A ,则实数a 的取值范围是19、 已知集合 A ・.x|x 2-px 15=0,x Zl,B"x|x 2-5x q=0,x Z?,若 A 一 B ・..2,3,5 ?,则 A = ____ , B= ________ .20、 已知集合A ・.a 2,a 7,£油 J ・a-3,2a-1,a 2若A 、B -「-3»则实数a 的值为A. (一1,1)B.(1,2) c.(-1,;) D. (1,;)答案以及解析1答案及解析:答案:C解析:①错误,0是元素,[0[表示有一个元素0的集合;②正确,由1,2,3组成的集合可以表示为「1,2,3 /或:3, 2,1 / ;③错误,方程(x _1)2(X_2) =0的所有解构成的集合可表示为{1,2:;④错误,集合[X | 2 :::x :::5 :•不可以用列举法表示.2答案及解析:答案:B1 解析:•••若A ,则A,就称A是伙伴集合.x「 1 1 「门」i 「1】••• M - -2, -1,0, - ,2,3的所有非空子集中具有伙伴关系的集合有2,- ,m, -1,2,-.r 11••• M= 2-1,0, —,2,3的所有非空子集中具有伙伴关系的集合个数是3•故选BI 2J3答案及解析:答案:D解析:因为若集合 A ={x|0 £x c a,x€ N }中有且只有一个元素,则该元素一定是1,所以1 ^ <2,故选D.4答案及解析:答案:C解析:T A :H B - lx | x =X t X2,捲三A, X2 三 B f,二 A : B - ;2, -4, -1二• A :B中所有元素之积为2 (V) (-1)=8.5答案及解析:答案:B解析:M =&以兰5/€"月=州<54=#26:>5,.・.a壬M,b更M .故选B答案:C 解析:•••集合A =",2?,B =[x|x =a • b,a三A,b三8 =\2,3,4>,^集合B中元素的个数为3.故选C.7答案及解析:答案:C解析:T A =3,1,2 ?, B ,2?,二A-B=g,1,2?.8答案及解析:答案:C解析:将集合A,B在数轴上表示出来,如图所示.由图可得A B」..x|x . _1?.故选C.M . 1 产一-1012^9答案及解析:答案:C解析:•••集合A = {l,2},非空集合 B 满足A5 ={l,2},: B ={l }或 B ={2}或 B ={l, 2} .•••有3个.10答案及解析:答案:C解析:当y=0 y_-1.y =0故集合A^ B J.0,1,2 /的元素之和为0 T 2 =3.11答案及解析:答案:0^a:::4解析:T A - \x| aX—ax 1 m o,x 二R? ,a A Oa=°或丄=(一》_4a:::0‘••• 0 ma :::4 .•••实数a的取值范围为0乞a :::4.12答案及解析:答案:1解析:T B u A ,• m2 =2m -1,即(m _1)2 =0,解得m=1.当m J 时、A-1,3,1 ?, B =「3,1 ?,满足 B u A .13答案及解析:答案:0,丄丄I 2 3j解析:由题意得,A^x|x2飞-6=0二;-3,21且B5A.1当B »时,m=0;当m=0时,x =-丄,m1 1 1 1所以2或3,所以m 或m = - .m m 2 3所以m的取值构成的集合为』0_丄1•I' 2,3J14答案及解析:答案:8解析:A中可能含有0,2,4这3个元素,故其A可以为「0丁2丁4 Jo,2 Jo,4丁2,4 Jo,2,4?, 一,共8个. 15答案及解析:答案:1解析:T B 5 A ,• m 二2m T,•- m = 1.4 4答案:3 3解析:•••;、2,1 , -2,5 ?? M ,2m n = 4-2 m 5n = 4m=4n 二一317答案及解析:答案:a_2解析:••• A U,二a _ 218答案及解析:答案:a _ -1解析:••• e j A J”x|x 胡又••• B u e u A,佃答案及解析:答案:(3,5 ?;「2,3 /解析:设A -1x i,X2 ?,B -:X3,xJ.因为X iK是方程x2-px • 15 =0的两根,所以x’x? =15,由已知条件可知x’,x2三'2,3,5 /,所以洛=3, X2 =5或X1 =5, X? = 3 ,所以A - \3,5 f •因为X3, %是方程x2 -5x q =0的两根,所以X3 * X4 = 5,由已知条件可知X3,x^ '-2,3,5 /,所以X3 = 3, X4 = 2或X3 =2, X4 =3,所以 B = ^2,3 ;.20答案及解析:答案:-1解析:••• A -•B 3 B.••• a2 1 0,.・. a2 1 = 3当3-3 = -3 时,a =0, A -「0,1,3「B - i-3, _1,1 ?,此时 A - B - \ _3,1 ?,与 A " B - ;-3 [矛盾;当2a -1 - -3 时,a = _1, A =「1,0, _3 [, B = 1_4, —3,2},此时 A - B -[故实数a的值为-1.。
2019-2020学年高一数学必修4寒假作业全套打包下载含答案

2019-2020学年高一数学必修四寒假作业 寒假作业(1)任意角和弧度制及任意角的三角函数1、与468-︒角的终边相同的角的集合是( ) A.{}|360456,Z k k αα=⋅︒+︒∈ B.{}|360252,Z k k αα=⋅︒+︒∈ C.{}|36096,Z k k αα=⋅︒+︒∈ D.{}|360252,Z k k αα=⋅︒-︒∈2、330-︒是( ) A.第一象限B.第二象限C.第三象限D.第四象限3、终边在第三象限角平分线上的角α的集合为( )A.3{|2ππ,Z}4k k αα=+∈B.5{|2ππ,Z}4k k αα=+∈ C.π{|2π,Z}4k k αα=-∈ D.3{|2ππ,Z}4k k αα=+∈4、集合ππ{|ππ,Z}42k k k αα+≤≤+∈所表示的角的范围(用阴影表示)是( )A.B.C. D.5、点(tan 2011,cos2011)P ︒︒位于( ) A.第一象限B.第二象限C.第三象限D.第四象限6、已知cos tan 0θθ⋅>,那么角θ是( ) A.第一、二象限角 B.第二、三象限角 C.第三、四象限角D.第一、四象限角7、若342αππ-<<-,则sin ,cos ,tan ααα的大小关系是( ) A.sin tan cos ααα<< B.tan sin cos ααα<< C.cos sin tan ααα<< D.sin cos tan ααα<< 8、若α是第三象限角,则sin cos sin cos αααα-=( ) A.0B.1C.2D.-29、已知角α的终边与单位圆交于点12⎛⎫- ⎪ ⎪⎝⎭,则sin α的值为( )A. B.12-D.1210、如果角α的终边经过点()()sin 780,cos 330P ︒-︒,则sin α=( )B.12D.111、用弧度制表示终边在(0)y x x =≥上的角的集合为__________________. 12、时针从6小时50分走到10小时40分,这时分针旋转了______________弧度. 13、已知一扇形的圆心角π3α=,扇形所在圆的半径10R =,则这个扇形的弧长为_____________,该扇形所在弓形的面积为_____________.14、若角α的终边与角π6的终边关于直线y x =对称,且(4π,π)a ∈-,则α=___________. 15、一扇形的圆心角为2弧度,记此扇形的周长为C ,面积为S ,则1C S-的最大值为______________.16、若三角形三内角之比为4:5:6,则三内角的弧度数分别是____________.答案以及解析1答案及解析: 答案:B解析:因为4682360252-︒=-⨯︒+︒,所以252︒角与468-︒角的终边相同,所以与468-︒角的终边相同的角为360252,Z k k ⋅︒+︒∈.故选B.答案:A解析:由于330(1)36030-︒=-⨯︒+︒,即330-︒与30︒的终边相同,因此330-︒是第一象限角.故选A. 3答案及解析: 答案:B解析:在0~2π范围内终边在第三象限角平分线上的角为5π4,故终边在第三象限角平分线上的角α的集合为5{|2ππ,Z}4k k αα=+∈.故选B. 4答案及解析: 答案:C解析:当2k m =,Z m ∈时,ππ2π2π42m m α+≤≤+, 当21k m =+,Z m ∈时,5π3π2π2π42m m α+≤≤+, 故选C. 5答案及解析:答案:D 解析:tan 2011tan(5360211)tan 2110︒=⨯︒+︒=︒>,cos2011cos2110︒=︒<,所以点P 在第四象限. 6答案及解析:答案:A 解析:有cos tan 0θθ⋅>可知cos tan θθ⋅同号,从而θ为第一、二象限角.故选A. 7答案及解析:答案:D解析:如图所示,在单位圆中,作出342αππ-<<-内的一个角及其正弦线、余弦线、正切线.由图知,OM MP AT << 考虑方向可得sin cos tan ααα<<.解析:因为α是第三象限角,所以sin 0,cos 0αα<<, 所以sin cos 1(10)sin cos αααα-=---=.故选.9答案及解析:答案:B 解析:1sin 2y α==-.10答案及解析:答案:C解析:因为sin 780sin(236060)sin 60︒=⨯︒+︒=︒=,cos(330)cos(36030)cos30-︒=-︒+︒=︒=,所以,sin P α=⎝⎭11答案及解析: 答案:π{|2,Z}4kx k αα=+∈ 解析:因为在0~2π范围内终边在(0)y x x =≥上的角为π4,所以终边在(0)y x x =≥上的角的集合为π{|2,Z}4kx k αα=+∈.12答案及解析:答案:23π3-解析:时针共走了3小时50分钟,分针旋转了523(32π2π)π63-⨯+⨯=-. 13答案及解析:答案:10π3;π50()32-解析:设扇形的弧长为l ,则π10π||1033l R α=⋅=⨯=. 如图在扇形OAB 中作OD AB ⊥交AB 于D .则10AB =,OD =111022OAB S AB OD =⨯⋅=⨯⨯=△110π50π10233S =⨯⨯=扇.则50ππ50(33S =-=弓形.14答案及解析:答案:11π5ππ7π,,,3333-- 解析:如图所示,设角π6的终边为,OA OA 关于直线y x =对称的射线为OB ,则以OB 为终边且在0到2π之间的角为π3,故以OB 为终边的角的集合为π{|2π,Z}3k k αα=+∈.因为(4π,4π)a ∈-,所以π4π2π4π3k -<+<,所以131166k -<<.因为Z k ∈,所以2,1,0,1k =-- 所以11π5ππ7π,,,3333α=--.15答案及解析: 答案:4解析:设扇形的弧长为l ,所在圆的半径为r ,则2l r =,故2224C l r r r r =+=+=,212S lr r ==,所以222141141()(2)44C r S r r r r --==-+=--+≤,当12r =时等号成立,则1C S -的最大值为4.16答案及解析:答案:4π15,π3,2π5解析:设三角形的三个内角的弧度数分别为4,5,6x x x ,则有456πx x x ++=,解得π15x =,所以三内角的弧度数分别为4π415x =,π53x =,2π65x =.寒假作业(2)同角三角函数的基本关系与诱导公式1、21(tan )sin tan x x x+=( ) A.tan xB.sin xC.cos xD.1tan x2、若cos sin αα+=则tan α=( ) A.12B.2C.12-D.-23、已知sin α=则44sin cos αα-的值为( ) A.15-B.35- C.15 D.354、已知1sin cos 8αα⋅=,且ππ42α<<,则cos sin αα-=( )B.34C. D.5、若tan 2α=,则22sin cos αα-=( )A.35B.35-C.45D.45-6、若()πsin πcos 2m αα⎛⎫+++=-⎪⎝⎭,则()3cos π2sin 2π2αα⎛⎫-+- ⎪⎝⎭的值为( ) A. 23m-B. 23mC. 32m -D. 32m7、sin 600tan(300)︒+-︒的值是( )A.-C.12-+ D.12+8、化简: = ( )A. sin αB. sin αC. cos αD.cos α9、已知tan 2,θ=则()()πsin cos π2πsin sin π2θθθθ⎛⎫+-- ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( ) A.2 B.-2 C.0 D.3 10、已知α为第二象限角,且3sin 5α=,则()tan πα+的值是( ) A.43 B. 34C. 43-D. 34-11、()43sin ,sin ,525ππθθ⎛⎫+=+= ⎪⎝⎭则θ角的终边在第__________象限12、若()()sin180cos 90a αα︒++︒+=-,则()()cos 2702sin 360αα︒-+︒-的值是__________13、已知角α终边上一点()4,3,P -则()πcos sin π211π9πcos sin 22αααα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭的值为__________ 14、若sin cos x x +=那么44sin cos x x +的值为___________.15、已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是_______________. 16、计算()()()sin1 560cos 930cos 1380sin1410-︒-︒-⋅-︒︒等于__________17、7sin(2)cos()cos cos 225cos()sin(3)sin()sin 2ααααααααππ⎛⎫⎛⎫π+π--- ⎪ ⎪⎝⎭⎝⎭=π⎛⎫π-π--π++ ⎪⎝⎭__________.答案以及解析1答案及解析: 答案:A解析:21(tan )sin tan x x x+ 2sin cos ()sin cos sin x x x x x =+ 21sin sin tan sin cos cos x x x x x x =⋅==.2答案及解析:答案:B解析:由已知可得2(cos 2sin )5αα+=,即22224sin 4sin cos cos 5(sin cos )αααααα++=+, 所以2tan 4tan 40αα-+=,故tan 2α=.3答案及解析: 答案:B解析:因为sin α=, 所以2214cos 1sin 155αα=-=-=. 442222sin cos (sin cos )(sin cos )αααααα-=+-2224143sin cos 5555αα=-=-=-=-.故选B.4答案及解析: 答案:C解析:23(cos sin )12sin cos 4αααα-=-=.因为ππ42α<<,所以sin cos αα>,所以cos sin αα-=故选C.5答案及解析:答案:A解析:22222222sin cos tan 1sin cos sin cos tan 1αααααααα---==++,因为tan 2α=.所以223sin cos 5αα-=.故选A.6答案及解析:答案:C 解析:因为()πsin πcos 2αα⎛⎫+++⎪⎝⎭sin sin ,m αα=--=-所以sin ,2m α=故()3cos 2sin 22παπα⎛⎫-+-=⎪⎝⎭3sin 2sin 3sin .2m ααα--=-=-7答案及解析:答案:B解析:原式sin(54060)tan(36060)=︒+︒+-︒+︒sin 60tan 60=-︒+︒=.8答案及解析:答案:B解析:原式sin α===9答案及解析:答案:B 解析:()()πsin cos π2πsin sin π2θθθθ⎛⎫+-- ⎪⎝⎭⎛⎫--- ⎪⎝⎭cos cos 22cos sin 1tan θθθθθ+===---10答案及解析:答案:D解析:因为α为第二象限角,所以4cos 5α==-所以sin 3tan(π)tan cos 4αααα+===-11答案及解析: 答案:四解析:因为()4sin ,5πθ+=所以4sin 05θ=-<, 因为3sin ,25πθ⎛⎫+= ⎪⎝⎭所以3cos 0,5θ=>所以θ角的终边在第四象限12答案及解析:答案:32a-解析:由已知得sin ,2aα=∴()()cos 2702sin 360αα︒-+︒-3sin 2sin 322a aαα=--=-⨯=-13答案及解析:答案:34-解析:∵角终边上一点()4,3P -,3tan 4y x α==-∴()πcos sin π211π9πcos sin 22αααα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭sin sin 3tan sin cos 4ααααα-⋅===--⋅14答案及解析:答案:12解析:由sin cos x x +=得2sin cos 1x x =,由22sin cos 1x x +=,得4422sin cos 2sin cos 1x x x x ++=.所以4421sin cos 1(2sin cos )2x x x x +=-111122=-⨯=.15答案及解析:答案:-1解析:由sin 2cos 0αα+=,得tan 2α=-.所以222222sin cos cos 2tan 1412sin cos cos 1sin cos tan 141αααααααααα-----====-+++.16答案及解析:答案:1解析:sin(1560)cos(930)cos(1380)sin1410----⋅°°°°sin(4360120)cos(3360150)=-⨯--⨯+°°°°cos(436060)sin(436030)--⨯+⨯-°°°° sin(120)cos150cos 60sin(30)=---°°°°1131() 1.222244=--+⨯=+=17答案及解析:答案:tan α解析:原式[][]sin (cos )sin cos 22cos sin 2()sin ()sin 22αααααααα⎡π⎤⎛⎫-π+π+- ⎪⎢⎥⎝⎭⎣⎦=⎡π⎤⎛⎫-π+π--π-π++ ⎪⎢⎥⎝⎭⎣⎦[]sin sin cos 2sin()sin()sin 2αααααα⎡π⎤⎛⎫π+- ⎪⎢⎥⎝⎭⎣⎦=π⎛⎫π--π-+ ⎪⎝⎭sin sin cos 2sin (sin )cos αααααα⎡π⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦=-sin (sin )tan (sin )cos ααααα-==-.寒假作业(3)三角函数的图像与性质1、若()sin f x x ω=满足(2)(2)f x f x +=-,则()f x 有( ) A.最小正周期为4B.()f x 关于2x =对称C.()f x 不是周期函数D.12ω=2、cos ,[0,2π]y x x =-∈的大致图象为( )A.B.C. D.3、用“五点法”作函数cos3,R y x x =∈的图象时,首先应描出的五个点的横坐标是( ) A.π3π0,,π,,2π22B.ππ3π0,,,,π424C.0,π,2π,3π,4πD.πππ2π0,,,,63234、下列函数,在π[,π]2上是增函数的是( )A.sin y x =B.cos y x =C.sin 2y x =D.cos 2y x =5、若函数()sin ([0,2π])3x f x ϕϕ+=∈是偶函数,则ϕ= ( ) A.π2 B.2π3 C.3π2 D.5π36、sin y x =,[0,2π]x ∈的图象与13y =的交点个数为( ) A.0B.1C.2D.37、tan 1,x x ≥-取值范围为( )A.,42ππ⎛⎫- ⎪⎝⎭B.,42ππ⎡⎫-⎪⎢⎣⎭C.,,Z 42k k k ππ⎡⎫π-π+∈⎪⎢⎣⎭D.2,2,Z 42k k k ππ⎡⎫π-π+∈⎪⎢⎣⎭8、函数sin ()cos xf x x=在区间[],-ππ内的大致图象是( ) A. B.C. D.9、()tan (0)f x x ωω=>的图象相邻两支截直线1y =所得线段长为4π,则12f π⎛⎫= ⎪⎝⎭( )A.0B.3C.110、函数sin y x =的定义域为[,]a b ,值域为1[1,]2--,则b a -的最大值与最小值之和为( )A.4π3B.8π3C.2πD.4π11、函数cos 1y a x =+的最大值为5,则a =____________.12、函数3tan(),46y x x ππ=π+-<≤的值域为______________. 13、函数1tan 24y x π⎛⎫=-+ ⎪⎝⎭的单调递减区间是_______________.14、函数()sin 2|sin |f x x x =+,[0,2π]x ∈的图象与直线y k =有且仅有两个不同的交点,则k 的取值范围是______________. 15、比较1cos 0,cos ,cos30,cos1,cos π2︒的大小为__________________________.答案以及解析1答案及解析:答案:A解析:令2x t -=,则(4)(),()f t f t f x +=的最小正周期为4.故选A. 2答案及解析:答案:B 解析:0x =时,1y =- ,故选B.3答案及解析:答案:D解析:令π3π30,,π,22x =和2π得πππ2π0,,,,6323x =.故选D.4答案及解析:答案:D解析:因为π[,π]2x ∈,所以2[π,2π]x ∈,所以cos 2y x =在π[,π]2上为增函数.5答案及解析:答案:C 解析:因为()f x 是偶函数,所以0ππ(Z)32k k ϕ+=+∈.所以3π3π(Z)2k k ϕ=+∈,又[0,2π]ϕ∈,所以3π2ϕ=.6答案及解析: 答案:C解析:在同一直角坐标系中,作出sin y x =,[0,2π]x ∈及13y =的函数图象(图略),可知13y =与sin ([0,2π])y x x =∈有两个交点.故选C. 7答案及解析:答案:C 解析:因为tan 1,,22x x ππ⎛⎫≥-∈- ⎪⎝⎭时,可得42x ππ-≤<,所以,Z 42k x k k πππ-≤<π+∈.故选C.8答案及解析:答案:B解析:tan ,,2tan ,,02()tan ,0,2tan ,,2x x x x f x x x x x ⎧π⎡⎫-∈-π-⎪⎪⎢⎣⎭⎪⎪π⎡⎫∈-⎪⎪⎢⎪⎣⎭=⎨π⎡⎫⎪∈⎪⎢⎪⎣⎭⎪π⎡⎤⎪-∈π⎢⎥⎪⎣⎦⎩9答案及解析: 答案:D 解析:由题意4T π=,又T ωπ=,所以4ω=,所以()tan 4,tan 123f x x f ππ⎛⎫=== ⎪⎝⎭故选D.10答案及解析: 答案:C解析:如图,当1[,]x a b ∈时,值域为1[1,]2--,且b a -最大.当2[,]x a b ∈时,值域为1[1,]2--,且b a -最大.所以最大值与最小值之和为1212()()2()b a b a b a a -+-=-+ππ7π22π626=⨯++=.11答案及解析:答案:4±解析:||15a +=,所以4a =±.12答案及解析:答案:(-解析:函数3tan()3tan y x x =π+=,且在,46ππ⎛⎤- ⎥⎝⎦上是增函数,所以3y -<≤(-.13答案及解析:答案:32,2,Z 22k k k π⎛⎫π-π+π∈⎪⎝⎭ 解析:11tan tan 2424y x x ππ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭,由1(Z)2242k x k k ππππ-<-<π+∈, 得322,Z 22k x k k πππ-<<π+∈,所以函数1tan 24y x π⎛⎫=-+ ⎪⎝⎭的单调递减区间是32,2,Z 22k k k π⎛⎫π-π+π∈ ⎪⎝⎭.14答案及解析:答案:(1,3)解析:因为3sin ,[0,π),()sin ,[π,2π],x x f x x x ∈⎧=⎨-∈⎩所以()y f x =的图象如图所示.从图象上可以看出,若()y f x =与y k =的图象有且仅有两个不同的交点,则k 的范围为13k <<.15答案及解析:答案:1cos 0coscos30cos1cos π2>>︒>> 解析:因为1π01π26<<<<,而cos y x =在区间[0,π]上是减函数,所以1cos0cos cos30cos1cos π2>>︒>>.寒假作业(4)函数y=sin(wx +ψ)图像与性质及三角函数模型的简单应用1、将函数π2sin(2)6y x =+的图象向右平移14个最小正周期后,所得图象对应的函数为( )A.π2sin(2)4y x =+B.π2sin(2)3y x =+C.π2sin(2)4y x =-D.π2sin(2)3y x =-2、设函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确的是( )A.()f x 的图象关于直线3x π=对称 B.()f x 的图象关于点,04π⎛⎫⎪⎝⎭对称C.把()f x 的图象向左平移12π个单位长度,得到一个偶函数的图象 D.()f x 的最小正周期为,且在0,6π⎡⎤⎢⎥⎣⎦上为增函数3、若函数()y f x =的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x 轴向左平移π2个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图象则()y f x =是()A. 1πsin 2122y x ⎛⎫=++ ⎪⎝⎭B. 1πsin 2122y x ⎛⎫=-+ ⎪⎝⎭C. 1πsin 2124y x ⎛⎫=-+ ⎪⎝⎭D. 1πsin 2124y x ⎛⎫=++ ⎪⎝⎭4、将函数(2)y sin x ϕ=+的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 ( )A.3π4B.π4 C.0 D.π4- 5、为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )A.向左平移π3个单位长度B.向右平移π3个单位长度C.向左平移π6个单位长度D.向右平移π6个单位长度6、若将函数2sin 2y x =的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A.ππ(k Z)26k x =-∈B.ππ(k Z)26k x =+∈C.ππ(k Z)212k x =-∈D. ππ(k Z)212k x =+∈7、函数()cos()f x x =+ωϕ的部分图象如图所示,则()f x 的单调递减区间为( )A. 13,,Z 44k k k π-π+∈⎛⎫⎪⎝⎭B. 132,2,Z 44k k k π-π+∈⎛⎫⎪⎝⎭C. 13,,Z 44k k k ⎛⎫-+∈ ⎪⎝⎭D. 132,2,Z 44k k k ⎛⎫-+∈ ⎪⎝⎭8、将函数sin y x =的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A. sin 210y x π⎛⎫=- ⎪⎝⎭B. sin 25y x π⎛⎫=-⎪⎝⎭C. 1sin 210y x π⎛⎫=- ⎪⎝⎭D. 1sin 220y x π⎛⎫=-⎪⎝⎭9、函数sin()y A x ωϕ=+的部分图象如图所示,则( )A.π2sin(2)6y x =- B.π2sin(2)3y x =- C.π2sin()6y x =+D.π2sin()3y x =+10、已知函数()sin (0)4f x x ωω⎛⎫ ⎪⎝⎭π=+>的最小正周期为π,则该函数的图象( )A.关于直线8x =π对称B.关于点,04⎛⎫⎪⎝⎭π对称 C.关于直线4x =π对称D.关于点,08⎛⎫⎪⎝⎭π对称11、如图所示的是函数sin()(0,0,)y A x A ωϕωϕ=+>>-π<<π的图象,由图中条件写出该函数的解析式为y=__________________.12、若将函数sin y x =的图象上所有点________________,得到πsin()6y x =-的图象,再将πsin()6y x =-的图象上所有点____________________,可得到1πsin()26y x =-的图象.13、将函数()sin()f x x ωϕ=+ππ0,22ωϕ⎛⎫>-≤<⎪⎝⎭的图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到sin y x =的图象,则π()6f =_________. 14、将函数sin(2)y x ϕ=+的图象沿x 轴向左平移π8个单位长度后,得到一个偶函数的图象,则φ的一个绝对值最小的取值为________________.15、如图为某简谐运动的图象,这个简谐运动需要__________s 往返一次16、如图,圆O 的半径为2,l 为圆O 外一条直线,圆心O 到直线l 的距离03,OA P =为圆周上一点,且06AOP π∠=,点P 从0P 处开始以2秒一周的速度绕点O 在圆周上按逆时针方向做匀速圆周运动.①1秒钟后,点P 的横坐标为__________;②t 秒钟后,点P 到直线l 的距离用t 可以表示为__________;17、某城市一年中12个月的平均气温与月份x 的关系可近似地用三角函数()()cos 61,2,3,,126y a A x x π⎛⎫=+-= ⎪⎝⎭来表示,已知6月份的月平均气温最高,为28C ︒,12月份的月平均气温最低,为18C ︒,则10月份的平均气温值为__________. 18、如图某地夏天从814时用电量变化曲线近似满足函数()sin y A x b ωϕ=++(1)这一天的最大用电量为__________万度,最小用电量为__________万度; (2)这段曲线的函数解析式为__________.19、右图是一弹簧振子做简谐振动的图象,横轴表示振动的时间,纵轴表示振子的位移.则这个振子振动的函数解析式是______________.20、下图是一个单摆的振动图象,根据图象回答下面问题:(1)单摆的振幅为__________; (2)振动频率为__________.答案以及解析1答案及解析: 答案:D解析:函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期为,将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向右平移14个最小正周期,即4π个单位长度后,所得图象对应的函数为2sin 22sin 2463y x x ⎡ππ⎤π⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选D.2答案及解析: 答案:C 解析:当3x π=时,2,()sin 03x f x π+=π=π=,不合题意,A 错误;当4x π=时,5512,()sin 3662x f x πππ+===,B 错误;把()f x 的图象向左平移12π个单位长度,得到函数sin 2sin 2cos21232y x x x ⎡ππ⎤π⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是偶函数,C 正确;当12x π=时,sin 1122f ππ⎛⎫== ⎪⎝⎭,当6x π=时,2sin 163f ππ⎛⎫==< ⎪⎝⎭,在0,6π⎡⎤⎢⎥⎣⎦上()f x 不是增函数,D错误.3答案及解析:答案:B解析:根据题意,将函数1sin 2y x =的图象向上平移一个单位1sin 12y x =+,同时在沿x 轴向右平移π2个单位, 1πsin 22y x ⎛⎫=- ⎪⎝⎭再每一点的纵坐标保持不变,横坐标缩短为到原来的12倍.4答案及解析:答案:B解析:解:令2y f x sin x ϕ==+()(), 则πππ()sin[2()]sin(2)884f x x x ϕϕ+=++=++,∵π()8f x +为偶函数,∴ππ+π42k ϕ=+,∴ππ4k ϕ=+,k Z ∈,∴当0k =时,π4ϕ=.故φ的一个可能的值为π4.故选:B . 5答案及解析: 答案:D解析:因为ππsin(2)sin[2()]36y x x =-=-,所以只需把函数sin 2y x =的图象上所有的点向右平移π6个单位长度即可.故选D.6答案及解析:答案:B解析: 将函数2sin 2y x =的图象向左平移π12个单位长度,得到2sin 2()2sin(2)126y x x ππ=+=+, 由2(Z)62x k k ππ+=π+∈得:(Z)26k x k ππ=+∈,即平移后的图象的对称轴方程为ππ(k Z)26k x =+∈,故选B .7答案及解析: 答案:D解析:由题中所给图像知22142π=ωπω+ϕ=⎧⎪⎪⎨⎪⎪⎩则4=π⎧⎪⎨π=⎪⎩ωϕ 即()cos 4f x x π⎛⎫=π+ ⎪⎝⎭.所以由余弦函数图象和性质,知224k x k ππ<π+<π+π, 即1322,Z 44k x k k -<<+∈. 所以()f x 的单调递减区间为132,2,Z 44k k k ⎛⎫-+∈ ⎪⎝⎭.8答案及解析:答案:C解析:将函数sin y x =的图象上所有的点向右平移π10个单位长度, 得πsin 10y x ⎛⎫=-⎪⎝⎭,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变), 得1πsin 210y x ⎛⎫=-⎪⎝⎭,故选C.考点:三角函数的平移变换. 9答案及解析: 答案:A解析:由图易知2A =,因为周期T 满足ππ()236T =--,所以2ππ,2T Tω===. 由π3x =时,2y =可知ππ22π(Z)32k k ϕ⨯+=+∈,所以π2π6k ϕ=-+(Z)k ∈,结合选项可知函数解析式为π2sin(2)6y x =-.10答案及解析:答案:A解析:依题意得2,2T ωωπ==π=.故()sin 24f x x π⎛⎫=+⎪⎝⎭. 所以sin 2sin 108842f ππππ⎛⎫⎛⎫=⨯+==≠⎪ ⎪⎝⎭⎝⎭,3sin 2sin 04444f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭. 故该函数的图象关于直线8x π=对称,不关于点,04π⎛⎫ ⎪⎝⎭和点,08π⎛⎫ ⎪⎝⎭对称,也不关于直线4x π=对称.故选A. 11答案及解析:答案:22sin 33x π⎛⎫+ ⎪⎝⎭解析:将函数22sin3y x =的图象沿x 轴向左平移2π个单位长度,就得到本题的图象,故所求函数为222sin 2sin 3233y x x ⎡π⎤π⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.12答案及解析:答案:向右平移π6个单位长度;纵坐标不变,坐标伸长到原来的2倍解析:将函数sin y x =的图象上所有点向右平移π6个单位长度,得到πsin()6y x =-的图象,再将其横坐标伸长到原来的2倍可得到1πsin()26y x =-的图象.13答案及解析:答案:2解析:把函数sin y x =的图象向左平移π6个单位长度得到πsin()6y x =+的图象, 再把πsin()6y x =+的图象上每一点的横坐标伸长为原来的2倍,纵坐标不变,得到函数1πsin()26y x =+的图象,所以π1πππ()sin sin 626642f ⎛⎫=⨯+==⎪⎝⎭. 14答案及解析:答案:π4解析:由题意得π()sin[2()]8g x x ϕ=++πsin 24x ϕ⎛⎫=++ ⎪⎝⎭为偶函数,所以πππ42k ϕ+=+,Z k ∈. 所以ππ(Z)4k k ϕ=+∈,要绝对值最小,则令0k =,得π4ϕ=.15答案及解析:答案:0.8 解析:由图象知周期0.800.8T =-=,则这个简谐运动需要0.8s 往返一次.16答案及解析:答案:①②()3206cos t t π⎛⎫-π+≥ ⎪⎝⎭解析:①1秒钟后,点P 从0P 处绕点O 在圆周上按逆时针方向做匀速圆周运动旋转了半周,此时点P 与0P 关于原点对称,从而点P 的横坐标为②由题意得,周期为2,则t 秒钟后,旋转角为π,t 则此时点P 的横坐标为26cos t π⎛⎫π+⎪⎝⎭,所以点P 到直线l 的距离为32,0.6cos t t π⎛⎫-π+≥ ⎪⎝⎭17答案及解析:答案:20.5C ︒解析:由题意,可求得函数解析式为()235cos 66y x π⎛⎫=+- ⎪⎝⎭,将10x =代入解析式,可得答案为20.5C ︒18答案及解析: 答案: (1) 50,30(2) []10sin 40,8,1466y x x ππ⎛⎫=++∈ ⎪⎝⎭解析:(1)由图象得最大用电量为50万度,最小用电量为30万度. (2)观察图象可知,从814时的图象是()sin y A x b ωϕ=++的半个周期的图象,∴()()11503010,503040,22A b =⨯-==⨯+= ∵12148,,26ωωππ⨯=-∴= ∴10406y sin ϕπ⎛⎫=++⎪⎝⎭.将8,30x y ==代入上式,解得,6ϕπ=∴所求解析式为[]1040,8,1466y sin x x ππ⎛⎫=++∈ ⎪⎝⎭19答案及解析: 答案:5ππ2sin()(0)24y t t =+≥ 解析:设函数解析式为πsin()(0,0,0,||)2y A x A t ωϕωϕ=+>>≤<,由题图知,2A =,2(0.50.1)0.8T =⨯-=,所以2π2π5π0.82T ω===,又图象过点,所以2sin ϕ=解得π4ϕ=.所以所求函数解析式是5ππ2sin()(0)24y t t =+≥.20答案及解析:答案:(1)1cm(2)1.25Hz解析:(1)由题中图象,可知单摆的振幅是1cm. (2)单摆的周期0.8T =,频率11.25Hz f T==.寒假作业(5)平面向量的概念及其线性运算、平面向量的基本定理与坐标表示1、有下列说法:①两个有共同起点且相等的向量,其终点可能不同; ②若非零向量AB 与CD 是共线向量,则,,,A B C D 四点共线; ③若非零向量a 与b 共线,则a b =; ④若a b =,则||||a b =.其中正确的个数为( ) A.0B.1C.2D.32、下列说法正确的是( ) A.若||||a b >,则a b >B.若||||a b =,则a b =C.若a b =,则a 与b 共线D.若a b ≠,则a 一定不与b 共线3、把平面上所有单位向量的起点平移到同一点P ,这些向量的终点构成的几何图形为( ) A.正方形B.圆C.正三角形D.菱形4、如图所示,梯形ABCD 为等腰梯形,则两腰上的向量AB 与DC 的关系是( )A.AB DC =B.||||AB DC =C.AB DC >D.AB DC <5、M 为直角三角形ABC △斜边AB 中点,,,MA MB MC 的关系为( ) A.相等向量B.模不相等C.相等或平行向量D.模相等的向量6、四边形ABCD ,若AB DC =,下列结论错误的是( ) A.AD BC =B.AC AB AD =+C.BA BC BD +=D.AB DA =7、P 是ABC △所在平面内一点,若,R CB PA PB λλ=+∈,则点P 在( ) A.ABC △内部B.AC 边所在的直线上C.AB 边所在的直线上D.BC 边所在的直线上8、如图所示,在OAB △中,P 为线段AB 上的一点,OP xOA yOB =+,且2BP PA =,则( )A.21,33x y == B.12,33x y ==C.13,44x y ==D.31,44x y ==9、已知5,28,3()AB a b BC a b CD a b =+=-+=-,则( ) A.,,A B C 三点共线 B.,,A B D 三点共线 C.,,A C D 三点共线D.,,B C D 三点共线10、下列计算正确的有( ) ①(7)642a a -⨯=-; ②2(22)3a b a b a -++=; ③()0a b a b +--=. A.0个B.1个C.2个D.3个11、平面上三点分别为(2,5)A -,(3,4)B ,(1,3)C --,D 为线段BC 中点,则向量DA 的坐标为_______________.12、已知1(1,2)e =,2(2,3)e =-,(1,2)a =-,试以12,e e 为基底,将a 分解为1212(,R)e e λλλλ+∈的形式为__________________.13、已知(2,8)a b +=-,(8,16)a b -=-,则a =__________,b =__________.14、,,D E F 分别为ABC △的边,,BC CA AB 上的中点,且BC a =,CA b =,给出下列命题:①12AD a b =--;②12BE a b =+;③1122CF a b =-+;④0AD BE CF ++=.其中正确命题的序号为______________.15、已知12e e 、不共线,122a e e =+,122b e e λ=+,要使,a b 能作为平面内的一组基底,则实数λ的取值范围为_______________.16、如图所示,已知,E F 分别是矩形ABCD 的边,BC CD 的中点,EF 与AC 交于点G ,若,AB a AD b ==,用,a b 表示AG =______________.答案以及解析 1答案及解析:答案:B解析:①显然时错误的;在平行四边形ABCD 中,AB 与CD 共线,但A B C D 、、、四点不共线,②错误;两个非零向量共线,说明这两个向量方向相同或相反,而两个非零向量相等,说明这两个向量大小相等,方向相同,因而共线向量不一定是相等向量,但相等向量却一定是共线向量,③错误;向量相等,即大小相等、方向相同,④正确. 2答案及解析:答案:C解析:向量不能比较大小,A 错误;模相等,但方向不一定相同,B 错误;若a b ≠,a 可以与b 共线,D 错误.故选C. 3答案及解析:答案:B解析:因为单位向量的模都是单位长度,所以同起点时,终点构成单位圆. 4答案及解析:答案:B解析:由几何关系知,||||AB DC =,但AB 与DC 不共线. 5答案及解析:答案:D解析:由几何关系,知MA MB MC ==,但,MA MB 与MC 方向不相同或相反,故,,MA MB MC 为模相等的向量. 6答案及解析:答案:D解析:因为AB DC =,所以//AB DC ,所以四边形ABCD 为平行四边形.平行四边形ABCD 中,AD BC =,A 正确;AB AD AB BC AC +=+=,B 正确;BA BC BD +=,C 正确;AB 与DA不一定相等,D 错误. 7答案及解析:答案:B解析:由CB PA PB λ=+得CB PB PA λ-=,即CP PA λ=,即点P 在AC 边所在的直线上. 8答案及解析: 答案:A解析:2221()3333OP OB BP OB BA OB OA OB OA OB =+=+=+-=+,即21,33x y ==.9答案及解析:答案:B10答案及解析:答案:C解析:(7)642a a -⨯=-,①正确;2(22)2223a b a b a a b b a -++=+-+=,②正确;()2a b a b a a b b b +--=-++=,③错误.故选C.11答案及解析:答案:111,2⎛⎫- ⎪⎝⎭解析:依题意知111()(2,1)1,222OD OB OC ⎛⎫=+== ⎪⎝⎭,则111(2,5)1,1,22DA OA OD ⎛⎫⎛⎫=-=--=- ⎪ ⎪⎝⎭⎝⎭.12答案及解析:答案:121477a e e =+ 解析:设121212(,R)a e e λλλλ=+∈,则121212(1,2)(1,2)(2,3)(2,23)λλλλλλ-=+-=-+. 所以121212,223,λλλλ-=-⎧⎨=+⎩解得121,74.7λλ⎧=⎪⎪⎨⎪=⎪⎩所以121477a e e =+.13答案及解析:答案:(3,4)- (5,12)-解析:联立(2,8),(8,16),a b a b ⎧+=-⎪⎨-=-⎪⎩①②+①②得2(2,8)(8,16)(6,8)a =-+-=-,所以(3,4)a =-.而(2,8)(2,8)(3,4)(23,84)(5,12)b a =--=---=+--=-. 所以(3,4)a =-,(5,12)b =. 14答案及解析: 答案:①②③④解析:如图所示,1122AD AC CD b CB b a =+=-+=--,12BE BC CE a b =+=+,AB AC CB b a =+=--,1111()2222CF CA AB b b a b a =+=+--=-,111102222AD BE CF b a a b b a ++=-++++-=.15答案及解析: 答案:(,4)(4,)-∞⋃+∞解析:若,a b 能作为平面内的一组基底,则a 与b 不共线,则(R)a kb k ≠∈,又122a e e =+,122b e e λ=+,所以4λ≠.16答案及解析:答案:3344a b +解析:因为,E F 分别为,BC CD 的中点, 所以3333()4444AG AC a b a b ==+=+.寒假作业(6)平面向量的数量积与平面向量应用举例1、在Rt ABC △中,90,4C AC ∠=︒=,则AB AC ⋅=( ) A.16-B.8-C.8D.162、若4,a a =与b 夹角为30︒,则a 在b 方向上的投影是( ) A.B.-C.2D.-23、若等边三角形ABC 的边长为1,则AB BC ⋅为( )A.12B.12-D.4、若,a b 夹角为150︒,且2a b ==,则a b ⋅为( )A.B.2C.-D.-25、设向量,,a b c 满足0a b c ++=且,1,2a b a b ⊥==,则2c =( ) A.1B.2C.4D.56、已知,,a b c 是是哪个非零向量,则下列命题:①//a b a b a b ⋅=⇔;②,a b 反向a b a b ⇔⋅=-;③a b a b a b ⊥⇔+=-;④a b a c b c =⇔⋅=⋅.其中正确命题的个数是( ) A.1B.2C.3D.47、若5,4,10a b a b ==⋅=-,则,a b 的夹角为( )A.3πB.23πC.6πD.56π 8、若两向量夹角为θ,则cos θ的取值范围为( )A.(1,0)-B.[]1,0-C.[]1,1-D.(1,1)-9、若四边形ABCD 中,,0AC AB AD AC BD =+⋅=,则四边形ABCD 一定是( )A.矩形B.菱形C.正方形D.平行四边形10、四边形ABCD 中,2AB a b =+,4,53BC a b CD a b =--=--,其中,a b 不共线,则该四边形ABCD 一定为( )A.平行四边形B.矩形C.梯形D.菱形11、如下图所示,平行四边形ABCD 中,已知1,2AD AB ==,对角线2BD =.则对角线AC 的长为_____________.12、如下图所示,在矩形ABCD 中,已知3AB BC ==,BE AC ⊥,垂足为E ,则ED =___________.13、在ABC △中,2AB AC ==,且2AB AC ⋅=,则ABC △的形状是___________.14、在长江南岸渡口处,江水以12.5km/h 的速度向东流,渡船的速度为25km/h ,渡船要垂直地渡过长江,则航向为____________.15、给出以下命题:①00a ⋅=;②00a ⋅=;③0AB BA -=;④a b a b ⋅=;⑤若0a ≠,则对任一非零向量b 都有0a b ⋅≠; ⑥若0a b ⋅=,则a 与b 中至少有一个为0;⑦若a 与b 是两个单位向量,则22a b =.其中正确命题的序号是_____________.16、设,,a b c 是任意非零向量,且互不共线,给出以下命题:①()()0a b c c a b ⋅⋅-⋅⋅=;②()()b c a c a b ⋅⋅-⋅⋅不与c 垂直; ③22(32)(32)94a b a b a b +⋅-=-. 其中是真命题的是________________.(填序号)17、设(2,),(,1),(5,1)OA m OB n OC =-==-,若,,A B C 三点共线,且OA OB ⊥,则m n +的值是____________. 18、设(,1),(2,),(4,5)A a B b C 为坐标平面上三点,O 为坐标原点,若OA 在OC 方向上的投影与OB 在OC 方向上的投影相等,则a 与b 满足的关系是为______________.答案以及解析1答案及解析:答案:D解析:cos cos 16AB AC AB AC A AB A AC AC AC ⋅=⋅⋅∠=⋅∠⋅=⋅=. 2答案及解析:答案:A解析:cos 4cos30a θ=⨯︒=3答案及解析:答案:B解析:,120AB BC =︒,所以111cos1202AB BC ⋅=⨯⨯︒=-. 4答案及解析:答案:C解析:cos15022a b a b ⎛⋅=⋅=︒=⨯⨯=- ⎝⎭5答案及解析:答案:D解析:因为c a b =--,所以22222145c a b a a b b =+=+⋅+=+=. 6答案及解析:答案:C 解析:因为a b a b ⋅=,即cos a b a b θ⋅⋅=,所以cos 1θ=,所以0θ=或θ=π,即//a b ,①正确;因为,a b 反向,所以,cos a b a b a b θ=π⋅=⋅⋅π=-,②正确;因为a b ⊥,所以0a b ⋅=,则22a b a b +=-,所以a b a b +=-,③正确;若a b =,但,,a c b c ≠,则a c b c ⋅≠⋅,④错误.7答案及解析:答案:B 解析:101cos ,542a ba b a b ⋅==-=-⨯⋅,所以2,3a b π=. 8答案及解析:答案:C 解析:因为[]0,θ∈π,所以[]cos 1,1θ∈-. 9答案及解析:答案:B 解析:因为AC AB AD =+,且AC AB BC =+,所以AD BC =,即//AD BC ,所以四边形ABCD 是平行四边形.又因为0AC BD ⋅=,即AC BD ⊥,所以该四边形是菱形.10答案及解析:答案:C解析:(2)(4)(53)822AD AB BC CD a b a b a b a b BC =++=++--+--=--=,所以四边形ABCD 一定为梯形.11答案及解析:解析:设,AD a AB b ==,则,BD a b AC a b =-=+. 而222214252BD a b a a b b a b a b =-=-⋅+=+-⋅=-⋅, 所以2524BD a b =-⋅=,所以21a b ⋅=.所以22222AC a b a a b b =+=+⋅+222526a a b b a b =+⋅+=+⋅=.所以6AC =,即AC =12答案及解析:解析:以A 为坐标原点,,AD AB 所在的直线分别为x 轴,y 轴建立平面直角坐标系,则(0,0),(3,0)A B C D ,AC =,设AE AC λ=, 则E 的坐标为(3)λ,故(3BE λ=-. 因为BE AC ⊥,所以0BE AC ⋅=,即9330λλ+-=,解得14λ=,所以34E ⎛ ⎝⎭.故9321,,4ED ED ⎛⎫=-= ⎪ ⎝⎭,即DE .13答案及解析: 答案:等边三角形 解析:因为cos 4cos 2AB AC AB AC A A ⋅===, 所以1cos 2A =,又A ∠为ABC △的内角,所以60A ∠=︒. 又AB AC =,所以ABC △为等边三角形.14答案及解析: 答案:北偏西30︒解析:如图所示,渡船速度为OB ,水流速度为OA ,船实际垂直过江的速度为OD , 依题意知,12.5OA =,25OB =,由于四边形OADB 为平行四边形,则BD OA =,又OD BD ⊥,所以在Rt OBD △中,30BOD ∠=︒,所以航向北偏西30︒.15答案及解析:答案:③⑦解析:上述7个命题中只有③⑦正确.对于①,两个向量的数量积是一个实数,应有00a ⋅=;对于②,应有00a ⋅=;对于④,由数量积定义,有cos a b a b a b θ⋅=≤,这里θ是a 与b的夹角,只有0θ=或θ=π时,才有a b a b ⋅=;对于⑤,若非零向量,a b 垂直时,有0a b ⋅=;对于⑥,当a b ⊥时,0a b ⋅=,但此时,a b 都是非零向量.16答案及解析:答案:③解析:()a b c ⋅⋅表示与向量c 共线的向量,()c a b ⋅⋅表示与向量b 共线的向量,而,b c 不共线,所以①错误;由()()0b c a c a b c ⎡⎤⋅⋅-⋅⋅⋅=⎣⎦知()()b c a c a b ⋅⋅-⋅⋅与c 垂直,故②错误;向量的乘法运算符合多项式乘法法则,所以③正确.所以真命题的序号是③.17答案及解析:答案:9或92解析:(2,1)AB OB OA n m =-=+-,(7,1)AC OC OA m =-=--,因为//AB AC ,所以(2)(1)7(1)0n m m +----=.又OA OB ⊥,所以20n m -+=,所以63m n =⎧⎨=⎩或332m n =⎧⎪⎨=⎪⎩故m n +的值为9或92.18答案及解析:答案:453a b -= 解析:由OA 在OC 方向上的投影与OB 在OC 方向上的投影相等,可得OA OC OB OC ⋅=⋅,即4585a b +=+,所以453a b -=.寒假作业(7)两角和与差的正弦、余弦和正切公式1、若π02α<<,π02β-<<,π1cos 43α⎛⎫+= ⎪⎝⎭,πcos 42β⎛⎫-= ⎪⎝⎭,则cos 2βα⎛⎫+= ⎪⎝⎭( )B.D. 2、已知α为锐角,且π4cos 65α⎛⎫+= ⎪⎝⎭,则cos α的值为()3、化简sin cos πcos 4ααα+⎛⎫- ⎪⎝⎭的结果为( )B.D. 4、已知12sin 13θ=-,π,02θ⎛⎫∈- ⎪⎝⎭,则πcos 4θ⎛⎫- ⎪⎝⎭的值为( )A.5、cos345︒的值等于( )D. 6、cos27cos57sin27cos147︒︒-︒⋅︒=( )B. C.12 D.12- 7、下列各式与1tan10tan3+︒︒相等的是( ) A.tan10tan 3tan(103)︒-︒︒-︒ B.tan10tan 3tan(103)︒-︒︒+︒ C.tan10tan 3tan(103)︒+︒︒-︒ D.tan10tan 3tan(103)︒+︒︒+︒ 8、已知,αβ为锐角,4cos 5α=,1tan()3αβ-=-,则cos β的值为( )9、22cos 75cos 15cos75cos15︒+︒+︒︒的值等于( )B.32C.54D.110、若0,2απ⎛⎫∈ ⎪⎝⎭,且21sin cos24αα+=,则tan α的值等于( )11、已知tan 24x π⎛⎫+= ⎪⎝⎭,则tan tan 2x x=___________. 12、tan 70tan 5070tan 50︒+︒︒︒的值为____________. 13、()(1tan 221)tan 23+︒+︒=____________.14=_____________.15、设θ为第二象限角,若π1tan 42θ⎛⎫+= ⎪⎝⎭,则sin cos θθ+=____________.答案以及解析1答案及解析:答案:C解析:由已知得,πsin 4α⎛⎫+= ⎪⎝⎭,πsin 42β⎛⎫-= ⎪⎝⎭, 则ππcos cos 2442ββαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ππππcos cos sin sin 442442ββαα⎛⎫⎛⎫⎛⎫⎛⎫=+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13==.2答案及解析:答案:D 解析:因为π02α<<,所以ππ2π663α<+<, 由π4cos 65α⎛⎫+= ⎪⎝⎭,得π3sin 65α⎛⎫+= ⎪⎝⎭, 所以ππcos cos 66αα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ππππcos cos sin sin 6666αα⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭.3答案及解析:答案:A 解析:sin cos sin cos πππcos cos sin sin cos 444ααααααα++=⎛⎫+- ⎪⎝⎭=4答案及解析: 答案:A 解析:因为12sin 13θ=-,π,02θ⎛⎫∈ ⎪⎝⎭,所以5cos 13θ=.所以πππ512cos cos cos sin sin 4441313θθθ⎛⎫⎛⎫-=+=+-= ⎪ ⎪⎝⎭⎝⎭.5答案及解析:答案:C解析:cos345cos(15360)︒=-︒+︒cos(15)cos15cos(4530)=-︒=︒=︒-︒cos45cos30sin45sin30=︒︒+︒︒12==.6答案及解析:答案:A解析:cos27cos57sin27cos147︒︒-︒︒cos27cos57sin 27cos(9057)=︒︒-︒︒+︒cos27cos57sin 27(sin57)=︒︒-︒-︒cos27cos57sin27sin57=︒︒+︒︒cos(5727)cos30=︒-︒=︒7答案及解析:答案:A 解析:tan10tan tan(103)1tan10tan3︒-︒︒-︒=+︒︒. 所以tan10tan 1tan10tan 3tan(103)︒-︒+︒︒=︒-︒.8答案及解析:答案:A解析:因为,αβ为锐角,且4cos 5α=, 所以3sin 5α=,所以3tan 4α=. 又3tan tan tan 14tan()31tan tan 31tan 4βαβαβαββ---===-++, 所以13tan 9β=,即sin 13cos 9ββ=,因为β为锐角,所以13cos β=整理得cos β=9答案及解析:答案:C 解析:原式22115sin 15cos 15sin15cos151sin301244=︒+︒+︒︒=+︒=+=.10答案及解析:答案:D 解析:因为21sin cos24αα+=, 所以22221sin cos sin cos 4αααα+-==.所以1cos 2α=±. 又0,2απ⎛⎫∈ ⎪⎝⎭,所以1cos ,sin 2αα=.所以tan α=.11答案及解析: 答案:49 解析:因为tan 24x π⎛⎫+= ⎪⎝⎭, 所以tan 121tan x x +=-,所以1tan 3x =. 所以2211tan tan 1tan 492tan tan 22291tan x x x x x x--====-.12答案及解析:答案:解析:因为tan70tan50tan(7050)1tan70tan50︒+︒︒+︒=-︒︒,所以tan70tan50tan(7050)(1tan70tan50)︒+︒=︒+︒-︒︒.所以原式tan(7050)(1tan 70tan 50)70tan 50=︒+︒-︒︒-︒︒70tan 5070tan 50=︒︒︒︒=13答案及解析:答案:2解析:原式1tan22tan23tan22tan23=+︒+︒+︒︒, 由tan 22tan 23tan(2223)1tan 22tan 23︒+︒︒+︒=-︒︒, 得tan 22tan 23tan 45(1tan 22tan 23)︒+︒=︒-︒︒,所以原式1tan 45(1tan 22tan 23)tan 22tan 232=+︒-︒︒+︒︒=.14答案及解析:答案:-1解析:原式tan 75tan 30tan 75tan(3075)tan 4511tan 30tan 75-︒︒-︒===︒-︒=-︒=-+︒︒.15答案及解析:答案: 解析:由π1tan 42θ⎛⎫+= ⎪⎝⎭,得1tan 11tan 2θθ+=-,得1tan 3θ=-,所以cos 3sin θθ=-.因为22sin cos 1θθ+=,所以210sin 1θ=.又θ为第二象限角,所以sin θ=cos =所以sin cos θθ+=寒假作业(8)简单的三角恒等变换1、若sin()cos cos()sin 0αββαββ+-+=,则sin(2)sin(2)αβαβ++-=( )A.1B.-1C.0D.±12、π1sin 63α⎛⎫-= ⎪⎝⎭,则2πcos 23α⎛⎫+= ⎪⎝⎭( ) A.79- B.13- C.13 D.793、下列各式中,值为12的是( ) A.sin15cos15︒︒ B.22ππcos sin 66- C.2tan301tan 30︒-︒4cos15︒+︒值为( )C.2D.3。
2020-2021学年高一数学人教B版(2019)寒假作业(1)

2020-2021学年高一数学人教B 版(2019)寒假作业(1)集合1.集合{}32x x ∈-<N 用列举法表示是( )A. {}1,2,3,4B. {}1,2,3,4,5C. {}0,1,2,3,4,5D. {}0,1,2,3,42.设集合{}{}{}0,1,2,3,4,5,0,3,5,1,4,5U M N ===,则()U M C N ⋂=( )A .{}5B .{}0,2,3,5C .{}0,3D .{}0,1,3,4,53.下列集合中表示同一集合的是 ( )A.{(3,2)}M =,{(2,3)}N =B.{2,3}M =,{3,2}N =C.{(,)|1}M x y x y =+=,{|1}N y x y =+=D.{2,3}M =,{(2,3)}N =4.设集合{0,1,2},{|1}A B x x ==≤,则A B ⋂的子集个数为( )A .2B .4C .8D .165.已知集合{1,,1}A a a =-,若2A -∈,则实数a 的值为( )A.2-B.1-C.1-或2-D.2-或3-6.设,{|0},{|1}U A x x B x x ==>=>R ,则U A B =∩( )A.{|01}x x ≤<B.{|01}x x <≤C.{|0}x x <D.{|1}x x >7.已知集合{|12}A x x =-<<,{|01}B x x =<<,则( )A.B A ⊆B.A B ⊆C.A B =D.A B ⋂=∅8.已知集合{|13,}A x x x =-<<∈N ,{|}B C C A =⊆,则集合B 中元素的个数为( )A. 6B. 7C. 8D. 99.已知集合{}{}0,1,1,0,3A B a ==-+,且A B ⊆,则a 等于( )A.1B.0C.2-D.3-10.已知集合{|}A x x =是平行四边形,{|}B x x =是矩形,{|}C x x =是正方形,{|}D x x =是菱形,则( )A.A B ⊆B.C B ⊆C.D C ⊆D.A D ⊆11.已知集合{}2,1M a a =-,集合{}0,1N =-,若M N =,则a =_________. 12.已知集合{|02},{|1}A x x B x x =<<=>,则A B =______.13.已知集合{}1,2A =,{}2,3B a a =+,若{1}A B ⋂=,则实数a 的值为________.14.已知集合{}|10,{|}A x x B x x a =-<<=≤.若A B ⊆,则a 的取值范围为________________.15.已知集合12{|}A x a x a =-<<,012{|}B x x =<+<.(1)若1a =,求()R A C B ⋂;(2)若A B ⊆,求实数a 的取值范围.答案以及解析1.答案:D解析:由题意得,{|5}{0,1,2,3,4}x x ∈<=N .故选D.2.答案:C解析:由条件可知{0,2,3}U C N =,所以(){0,3}U M C N ⋂=,故选C.3.答案:B解析:A.,M N 都是点集,()3,2与()2,3是不同的点,则,M N 是不同的集合,故错误;B.{}2,3M =,{}3,2N =,根据集合的无序性,集合,M N 表示同一集合,故正确;C.{}(,)|1M x y x y =+=,M 集合的元素表示点的集合,{}|1N y x y =+=,N 表示直线1x y +=的纵坐标,是数集,故不是同一集合,故错误;D.{}2,3M =集合M 的元素是两个数字2,3,{}(2,3)N =,集合N 的元素是一个点()2,3,故错误;故选B.4.答案:B解析:{}{0,1,2},{1}0,1A B x x ==≤=∣,{}0,1A B ∴⋂=,则A B ⋂的子集个数为224=.5.答案:C解析:因为集合{1,,1}A a a =-,且2A -∈,所以2a =-或12a -=-,当2a =-时,{1,2,3}A =--,适合题意;当12a -=-时,1a =-,{1,1,2}A =--,也适合题意,所以实数a 的值为1-或2-.故选C.6.答案:B解析:对于{1}U C B x x =∣,因此{01}U A x x B ⋂=<∣,故选B.7.答案:A 解析:集合{|12}A x x =-<<,{|01}B x x =<<,B A ∴⊆.故选A.8.答案:C解析:因为集合{|13,}A x x x N =-<<∈,所以{0,1,2}A =,因为{|}B C C A =⊆,所以B 中的元素为A 的子集个数,即B 有328=个,故选C.9.答案:C解析:,1,31,2A B B a a ⊆∴∈∴+=∴=-.故选C.10.答案:B解析:因为菱形是平行四边形的特殊情形,所以D A ⊂,矩形与正方形是平行四边形的特殊情形,所以,B A C A ⊂⊂,正方形是矩形,所以C B ⊆.故选B.11.答案:0解析:因为集合{}2,1,{0,1}M a a N =-=-,当M N =时,20a ≥,21a ∴≠-,只能满足 2011a a ⎧=⎨-=-⎩.0a ∴=. 12.答案:{|12}x x <<解析:因为集合{|02},{|1}A x x B x x =<<=>,所以{|12}A B x x =<<.故答案为:{|12}x x <<13.答案:1解析:由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.14.答案:[)0,+∞解析:因为{|10},{|}A x x B x x a =-<<=≤,且A B ⊆,所以0a ≥.15.答案:(1)当1a =时,{}|02A x x =<<,{}|11B x x =-<<, {|1R C B x x =≥或}1x ≤-, 可得(){}|12R A C B x x =≤<.(2)①当21a a ≤-时,1a ≤-,此时A =∅,A B ⊆成立;②当1a >-时,若A B ⊆,有1121a a -≥-⎧⎨≤⎩,得102a ≤≤, 由上知,若A B ⊆,则实数a 的取值范围为(]1,10,2⎡⎤-∞-⎢⎥⎣⎦.。
2019-2020学年高中数学人教B版(2019)必修第一册同步学典:(1)集合及其表示方法 Word版含答案

2019-2020学年人教B 版(2019)高中数学必修第一册同步学典(1)集合及其表示方法1、给出下列表述:①联合国常任理事国;③方程210x x +-=的实数根④全国著名的高等院校.以上能构成集合的是( )A.①③B.①②C.①③④D.①②③④2、下列各组对象中不能够成集合的是( )A.大通学校的全体学生B.2009年全国经济百强县C.2010年考入北京大学的全体学生D.美国NBA 的篮球明星3、给出以下五个对象,其中能构成集合的有( )①你所在班中身高超过1.75m 的同学;②所有平行四边形;③某数学教辅书中的所有习题;④所有有理数;⑤2016年高考试卷中的所有难题.A.1个B.2个C.3个D.4个4、设,a b 都是非零实数,由||||||a b ab y a b ab =++的可能取值组成的集合为( ) A. {}3B. {}3,2,1C. {}3,1,1-D. {}3,1-5、方程组31x y x y +=⎧⎨-=-⎩的解集不能表示为( ) A.3(,)|1x y x y x y ⎧+=⎫⎧⎪⎪⎨⎨⎬-=-⎪⎪⎩⎩⎭ B.1(,)|2x x y y ⎧=⎫⎧⎪⎪⎨⎨⎬=⎪⎪⎩⎩⎭C.{}1,2D.{}(,)|1,2x y x y ==6、下列集合中,不同于另外三个集合的是( )A.{}||1|0x x +=B.{}2|(1)0y y +=C.{}1x =-D.{}1-7、已知集合Ω中的三个元素,,l m n 分别是ABC △的三边长,则ABC △一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形 8、集合{}(,)|21x y y x =-表示( )A.方程21y x =-B.点(,)x yC.平面直角坐标系中的所有点组成的集合D.一次函数21y x =-图象上的所有点组成的集合9、已知集合{}{}|3,Z ,|31,Z M x x n n N x x n n ==∈==+∈,{}|31,Z P x x n n ==-∈,且,,a M b N c P ∈∈∈,若d a b c =-+,则( )A.d M ∈B.d N ∈C.d P ∈D.d M ∈且d N ∈10、已知,x y 为非零实数,则集合|x y xy M m m x y xy ⎧⎫⎪⎪==++⎨⎬⎪⎪⎩⎭为( ) A.{}0,3 B.{}1,3 C.{}1,3- D.{}1,3-11、由下列对象组成的总体属于集合的是__________(填序号).① 不超过3的正整数:② 高一数学课本中所有的难题;③ 中国的大城市;④ 平方后等于自身的数;⑤ 某校高一(2)班中考数学成绩在90分以上的学生.12、设集合{}52,n M m m n n *==+∈N,且100m <,则集合M 中所有元素的和为 .13、若{}20,2,m m m ∈-则实数m 的值为__________14、以方程2230x x --=和方程220x x --=的解为元素的集合中共有__________个元素.15已知集合,求的值.答案以及解析1答案及解析:答案:A解析:②④中元素不能确定.2答案及解析:答案:D解析:3答案及解析:答案:D解析:①②③④能构成集合.4答案及解析:答案:D解析:①当,a b 同正时, 1113y =++=;②当,a b 同负时, 1111y =--+=-;③当,a b 一正一负时, 1y =-,故D 正确.5答案及解析:答案:C解析:原方程组的解为12x y =⎧⎨=⎩,其解集中只含有一个元素,可表示为A,B,D,C 不符合,故选C.6答案及解析:答案:C解析:由集合的含义知{}{}{}2||1|0|(1)01x x y y +==+==-,而集合{}1x =-表示由方程1x =-组成的集合.故选C.7答案及解析:答案:D解析:因为集合中的元素是互异的,所以,,l m n 互不相等,即ABC △不可能是等腰三角形.故选D.8答案及解析:答案:D解析:本题中的集合是点集,其表示一次函数21y x =-图象上的所有点组成的集合.故选D.9答案及解析:答案:B解析:由题意,设3,Z,31,Z,31,Z a k k b y y c m m =∈=+∈=-∈,则3(31)313()2d k y m k y m =-++-=-+-,令t k y m =-+,则Z t ∈,则323313(1)1,Z d t t t t =-=-+=-+∈,则d N ∈,故选B.10答案及解析:答案:C解析:当0,0x y >>时,3m =;当0,0x y <<时,1111m =--+=-;若,x y 异号,不妨设0,0x y ><,则1(1)(1)1m =+-+-=-.综上,3m =或-1,即{}1,3M =-.11答案及解析:答案:①④⑤解析:②中“难题”标准不明确,不满足确定性; ③中“大城市”标准不明确,不满足确定性.12答案及解析:答案:231解析:1n =时,15127m =⨯+=,2n =时,252214m =⨯+=,3n =时,353223m =⨯+=,4n =时,454236m =⨯+=,5n =时,555257m =⨯+=,6n =时,656294m =⨯+=,当7n >时,100m ≥不合要求.故M 中所有元素的和为71423365794231+++++=.13答案及解析:答案:∵{}20,2,m m m ∈-∴0m =或220m m -=当0m =时, 220m m -=,这与集合元素的互异性矛盾, 当220m m -=时, 0m =或(舍去)或2m = 故答案为: 2解析:14答案及解析:答案:3解析:因为方程2230x x --=的解是121,3x x =-=,方程220x x --=的解是,x x 3412=-=所以以这两个方程的解为元素的集合中的元素应为1,2,3,-共有3个元素.15答案及解析:答案: 由有意义,得, 所以, 所以由得,故,于是有, ∴或. (1)当时,结合,知. 经检验,不符合题意.(2)当时,有或. 经检验,符合题意. 综上,知故。
新教材高一数学寒假作业(1)集合新人教A版

新教材高一数学寒假作业(1)集合新人教A 版1、下列命题中正确的是( ) ①{}00=;②由1,2,3组成的集合可以表示为{}1,2,3或{}3,2,1; ③方程2(1)(2)0x x --=的所有解构成的集合可表示为{}1,1,2; ④集合{}|25x x <<可以用列举法表示. A.①和④B.②和③C.②D.以上命题都不对2、若x A ∈,则1A x ∈,就称A 是伙伴集合.其中12,1,0,,2,32M ⎧⎫=--⎨⎬⎩⎭的所有非空子集中具有伙伴关系的集合个数是( ) A.1B.3C.7D.13、若集合{}|0,N A x x a x =<<∈有且只有一个元素,则实数a 的取值范围为( ) A.(1,2)B.[]1,2C.[)1,2D.(]1,24、设集合{}{}2,1,1,2A B =-=-,定义集合{}1212|,,A B x x x x x A x B ⊗==∈∈,则A B ⊗中所有元素之积为( ) A.8-B.16-C.8D.165、已知{}|5,R ,M x x x a b =≤∈==则( ) A.,a M b M ∈∈ B.,a M b M ∈∉ C.,a M b M ∉∈D.,a M b M ∉∉6、已知集合{}{}1,2,|,,A B x x a b a A b A ===+∈∈,则集合B 中元素的个数为( ) A.1B.2C.3D.47、设集合{}{}N |12,Z |23A a a B b b =∈-<≤=∈-≤<,则A B ⋂=( ) A.{}0,1B.{}1,0,1-C.{}0,1,2D.{}1,0,1,2-8、已知集合{}{}|12,|1A x x B x x =-<<=>,则A B ⋃=( ) A.(1,1)-B.(1,2)C.(1,)-+∞D.(1,)+∞9、已知集合{}1,2A =,非空集合B 满足{}1,2A B ⋃=,则满足条件的集合B 有( )A.1个B.2个C.3个D.4个10、定义集合运算:{}22|,,A B z z x y x A y B ==-∈∈★,设集合{{},1,0A B ==-,则集合A B ★的元素之和为( ) A.2B.1C.3D.411、若{}2|10,R A x ax ax x =-+≤∈=∅,则a 的取值范围是_________.12、已知集合{}1,3,21A m =--,集合{}23,B m =,若BA ,则实数m =__________.13、已知集合{}{}2|60,|10A x x x B x mx =+-==+=,且B A ⊆,则m 的取值构成的集合为_________.14、若{}{},,0,1,2,3,4,0,2,4,8A B A C B C ⊆⊆==,则满足上述条件的集合A 有__________个. 15、已知集合{}1,3,21A m =--,集合{}23,B m =,若B A ⊆,则实数m =__________16、设(){} 4|,Mx y mx ny =+=且()(){}2,1, 2, 5M -则m =__________,n =__________.17、设{}{}|12,|A x x B x x a =<<=<,若A B ⊆,则a 的取值范围是__________.18、设全集U R =,集合{}{}|1,|A x x B x x a =>=<-,且UBA ,则实数a 的取值范围是__________.19、已知集合{}{}22|150,Z ,|50,Z A x x px x B x x x q x =-+=∈=-+=∈,若{}2,3,5A B ⋃=,则A =________,B =________.20、已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B ⋂=-,则实数a 的值为_________.答案以及解析1答案及解析: 答案:C解析:①错误,0是元素,{}0表示有一个元素0的集合;②正确,由1,2,3组成的集合可以表示为{}1,2,3或{}3,2,1;③错误,方程2(1)(2)0x x --=的所有解构成的集合可表示为{}1,2;④错误,集合{}|25x x <<不可以用列举法表示.2答案及解析: 答案:B解析:∵若x A ∈,则1A x∈,就称A 是伙伴集合.∴12,1,0,,2,32M ⎧⎫=--⎨⎬⎩⎭的所有非空子集中具有伙伴关系的集合有{}112,,1,1,2,22⎧⎫⎧⎫--⎨⎬⎨⎬⎩⎭⎩⎭. ∴12,1,0,,2,32M ⎧⎫=--⎨⎬⎩⎭的所有非空子集中具有伙伴关系的集合个数是3.故选B3答案及解析: 答案:D解析:因为若集合{}|0,N A x x a x =<<∈中有且只有一个元素,则该元素一定是1,所以12a <≤,故选D.4答案及解析: 答案:C解析:∵{}1212|,,A B x x x x x A x B ⊗==∈∈, ∴{}2,4,1A B ⊗=--,∴A B ⊗中所有元素之积为2(4)(1)8⨯-⨯-=.5答案及解析: 答案:B解析:∵{}|5,R ,5,5M x x x a b =≤∈=<=>,∴,a M b M ∈∉.故选B.6答案及解析:答案:C解析:∵集合{}{}1,2,|,,A B x x a b a A b A===+∈∈,∴{}2,3,4B=,∴集合B中元素的个数为3.故选C.7答案及解析:答案:C解析:∵{}{}0,1,2,2,1,0,1,2A B==--,∴{}0,1,2A B⋂=.8答案及解析:答案:C解析:将集合,A B在数轴上表示出来,如图所示.由图可得{}|1A B x x⋃=>-.故选C.9答案及解析:答案:C解析:∵集合{}1,2A=,非空集合B满足{}1,2A B⋃=,∴{}1B=或{}2B=或{}1,2B=.∴有3个.10答案及解析:答案:C解析:当11xy=⎧⎨=-⎩时,0z=;当1xy=⎧⎨=⎩或21xy⎧=⎪⎨=-⎪⎩,1z=;当0x y ⎧=⎪⎨=⎪⎩,2z =. 故集合{}0,1,2A B =★的元素之和为0123++=.11答案及解析: 答案:04a ≤<解析:∵{}2|10,R A x ax ax x =-+≤∈=∅,∴0a =或20()40a a a >⎧⎨∆=--<⎩, ∴04a ≤<.∴实数a 的取值范围为04a ≤<.12答案及解析: 答案:1 解析:∵BA ,∴221m m =-,即2(1)0m -=,解得1m =.当1m =时,{}{}1,3,1,3,1A B =-=,满足B A .13答案及解析:答案:110,,23⎧⎫-⎨⎬⎩⎭解析:由题意得,{}{}2|603,2A x x x =+-==-,且B A ⊆.当B =∅时,0m =;当0m ≠时,1x m=-, 所以12m -=或13m -=-,所以12m =-或13m =.所以m 的取值构成的集合为110,,23⎧⎫-⎨⎬⎩⎭.14答案及解析: 答案:8解析:A 中可能含有0,2,4这3个元素,故其A 可以为{}{}{}{}{}{}{}0,2,4,0,2,0,4,2,4,0,2,4,∅,共8个.15答案及解析: 答案:1解析:∵B A ⊆, ∴221m m =-, ∴1m =.16答案及解析: 答案:4433解析:∵()(){}2,1,2,5M -,∴24254m n m n +=⎧⎨-+=⎩,∴4343m n ⎧=⎪⎪⎨⎪=⎪⎩.17答案及解析: 答案:2a ≥解析:∵A U ⊆,∴2a ≥18答案及解析: 答案:1a ≥- 解析:∵{}|1Ux A x =≤,又∵UBA ,∴1a -≤, ∴1a ≥-.19答案及解析: 答案:{}{}3,5;2,3解析:设{}{}1234,,,A x x B x x ==.因为12,x x 是方程2150x px -+=的两根,所以1215x x =,由已知条件可知{}12,2,3,5x x ∈,所以123,5x x ==或125,3x x ==,所以{}3,5A =.因为34,x x 是方程250x x q -+=的两根,所以345x x +=,由已知条件可知{}34,2,3,5x x ∈,所以343,2x x ==或342,3x x ==,所以{}2,3B =.20答案及解析: 答案:-1解析:∵{}3A B ⋂=-,∴3B -∈. ∵210a +>,∴213a +≠-.当33a -=-时,{}{}0,0,1,3,3,1,1a A B ==-=--, 此时{}3,1A B ⋂=-,与{}3A B ⋂=-矛盾;当213a -=-时,{}{}1,1,0,3,4,3,2a A B =-=-=--, 此时{}3A B ⋂=-. 故实数a 的值为-1.。
2019-2020学年人教B版(2019)高一数学寒假作业:(4)等式

寒假作业(4)等式1 i1、若 o ,则下列结论中不正确的是()a bA. a 2b 2B. ab b 2C. a b 0D. a b |日 b2、古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 互」,(互」0.618称为黄金分割比例),著名的“断臂维纳斯”便是如此 •此外,最美人体的2 2 头顶至咽喉的长度与咽喉至肚脐的长度之比也是•若某人满足上述两个黄金分割比例2且腿长为105cm,头顶至脖子下端的长度为 26cm,则其身高可能是()4、 有外表一样,质量不同的四个小球,它们的质量分别是a,b,Gd ,已知abcd,ad b c,a c b ,则这四个小球的质量由大到小的排列顺序是()A. d b a cB. b c d aC. d b c aD. c a db5、设 a,b R ,则 “a b ) a 20 ”是 a b ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件B.175cmC.185cmD.190cm3、已知 a 1, a 2 (0,1), Ma 1 a 2, N ai a 2 1,则M , N 的大小关系为(A. M NB. M NC. M ND.不确定A.165cm1 16、若0,则下列结论不正确的是“)a b(a 1)(a3), q (a 2)2,则p 与q 的大小关系为()则x 所满足的不等关系为()2x 5 1 D.0x52 2A. a bB.ab b 2C.baD, b I a b7、已知a 0,则下列不等式成立的是3 3 A. a b C.2 2D. a b8、设 0 a 则下列不等式中正确的是A. a .. abB. a D. abb2a b b 2A. p q B . p q C . p q D . p q10、将一根长5m 的绳子截成两段 ,已知其中一段的长度为 xm ,若两段绳子长度之差不小于 1m,,若 2x 5A. 0 xB. 2x 5 1 或 5 2x 111、若实数 a,b 满足 0 a 2,0 b 1,则a b 的取值范围是 a 12、已知2bab ,则-的取值范围是 13、对于实数a,b,c ,有下列命题:①若a b ,则ac bc ;②若ac 2 bc 2,则 a b ;③若 a b 0,则a 22a b 1 ab b ;④若c a b 0,则 ;⑤若a b,- c a c b a二则a 0,b0.其中正确的b.(填写序号) 14、 若 2x y m,x y 2m,3x 2 b 215、 设a b 0,试比较^2 ---------- 2a b2y 2 3m ,贝U m与霁的大小. 9、已知a R, p5 2x C. 0 x解析:v 0 b 1,「.1 b 0. v 0 a 2, A 1 a b 2.答案以及解析1答案及解析: 答案:D1 1解析:T0,.・.b a 0 , - b 2 a 2, ab b 2, a b 0 , /• A,B,C 均正确ba bab l a b ,故D 错误,故选D.2答案及解析: 答案:B解析:设某人身高为 mcm ,脖子下端至肚脐的长度为由头顶至脖子下端的长度为 26cm, 可得26空」0.618,n 2解得 n 42.071.解得 m 178.218.综上此人身高 m 满足169.890 m 178.218, 所以其身高可能为 175cm. 故选B.3答案及解析: 答案:B解析:由题意,可得M N a® a 1 a ? 1 佝 1)(a 2 1).因为a^a ? (0,1),所以(a 1 1)(a 2 1) 0,即 M N 0,所以 M N .故选 B.4答案及解析: 答案:A解析:因为a b c d,a d b c ,所以2a 2c ,即 a C ,因此b d .因为a ca b .综上可得c a b d .故选A. 5答案及解析:0.618,解得 m 169.890.ncm,则由腿长为105cm ,可得由已知可得26 n m (n 26)0.6185b 所以m 105 105答案:A解析:v 0 b 1,「. 1 b 0. v 0 a 2, A 1 a b 2.解析:由(a b )a 20 a 0且a b ,「.充分性成立;由a b a b 0,当 0 a b时,(a b) a 2 0,必要性不成立,故选A.6答案及解析:答案:D 解析:1 1 由 0,不妨令a 1,b 2,可得a2 b 2 ,故A 正确;ab b 2,故B 正a b确;ba a1.b 22,故C 正确;a b1, a b 1 ,故D 不止确.故选D.7答案及解析: 答案:A1 1解析:由a b 0,可得a 2 b 2,a b, ,故选项B,C,D 均不成立.v a b 0,/•a ba 3b 30 .故选 A.8答案及解析:答案:B 解析:因为0 a b ,所以a.ab .a( a b)0 ,故aa ab ,A 错误;b b b a 小2 2 0,故b □ ,C,D 错误;由aa b 红上 0,知 a a b .综上所述,a a bb ,故选B.222229答案及解析:答案: C解析:p q (a 1)( a 3)(a 2)2 a 2 4a 3 (a 2 4a4)1 0,所以 p q ,故选C.10答案及解析:答案:Dx (5 x) 1,即 2x 5 10x5 0x511答案及解析: 答案:1 a b 2解析:由题意,可知另一段绳子的长度为 (5 x)m ,因为两段绳子的长度之差不小于 1m,所以b,所以b o所以b o,所以b b半,即1I13答案及解析:答案:②③④⑤解析:对于①,当c 0时,可得ac bc,故①为假命题对于②,由ac2以可得a b,故②为真命题;对于③若a b 0,则a2 ab且ab b2,所以a2 ab b2,故③ 为真命题;对于④ 若c a b 0,则c二则J上,则,故④为真命题;对a b a b c a c b11 b a于⑤,若a b,1丄,则—上,故ab 0,所以a 0,b 0,故⑤为真命题•综上可得②③④⑤为a b ab ab真命题•14答案及解析:答案:1解析:由2x y m,x y 2m,得y X m.又3x 2y 2 3m,所以m 1.[及解析:2 .2 .a b a b~2 2a b a ba2b2ab (a b)(a2b2) (a b)(a2b2)~2 2 2 2a b a b (a b )(a b)2 2 2b) (a b) (a b ) 2ab(a b).(a2 b2)(a b) (a b)(a2 b2)因为a b 0,所以a b 0,a b 0,2ab 0.所以(a b)(a b )2 b20,所以答案:1 b 2解析:因为2b a b,所以2bbc2,得c 0,故c20 ,所15答答案:解析:(a12答案及解析:。
2019年高一数学寒假作业参考答案-文档资料

2019高一数学寒假作业参考答案以下是由查字典数学网为您整理提供的2019高一数学寒假作业参考答案,希望能够对您有所帮助,欢迎阅读与借鉴。
参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D D A D D B C A C B C13. ; 14. 4 ; 15. 0.4; 16. ②③17.(1)∵A中有两个元素,关于的方程有两个不等的实数根,,且,即所求的范围是,且 ;6分(2)当时,方程为,集合A= ;当时,若关于的方程有两个相等的实数根,则A也只有一个元素,此时 ;若关于的方程没有实数根,则A没有元素,此时,综合知此时所求的范围是,或 .13分18 解:(1) ,得(2) ,得此时,所以方向相反19.解:⑴由题义整理得 ,解方程得即的不动点为-1和2. 6分⑵由 = 得如此方程有两解,则有△=把看作是关于的二次函数,则有解得即为所求. 12分20.解: (1)常数m=14分(2)当k0时,直线y=k与函数的图象无交点,即方程无解; 当k=0或k 1时, 直线y=k与函数的图象有唯一的交点,所以方程有一解;当0所以方程有两解.12分21.解:(1)设,有, 2取,则有是奇函数 4(2)设,则,由条件得在R上是减函数,在[-3,3]上也是减函数。
6当x=-3时有最大值 ;当x=3时有最小值,由,,当x=-3时有最大值6;当x=3时有最小值-6. 8(3)由,是奇函数原不等式就是 10由(2)知在[-2,2]上是减函数原不等式的解集是 1222.解:(1)由数据表知,(3)由于船的吃水深度为7米,船底与海底的距离不少于4.5米,故在船航行时水深米,令,得 .解得 .取,则 ;取,则 .故该船在1点到5点,或13点到17点能安全进出港口,而船舶要在一天之内在港口停留时间最长,就应从凌晨1点进港,下午17点离港,在港内停留的时间最长为16小时.2019高一数学寒假作业参考答案就分享到这里了,更多高一数学寒假作业尽在查字典数学网高中频道!。
寒假作业(一)2020 高一数学新教材人教 A 版(2019)必修第一册全册寒假作业 5 套

∴M∩N=∅,故 A 正确; 在 B 中,若 M∩N≠∅,则 a∈{1,4},∴M∪N 有 3 个元素,故 B 错误; 在 C 中,若 M∪N={1,3,4},则当 a=3 时,M∩N=∅,故 C 错误; 在 D 中,若 M∩N≠∅,则 a∈{1,4},∴M∪N={1,3,4},故 D 正确. 故选:BC.
A.若 M∪N 有 4 个元素,则 M∩N≠∅
B.若 M∩N≠∅,则 M∪N 有 4 个元素
C.若 M∪N={1,3,4},则 M∩N≠∅
D.若 M∩N≠∅,则 M∪N={1,3,4} 三、填空题
13.已知集合 A {x | y log2 (x2 3x 4)} , B {x | x2 3mx 2m2 0(m 0)} ,若 B A , 则实数 m 的取值范围为
(1)求 A (ðU B) ; (2)若集合 C {x | a x 4a , a 0} ,且满足 C A A , C B B ,求实数 a 的取值范
围. 19.已知集合 A {x | 6 1} , B {x | x2 (m 4)x m 7 0} .
2 x
(1)若 m 3 时,求 A (ðR B) ; (2)若 A B A ,求实数 m 的取值范围.
20.已知集合 A {x | x2 4x 5 0} , B {x | x2 (3m 4)x 2m2 8m 0} .
(1)若 m 2 ,求 A B ;
(2)若 B A ,求 m 的取值范围.
寒假作业(一)——集合答案
1.解:根据题意,集合{1, a b, a} {0, b ,b} , a
实数 a 的取值范围是 ( , 1]{1}. 故答案为: ( , 1]{1}.
16.解:由已知中数域的定义可得: 则有理数集 Q 满足定义,是一个数域,故①正确; 若 A 为一个数域,则 A 中包含任意整数和分数,故 Q A ,故②正确;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
寒假作业(1)集合
1、已知集合{}{},,0,1,2a b c =,且下列三个关系:(1)2a ≠;(2)2b =;(3)0c ≠中有且只有一个正确,则10010a b c ++=( )
A.199
B.200
C.201
D.202
2、集合2*{|70,N }=-<∈A x x x x ,则*6{|
N ,}=∈∈B y y A y 的子集个数是多少个( ) A .4个 B .8个 C .16个 D .32个
3、已知集合{}
2|1P x x ==,集合{}|1Q x ax ==,若Q P ⊆,那么a 的值是( ) A.1 B.-1 C.1或-1 D.0,1或-1
4、已知集合}242{60{}M x x N x x x =-<<=--<,,则M N ⋂=( )
A .}{43x x -<<
B .}42{x x -<<-
C .}{22x x -<<
D .}{23x x <<
5、若集合{}12A x x =-≤≤,{}3log 1B x x =≤,则A B ⋂=( ) A.{}12x x -≤≤ B.{}02x x <≤ C.{}12x x ≤≤ D. {}
12x x x ≤->或 6、已知集合{}|(1)0A x x x =+≤,集合{}|0B x x =>,则A B =( )
A .{}|1x x ≥-
B .{}|1x x >-
C .{}|0x x ≥
D .{}|0x x >
7、设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B ⋃=( )
A .3(1,)2
B .(1,)+∞
C .(1,3)
D .3(,3)2
8、已知集合{}1A x N x =∈≤,集合{|B x Z y =∈=,則圖中的陰影部分表示的集合是( )
A.[]1,3
B.(]1,3
C.{}1,2,3-
D.{}1,0,2,3-
9、设全集{}1,2,3,4,5U =,集合{}1,2A =,则U A =ð( )
A.{}1,2
B.{}3,4,5
C.{}1,2,3,4,5
D.∅
10、已知全集2{N |650},U x x x =∈-+≤{}2,3,4A ={
1,2}U B =ð,A B ⋂=( ) A .{2,3} B .{1,2} C .{4} D .{3,4}
11、已知集合{{},1,A B m ==,若A B B I =,则m =________
12、已知[]1,2,,,4R p A B B A ⎛⎫=-=-∞-⊆ ⎪⎝⎭ð,则实数p 取值范围是 __________. 13、已知集合{|21}x A y y ==+,2{|20}B x x x =--<则()R A B ⋂=ð__________.
14、当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合
{}211|10,0,,,122M x ax a N ⎧⎫=-=>=-⎨⎬⎩⎭,若M 与N “相交”,则a =_________.
15、已知全集U =R ,集合{}{}
2|lg(2),|(1)0A x y x B x x a x a ==-=-++<. (1)若3a =,求集合()U A B ð;
(2)若A B A =,求实数的取值范围.
答案以及解析
1答案及解析:
答案:C
解析:由{}{},,0,1,2a b c =,得,,a b c 的取值有以下情况:
当0a =时,1,2b c ==或2,1b c ==,此时不满足题意;
当1a =时,0,2b c ==或2,0b c ==,此时不满足题意;
当2a =时,1,0b c ==,此时不满足题意;
当2a =时,0,1b c ==,此时满足题意.
综上得2,0,1a b c ===,代入10010201a b c ++=.
2答案及解析:
答案:C
解析:
3答案及解析:
答案:D
解析:∵{}{}{}211,1,1|,|P x x Q x ax Q P ===-==⊆,
∴当Q 是空集时,有a =0显然成立;
当{}1Q =时,有a =1,符合题意;
当{}1Q =-时,有a =-1,符合题意;
故满足条件的a 的值为1,1,0.-
4答案及解析:
答案:C
解析:,,。
故选:C
5答案及解析:
答案:B
解析:B ={x |0<x ⩽3};
∴A ∩B ={x |0<x ⩽2}.
故选:B.
6答案及解析:
答案:A
解析:集合{|(1)0}{|10}A x x x x x =+≤=-≤≤ 集合{|0}B x x =>
{|1}A B x x ∴⋃=≥-
故选;A
7答案及解析:
答案:B
解析:
8答案及解析:
答案:C
解析:因为{}{}|,10,1A x x N x =∈≤=,{{}|,1,0,1,2,3B x x Z y =∈==-,所以图中阴影为{}1,2,3U A =-ð,综上所述,答案选为C
9答案及解析:
答案:B
解析:
10答案及解析:
答案:D
解析:
11答案及解析:
答案:0或3
解析:3A B B B A m ∴⊆∴Q I =,,=或
m =,解得01m m =,= (舍去)或3m =.
12答案及解析:
答案:4p ≥
解析:
13答案及解析:
答案:(1,1]-
解析:
14答案及解析:
答案:1 解析:M
⎧=⎨⎩
,12=,得4a =,1=,得1a =.当4a =时,11,22M ⎧⎫=-⎨⎬⎩⎭,此时,M N 不符合题意;当1a =时,{}1,1M =-,符合题意.
15答案及解析:
答案:(1){}|2A x x =<,{}
|2U x x A ∴=≥ð 若1a =,则{}
{}2|430|13B x x x x x =-+<=<< {}()|23U A x B x =∴≤<ð
(2)A B A =,B A ∴⊆,
{}|(1)()0B x x x a =--<,方程(1)()0x x a --=的根为1,a ①当1a >时, {}|1B x x a =<<, B A ⊆ 12a ∴<≤ ②当1a =时, B =∅,符合B A ⊆, 1a ∴= ③当1a <时, {}|1B x a x =<<,符合B A ⊆, 1a ∴< 综上,实数的取值范围是2a ≤
解析:。