2018年高考数学黄金100题系列第02题命题真假的判断理.(最新整理)
2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国高考新课标2卷理科数学考试(解析版)

2018年全国高考新课标2卷理科数学考试(解析版)作者:日期:2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要 求的。
434 3 3 4 3 4 A ・ 一 T 一 弓 B * -5 + 5i c ∙ - 5 ' 5i D * - 5 + 5i解析:选D2. 已知集合A={(x,y) ∣χ2+y2≤3,x∈Z,y∈Z },则A 中元素的个数为( ) A. 9B. 8C. 5D ・ 4解析:选A 问题为确定圆面内整点个数 3. 函数f (x)=E 2的图像大致为()-、选择题:本题共12小题, 1.l+2i F r2解析:选B f(x)为奇函数,排除 A,x>0,f (x)>0,排除 D,取 x=2,f (2) = e 2-e^24 力,故选B4. 已知向量 a, b 满足 Ial=1, a ∙ b 二-1,则 a ∙ (2a~b)=( ) A. 4B. 3C. 2D.5.双曲线= I (a>0, b>0)的离心率为\龙,则其渐近线方程为( C. y=±迟X9A. y=±j∖βxB. y 二±ι∖βx=∖β C2 二 3¥ b=∖βa C √5 歹专,BC=I,AC 二 5, B. √30C 3 解析:选 A CoSo2cos 右-I= - ~ 2 5解析:选A e-6-在ΔABC 中,COS 则 AB 二() D. y=±A. 4√2 AB^AO+BC2-2AB ∙ BC ∙ COSC=322√5 AB=4√2 D.7. ................................................... 为计算S=I- 2 + 3 ^ 4 ++^ T∞,设计了右侧的程序框图,则在空白框中应填入()A. i=i+lB. i 二i+2C. i 二i+3D. i 二i+4解析:选B8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数 可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的 概率是()3为7+23, 11+19, 13+17,共3种情形,所求概率为P=FF109. 在长方体ABCD-ABc I D I 中,AB=BC=I, AAi=W 则异面直线AD】与DBl 所成角的余弦值为(D.解析:选C 建立空间坐标系,利用向量夹角公式可得。
2018年高考数学黄金100题系列第01题集合的性质与运算文

第01题 集合的性质与运算I .题源探究·黄金母题 【例1】已知集合{}{}|37,|210,A x x B x x =≤<=<< 求()R C AB ,()RC A B ,()R C A B ,()R A C B .【解析】甴已知利用数轴易得()[)210,37A B A B ==,,, (][)(),210,R C A B ∴=-∞+∞, ()[)(),37,R C A B ∴=-∞+∞,()[)(][),37,,,210,R R C A C B =-∞+∞=-∞+∞,()[)()2,37,10R C A B ∴=,(][)[)(),23,710,R A C B =-∞+∞.精彩解读【试题来源】人教版A 版必修一第14页A 组第10题【母题评析】本题以不等式为载体,考查集合的运算问题.本类考查方式是近几年高考试题常常采用的命题形式,达到一箭双雕的目的.【思路方法】借助数轴为工具,利用集合各类运算的方法直接求解,但需要注意区间方向以及区间端点值的验证,确保准确无误!II .考场精彩·真题回放【例2】【2017高考天津,理1】设集合{}1,2,6,A ={}{}2,4,15B C x x ==∈-≤≤R ,则()A B C = A .{2} B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R 【答案】B 【解析】(){1246}[15]{124}AB C =-=,,,,,,,选B. 【例3】【2017高考山东,理1】设函数y =义域A ,函数()ln 1y x =-的定义域为B ,则AB =A .()1,2B .(]1,2C .()2,1-D .[)2,1- 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,【命题意图】本类题通常主要考查集合的交、并、补运算.【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度较小,往往与函数的定义域、值域、解不等式有联系.【难点中心】对集合运问题,首项要确定集合类型,其次确定集合中元素的特征,先化简集合,若元素是离散集合,紧扣集合运算定义求解,若是连续数集,常结合数轴进行集合运算,若是抽象集合,常用文氏图法,本题是考查元素是离散的集合交集运算,是基础题.故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.III .理论基础·解题原理考点一 集合的基本概念 1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性;(2)集合中元素与集合的关系:元素与集合之间的关系有属于和不属于两种,表示符号为和;(3)集合的表示法:列举法、描述法、Venn 图. 2.常见数集及其表示符号自然数集用N 表示,正整数集用*N 或N +表示,整数集用Z 表示,有理数集用Q 表示,实数集用R 表示.考点二 集合间的基本关系(1)子集:对任意的x A ∈,都有x B ∈,则A B ⊆(或B A ⊇);(2)真子集:若集合A B ⊆,但存在元素x B ∈,且x A ∉,则A B (或B A ); (3)性质:A A A A B B C A C ∅⊆⊆⊆⊆⇒⊆,,,; (4)集合相等:若A B ⊆,且B A ⊆,则A B =. 考点三 集合的并、交、补运算: {A B x x ={AB x x ={U A x x =∈补集.(4)集合的运算性质: ① ,A B A B A A B A A B =⇔⊆=⇔⊆; ② ,A A A A =∅=∅; ③ A A A A A =∅=,;④ (C )U U U U AC A A C A U C A A =∅==,,.IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度较小,往往与函数的定义域、值域、解不等式有联系.【技能方法】解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,先化简集合,常借助数轴求交集.求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.【易错指导】(1)在涉及集合之间的关系时,若未指明集合非空,则要考虑空集的可能性,如A B ⊆(B ≠∅),则有A =∅和A ≠∅两种可能;(2)在子集个数问题上,要注意∅是任何集合的子集,是任何非空集合的真子集,任何集合是其本身的子集,在列举时千万不要忘记;(3)在用数轴法判断集合间的关系时,其端点值能否取到,一定要注意用回代检验的方法确定.如果两个集合的端点值相同,则这两个集合是否能取到端点值往往决定这两个集合之间的关系.V .举一反三·触类旁通 考向1 集合关系的判断【例4】【2016河北石家庄质检二,理1】设集合{}1,1M =-,{}2|6N x x x =-<,则下列结论正确的是( )A. N M ⊆B. N M =∅C.M N ⊆D. M N R =【答案】C【解析】{}23x x N =-<<,所以M ⊆N ,N M =M ,M N =N ,故选C.考向2 根据集合关系求参数的值或范围【例5】【2017高考课标II ,理2】设集合{}{}21,2,4,40A B x x x m ==-+=。
2018年高考理科数学试题(含全国1卷、2卷、3卷)带参考答案

有
种. (用数字填写答案)
16. 已知函数 f( x) =2sinx+sin2x ,则 f(x)的最小值是
.
三 . 解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题, 每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17. ( 12 分)
A、-12 B 、-10 C 、10 D 、12 5、设函数 f (x)=x3+(a-1 ) x2+ax . 若 f(x)为奇函数,则曲线 y= f(x)在点( 0,0)处的Biblioteka 切线方程为( )2
A.y= -2x
B.y= -x C.y=2x D.y=x
6、在 ? ABC中, AD为 BC边上的中线, E 为 AD的中点,则 =( )
5
如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取 20 件产品作检验,再根
据检验结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为
P
( 0<P<1),且各件产品是否为不合格品相互独立。
( 1)记 20 件产品中恰有 2 件不合格品的概率为 f(P),求 f(P)的最大值点
A.
-
B.
-
C.
+
D.
+
7、某圆柱的高为 2,底面周长为 16,其三视图如右图。圆柱表面上的点 M在正视图上的对应 点为 A,圆柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上, 从 M到 N 的路径中, 最短路径的长度为( )
A. 2 B. 2 C. 3 D. 2 8. 设抛物线 C:y2=4x 的焦点为 F,过点( -2 ,0)且斜率为 的直线与 C 交于 M,N 两点,则 · =( ) A.5 B.6 C.7 D.8
2018年普通高等学校招生全国统一考试仿真卷 理科数学

绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(二)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·渭南质检]设i 是虚数单位,若复数z 的共轭复数为( ) ABCD【答案】D 【解析】根据共轭复数的概念得到,z故答案为D .班级 姓名 准考证号 考场号 座位号此卷只装订不密封2.[2018·吉林实验中学]若双曲线221y x m-=的一个焦点为()3,0-,则m =( )A .B .8C .9D .64【答案】B【解析】由双曲线性质:21a =,2b m =,219c m ∴=+=,8m =,故选B .3.[2018·菏泽期末]()f x )A B C D .2【答案】D故选D . 4.[2018·晋城一模]函数()12xf x ⎛⎫= ⎪⎝⎭,()0,x ∈+∞的值域为D ,在区间()1,2-上随机取一个数x ,则x D ∈的概率是( )A .12B .13C .14D .1【答案】B 【解析】0x >,1012x⎛⎫∴<< ⎪⎝⎭,即值域()0,1D =,若在区间()1,2-上随机取一个数x ,x D ∈的事件记为A ,则()()101213P A -==--,故选B .5.[2018·济南期末]记()()()()72701272111x a a x a x a x -=+++++⋅⋅⋅++,则012a a a +++6a ⋅⋅⋅+的值为( ) A .1 B .2C .129D .2188【答案】C【解析】在()()()()72701272111x a a x a x a x -=+++++⋅⋅⋅++中,令0x =,可得701272a a a a +++⋅⋅⋅+=,()7711a =-=-,所以01a a a a +++⋅⋅⋅+=7721281129a -=+=,故选C . 6.[2018·昆明一中]一个几何体的三视图如图所示,则该几何体的体积为( )A .83B .163C .203D .8【答案】B【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V =⨯⨯=,故选B .7.[2018·漳州调研]《九章算术》是我国古代的数学名著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共猎得五鹿,欲以爵次分之,问各得几何?”其意思:“共有五头鹿,5人以爵次进行分配(古代数学中“以爵次分之”这种表述,一般表示等差分配,在本题中表示等差分配).”在这个问题中,若大夫得“一鹿、三分鹿之二”,则簪裹得( ) A .一鹿、三分鹿之一 B .一鹿 C .三分鹿之二D .三分鹿之一【答案】B【解析】由题意可知,五人按等差数列进行分五鹿,设大夫得的鹿数为首项a 1,且,公差为d ,则,解得,所以B.8.[2018·周口期末])A.B.C.D.【答案】B-≠,1x≠,即()()x10x∈-∞+∞,,,故排除A,11x=C,故选B.D,当09.[2018·郴州月考]阅读如图所示的程序框图,运行相应程序,输出的结果是()A .12B .18C .120D .125【答案】C【解析】第一次运行:011a =+=,1i =为奇数,112S =+=,112i =+=; 第二次运行:123a =+=,2i =为偶数,326S =⨯=,213i =+=; 第三次运行:336a =+=,3i =为奇数,6612S =+=,314i =+=; 第四次运行:6410a =+=,4i =为偶数,1012120S =⨯=,415i =+=; 程序终止运行,输出120S =.故选C .10.[2018·孝感联考]当实数x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩≤≥≥,表示的平面区域为C ,目标函数2z x y =-的最小值为1p ,而由曲线()230y x y =≥,直线3x =及x 轴围成的平面区域为D ,向区域D 内任投入一个质点,该质点落入C 的概率为2p ,则1224p p -的值为( )A .12B .23C .35D .43【答案】B【解析】画出可行域如下图所示,由图可知,目标函数在点31,22A⎛⎫⎪⎝⎭处取得最小值,且最小值为12z=,即112p=.区域C的面积为1112222⨯⨯=,平面区域D的面积为2112612p==,所以121224133p p-=-=.11.[2018·德州期末]已知点1F是抛物线C:22x py=的焦点,点2F为抛物线C的对称轴与其准线的交点,过2F作抛物线C的切线,切点为A,若点A恰好在以1F,2F 为焦点的双曲线上,则双曲线的离心率为()AB1C1D【答案】C【解析】20,2pF⎛⎫-⎪⎝⎭,设过2F的抛物线C的切线方程为2py kx=-2220x pkx p-+=,令222440p k p∆=-=,解得21k=,即2220x px p±+=,不妨设,2pA p⎛⎫⎪⎝⎭,由双曲线的定义得,122c F F p==,则该双曲线的离心率为1e==.故选C.12.[2018·天津期末]已知函数()e ex xf x-=+(其中e是自然对数的底数),若当x>时,()e 1x mf x m -+-≤恒成立,则实数m 的取值范围为( )A .10,3⎛⎫ ⎪⎝⎭B .1,3⎛⎤-∞- ⎥⎝⎦C .1,3⎡⎫+∞⎪⎢⎣⎭D .11,33⎡⎤-⎢⎥⎣⎦【答案】B【解析】若当0x >时,()e 1x mf x m -+-≤恒成立,即()e e e 11x x x m ---+-≤,0x >,1e e 0xx--∴>+()0,+∞上恒成立,设e x t =,()1t >()1,+∞上恒成立,当且仅当2t =B .第Ⅱ卷本卷包括必考题和选考题两部分。
专题3量词的应用跳出题海之高中数学必做黄金100题(原卷版)

(1)全称命题(特称命题)的否定与命题的否定是不同的.全称命题(特称命题)的否定是其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定,而命题的否定是只否定结论即可.从命题形式上看,全称命题的否定是特称命题,特称命题的否定是全称命题.
(2)含有逻辑联结词的命题的否定是一个难点,其原理是: , .
C. , D. ,
【温馨提醒】全称命题的否定是全称量词变为存在量词,后面否定;特称命题的否定为存在量词变为全称量词,后面否定。
考向2判断全称命题、特称命题的真假性
【2019·山东高考模拟(文))若命题 : , ,命题 : , .则下列命题中是真命题的是()
A. B. C. D.
【温馨提醒】全称命题、特称命题真假判断可以采用举反例和证明。本题是考查与全称命题、特称命题有关的符合命题真假的判断,应先判断全称命题、特称命题的真假。
三.理论基础·解题原理
考点一全称命题、特称命题的否定
1.全称量词与全称命题:
短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“ ”表示.常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.含有全称量词的命题,叫做全称命题.
2.存在量词与特称命题:
短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“ ”表示.常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“命题.
考点二判断全称命题、特称命题的真假性
全称命题与特称命题真假的判断方法:
命题名称
真假
判断方法一
判断方法二
全称命题
真
所有对象使命题真
否定为假
假
存在一个对象使命题假
否定为真
特称命题
02或且非命题的真假判断-2018版高人一筹之高二数学特色训练(2-1)含解析
一、选择题1.【河北省邢台市2018届高三上学期第二次月考】已知()2x f x e ax =-.命题:p 对1a ∀≥, ()y f x =有三个零点,命题:q a R ∃∈,使得()0f x ≤恒成立.则下列命题为真命题的是( )A 。
p q ∧B . ()()p q ⌝∧⌝C 。
()p q ⌝∧D .()p q ∧⌝【答案】B2.【北京市海淀首经贸2016-2017学年高二上学期期中】若命题“且”为假,且“”为假,则( ).A 。
或为假B . 为假C 。
为真D 。
为假【答案】D【解析】“”为假,则为真, 又“且”为假,为真, 故为假, 故选.3.【北京市西城鲁迅中学2016-2017学年高二上学期期中】命题的值不超过,命题是无理数,则( ).A. 命题“”是假命题B. 命题“"是假命题C。
命题“”是假命题D. 命题“”是真命题【答案】B【解析】命题为假,,命题为真,是无理数,“”为真命题,“”为真命题,“”为假命题,“”为假命题.故选.点睛:若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”:一真即真,“且”:一假即假,“非":真假相反,做出判断即可。
以命题真假为依据求参数的取值范围时,首先要对两个简单命题进行化简,然后依据“p∨q”“p∧q”“非p”形式命题的真假,列出含有参数的不等式(组)求解即可。
4.【北京西城13中2016—2017学年高二上期期中】已知互不重合的三个平面α,β,γ,命题p:若αβ⊥, γβ⊥,则αγ;命题q:若α上不共线的三点到β的距离相等,则αβ,下列结论中正确的是().A。
命题“p且q”为真B. 命题“p或q⌝"为假C。
命题“p或q”为假D。
命题“p且q⌝”为假【答案】C5.【甘肃省会宁县第一中学2018届高三上学期第二次月考】已知命题,命题,若命题“"是真命题,则实数的取值范围是()A. B。
四种命题的关系及真假判断
完的平行四边形不是菱形”,写出它的逆
命题、否命题与逆否命题,并判断真假。
解:原命题:对角线不互相垂直的平行四边形不是菱形 真 逆命题:不是菱形的平行四边形,对角线不互相垂直 真
否命题:对角线互相垂直的平行四边形是菱形
真
逆否命题:平行四边形是菱形,其对角线互相垂直 真
注意:(1)本题中设计到一元二次方程有无实数根的判断,所以应 该利用一元二次方程的根的判别式。
(2)当一个命题的逆否命题的真假性不容易判断时可以根据 原命题的真假进行判断。
完成下列练习
1、设原命题是“若a=0,则 ab=0”,写出它的逆命题、否命题与逆否命题,
并判断真假。
解:逆命题:若ab=0,则a=0
假
否命题:若a≠0,则ab≠0
假
逆否命题:若ab≠0,则a≠0 真
2、设原命题是“当 c>0时,若a>b,则ac>bc“写出它的逆命题、否命题与
逆否命题。
解:逆命题:当 c>0时,若ac>bc,则a>b
真
否命题:当 c>0时,若a≤b,则ac≤bc
真
逆否命题:当 c>0时,若ac≤bc,则a≤b
真
注意:本题中的“当c>0时”是大前提,不论在写逆命题、否命题或逆否命 题时都应该把它写在最前面;而本题原命题的条件p时:若a>b,结 论是:ac>bc.
真
否命题:当c>0时,若a≤b,则ac≤bc
真
逆否命题:当c>0时,若ac≤bc ,则a≤b 真
例3:写出下列命题的逆命题、否命题、逆否命题并判断它们的真假。
(1)若a2 b2 0,则a,b全为0;
(2)若a 0,则x2 x a 0有实数根。
2018年高考理科数学全国卷2(含答案解析)
绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1212ii+=- 43. 55A i -- 43. 55B i -+ 34. 55C i -- 34. 55D i -+2.已知集合(){}22,3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为. 9A. 8B . 5C . 4D3.函数2()x xe ef x x--=的图象大致为4.已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=. 4A . 3B . 2C . 0D5.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为. 2A y x =± . 3B y x =± 2. 2C y x =± 3. 2D y x =±6.在ABC ∆中,5cos ,1,5,25C BC AC ===则AB = . 42A . 30B . 29C. 25D 7.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入. 1A i i =+ . 2B i i =+ . 3C i i =+ . 4D i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是1.12A 1. 14B 1. 15C 1. 18D 9.在长方体1111ABCD A B C D -中,11,3,AB BC AA ===则异面直线1AD 与1DB 所成角的余弦值为1. 5A5. 6B 5. 5C 2.2D 10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是.4A π.2B π3.4C π .D π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________11.已知()f x 是定义域为(),-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=. 50A -. 0B . 2C . 50D12.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F ∆为等腰三角形,12120F F P ∠=,则C 的离心率为2. 3A 1. 2B 1. 3C 1. 4D二、填空题(本题共4小题,每小题5分,共20分)13.曲线2ln(1)y x =+在点()0,0处的切线方程为_____________.14.若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为________.15.已知sin cos 1,cos sin 0αβαβ+=+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA 、SB 所成角的余弦值为78,SA 与圆锥底面所成角为45.若SAB ∆的面积为则该圆锥的侧面积为__________.三、解答题(共70分。
2018年高考数学 黄金100题系列 第05题 含参数的简易逻辑问题 文
第5题 含参数的简易逻辑问题I .题源探究·黄金母题【例1】下列各题中,那些p 是q 的充要条件?(节选) (1)p :0b =,q :函数()2f x ax bx c =++是偶函数; 【解析】,p q ⇔∴p 是q 的充要条件.精彩解读【试题来源】人教A 版选修1-1第11页例3. 【母题评析】本题考查充要条件的判断,容易题.【思路方法】直接应用定义进行判断. II .考场精彩·真题回放【例2】【2017天津,理4】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 【解析】当1a b ==时,有()21i 2i +=,即充分性成立.当()2i 2i a b +=时,有222i 2i a b ab -+=,得220,1,a b ab ⎧-=⎨=⎩解得1a b ==或1a b ==-,即必要性不成立,故选A . 【例3】【2014 福建理数】直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则“1k =”是“ABC △的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件 【解析】当1k =时,:1l y x =+,由题意不妨令()1,0A -,()0,1B ,则111122AOB S =⨯⨯=△,所以充分性成立;当1k =-时,:1l y x =-+,也有12AOB S =△,所以必要性不成立.【命题意图】本类题通常主要考查充分条件与必要条件的判定.【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度较小,往往与命题(特别是含有逻辑联结词的复合命题)真假的判断、充分条件与必要条件的判断以及全称命题、特称命题等联系紧密.【难点中心】充分、必要条件的三种判断方法. 1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒ q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒ q 与非q ⇒非p , q ⇒p 与非p ⇒非q , p ⇔ q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆ B ,则A 是B 的充分条件或B 是A 的必要条件;若B A ⊆,则A 是B 的必要条件;若A =B ,则A 是B 的充要条件;若A 是B 的真子集,则A 是B 的充分不必要条件;若B 是A 的真子集,则A 是B 的必要不充分条件.【例4】【2014四川理数】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[],M M -.例如,当()31x x ϕ=,()2sin x x ϕ=时,()1x A ϕ∈,()2x B ϕ∈.现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b ∀∈R ,a D ∃∈,()f a b =”; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉;④若函数()()2ln 21xf x a x x =+++()2,x a >-∈R 有最大值,则()f x B ∈.其中的真命题有 .(写出所有真命题的序号) 【解析】依题意可直接判定①正确;令()(]()2,1x f x x =∈-∞,显然存在正数2,使得()f x 的值域(][]0,22,2⊆-,但()f x 无最小值,②错误;假设()()f x g x B +∈,则存在正数M ,使得当x 在其公共定义域内取值时,有()()f x g x M +…,则()()f x M g x -…,又因为()g x B ∈,则存在正数1M ,使()[]11,g x M M ∈-,所以()1g x M -…,即()1M g x M M -+…,所以3()1f x M M +…,与()f x A ∈矛盾,③正确;当0a =时,()211,122x f x x ⎡⎤=∈-⎢⎥+⎣⎦,即()f x B ∈,当0a ≠时,因为()ln 2y a x =+的值域为(),-∞+∞,而211,122x x ⎡⎤∈-⎢⎥+⎣⎦,此时()f x 无最大值,故0a =,④正确.III .理论基础·解题原理考点一 与充分条件、必要条件有关的参数问题充分条件和必要条件的理解,可以翻译成“若p 则q ”命题的真假,或者集合与集合之间的包含关系,尤其转化为集合间的关系后,利用集合知识处理. 考点二 与逻辑联接词有关的参数问题逻辑联接词“或”“且”“非”与集合运算的并集、交集、补集有关,由逻辑联接词组成的复合命题的真假与组成它的简单命题真假有关,其中往往会涉及参数的取值范围问题. 考点三 与全称命题、特称命题真假有关的参数问题全称命题和特称命题从逻辑结构而言,是含义相反的两种命题,利用正难则反的思想互相转化,达到解题的目的.考点四 与全称量词、特称量词有关的参数问题全称量词“∀”表示对于任意一个,指的是在指定范围内的恒成立问题,而特称量词“∃”表示存在一个,指的是在指定范围内的有解问题,上述两个问题都利用参变分离法求参数取值范围. IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度较小,往往与命题(特别是含有逻辑联结词的复合命题)真假的判断、充分条件与必要条件的判断以及全称命题、特称命题等联系紧密.【技能方法】解决与简易逻辑问题有关的参数问题,需要正确理解充分条件和必要条件的定义,弄懂逻辑联接词的含义以及全称量词、特称量词包含的数学理论【易错指导】(1)参数的边界值即是否取等号,容易出错;(2)判断充分条件和必要条件时,容易将方向弄错. V .举一反三·触类旁通考向1 与充分条件、必要条件有关的参数问题【例1】【2018安徽滁州高三9月联合质检】“1a >-”是“函数()223f x x ax =+-在区间()1,+∞上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 【答案】A【例2】【2017湖南邵阳第二次联考】“1m >”是“函数()3x m f x +=-[)1,+∞无零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A【解析】若函数()3x mf x +=-在区间[)1,+∞无零点,则1313122m m m +>⇒+>⇒> 故选A .【例3】【2017黑龙江哈尔滨第三中学高三二模】对于常数,m n ,“关于x 的方程20x mx n -+=有两个正根” 是“方程221mx ny +=的曲线是椭圆” 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件 【答案】D【解析】依题意,两个正根即2121240{00m n x x m x x n ∆=-≥+=>=>,令5m n ==,此时方程有两个正根,但是方程22551x y +=不是椭圆.反之,令1,12m n ==,方程2212x y +=是椭圆,但是21102x x -+=没有实数根.综上所述,应选既不充分也不必要条件. 【例4】【2017江苏无锡模拟】若a R ∈,则复数3iia z -= 在复平面内对应的点在第三象限是0a ≥的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5【答案】B 【解析】∵33aiz a i i-==--,∴由题设可得00a a -⇒,因此不充分;反之,当00a a >⇒-<,则复数3z a i =--对应的点在第三象限,是必要条件,故应选答案B .【例5】【江苏省南通中学2017届高三上学期期中考试】已知命题:||4p x a -<,命题:(1)(2)0q x x -->,若p 是q 的必要不充分条件,则实数a 的取值范围是 .【答案】[-2,5] 【解析】【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒ q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒ q 与非q ⇒非p , q ⇒ p 与非p ⇒非q , p ⇔ q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆ B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 【跟踪练习】1.【2017湖北七市(州)3月联考】已知圆.设条件,条件圆上至多有个点到直线的距离为,则是的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】C【解析】∵圆心到定直线的距离为,若半径,如上图,则恰有三个点到定直线的距离都是1.由于,故圆上最多有两个点到直线的距离为1;反之也成立,应选答案C .2.【2017高三百校联盟】已知,,若的一个充分不必要条件是 ,则实数的取值范围是( ) A . B .C .D .【答案】A3.已知:44;:(2)(3)0p a x a q x x -<<+-->,若⌝p 是⌝q 的充分不必要条件,则实数a 的取值范围为 . 【答案】[-1,6]【解析】∵⌝p 是⌝q 的充分不必要条件,∴q 是p 的充分不必要条件.又∵:23q x <<,∴42,43a a -≤+≤,解得:16a -≤≤ .考向2 与逻辑联接词有关的参数问题【例6】【2018齐鲁名校教科研协作体山东、湖北部分重点联考】已知命题000:,0,xp x R e mx ∃∈-=2:,10,q x R mx mx ∀∈++>若()p q ∨⌝为假命题,则实数m 的取值范围是A .()(),04,-∞⋃+∞B .[]0,4C .[)0,e D .()0,e 【答案】C【解析】由()p q ∨⌝为假命题可得p 假q 真,若p 为假,则x e mx =无解,可得0m e ≤<; 若q 为真则04m ≤<,∴答案为C .【例7】【2017四川资阳4月模拟】设命题p :函数()()2lg 21f x ax x =-+的定义域为R ;命题q :当122x ⎡⎤∈⎢⎥⎣⎦,时, 1x a x +>恒成立,如果命题“p ∧q ”为真命题,则实数a 的取值范围是________.【答案】()12,;7【解析】解:由题意可知,命题,p q 均为真命题, p 为真命题时: ()2{240a a >∆=--< ,解得: 1a > , q 为真命题时: ()1f x x x=+在区间1,12⎡⎤⎢⎥⎣⎦上单调递减,在区间[]1,2 上单调递增, min 11121x x ⎛⎫+=+= ⎪⎝⎭,故:2a <,综上可得,实数a 的取值范围是:()1,2. 【例8】【2017贵州校级联考】已知函数()()21ln 11f x x x=+-+,命题p :实数x 满足不等式()()121f x f x +>-;命题q :实数x 满足不等式()210x m x m -++≤,若p ⌝是q ⌝的充分不必要条件,则实数m 的取值范围是__________. 【答案】()02,【例9】【2018辽宁庄河高级中学、沈阳第二十中学联考】已知命题指数函数在上单调递减,命题关于的方程的两个实根均大于3.若“或”为真,“且”为假,求实数的取值范围. 【答案】.【解析】试题分析:根据指数函数的单调性求出命题p 为真命题时a 的范围,利用二次方程的实根分布求出命题q 为真命题时a 的范围;据复合命题的真假与构成其简单命题真假的关系将“p 或q 为真,p 且q 为假”转化为p , q 的真假,列出不等式组解得. 试题解析:若p 真,则在R 上单调递减,∴0<2a-6<1,∴3<a <.若q 真,令f (x )=x2-3ax+2a2+1,则应满足,又由已知“或”为真,“且”为假;应有p 真q 假,或者p 假q 真.①若p 真q 假,则, a 无解.②若p 假q 真,则.综上①②知实数的取值范围为.考点:1.复合命题的真假与简单命题真假的关系;2.二次方程实根分布.【例10】【2018安徽滁州9月联考】已知()2:0,,2ln p x x e x m ∃∈+∞-≤; :q 函数221y x mx =-+有两个零点.(1)若p q ∨为假命题,求实数m 的取值范围;(2)若p q ∨为真命题, p q ∧为假命题,求实数m 的取值范围. 【答案】(1)[)1,0-;(2)()[],10,1-∞-⋃.若q 为真,则2440m =->, 1m >或 1m <-.(1)若p q ∨为假命题,则,p q 均为假命题,实数m 的取值范围为[)1,0-. (2)若p q ∨为真命题, p q ∧为假命题,则,p q 一真一假.若p 真q 假,则实数m 满足0{11m m ≥-≤≤,即01m ≤≤; 若p 假q 真,则实数m 满足0{11m m m <><-或,即1m <-.9综上所述,实数m 的取值范围为()[],10,1-∞-⋃. 【例11】设命题p :函数2()lg()16af x ax x =-+的定义域为R ;命题q :39x x a -<对一切的实数x 恒成立,如果命题“p 且q ”为假命题,求实数a 的取值范围.【分析】首先分别将命题,p q 翻译成实数a 的取值范围,若命题“p 且q ”为假命题,则,p q 至少有一个假,分类讨论.【解析】20:2104a p a a>⎧⎪⇒>⎨=-<⎪⎩,21111:()39(3)2444x x x q g x a =-=--+≥⇒>. “p 且q ”为假命题,∴p ,q 至少有一假:(1)若p 真q 假,则2a >且1,4a a ≤∈∅; (2)若p 假q 真,则2a ≤且11,244a a ><≤;(3)若p 假q 假,则2a ≤且11,44a a ≤≤,2a ∴≤.【点评】复合命题的真假与组成它的简单命题真假有关,故先分别将简单命题翻译,根据其真假关系,转化为集合间的运算. 【跟踪练习】已知命题:p 函数()222f x x ax a =++的值域为[)0,+∞,命题:q 方程()()120ax ax -+=在[]1,1-上有解,若命题“p 或q ”是假命题,求实数a 的取值范围.考向3 与全称命题、特称命题真假有关的参数问题【例12】【2017吉林三模】函数()f x 的定义域为D ,对给定的正数k ,若存在闭区间[],a b D ⊆,使得函数()f x 满足:①()f x 在[],a b 内是单调函数;②()f x 在[],a b 上的值域为[],ka kb ,则称区间[],a b 为()y f x =的k 级“理想区间”.下列结论错误的是 A .函数()2f x x =(x R ∈)存在1级“理想区间”B .函数()()xf x e x R =∈不存在2级“理想区间”C .函数()()2401xf x x x =≥+存在3级“理想区间” D .函数()tan ,,22f x x x ππ⎛⎫=∈- ⎪⎝⎭不存在4级“理想区间” 【答案】D11【例13】【江苏省如东高级中学2017届高三上学期第二次学情调研】若命题“x R ∃∈,使得()2110x a x +-+<”是假命题,则实数a 的取值范围为__________.【答案】[]13-,【点评】已知命题为假命题,则其否定是真命题,故将该题转化为恒成立问题处理.【跟踪练习】已知命题p :“∀x ∈R ,∃m ∈R ,使4x +2x·m +1=0”.若命题p 为真命题,则实数m 的取值范围是______________.【答案】(-∞,-2]考向4 与全称量词、特称量词有关的参数问题【例14】【2017北京西城区二模】函数.若存在,使得,则k 的取值范围是A .B .C .D . 【答案】D 【解析】将函数的图象向右平移 个单位后得到函数 的图象,函数是R 上的单调递增函数,则 也是R 上的单调递增函数,则满足题意时:只需当时 成立,分类讨论: 当时: ,解得: ,此时: , 当 时: ,解得:,此时: ,综合以上两种情况可得k 的取值范围是. 点睛:无论参数出现在什么类型 的题目中,只要根据解题要求,即参数的存在对解题造成了怎样的阻碍,通过分类讨论,消除这种阻碍,使问题得到解决.但需要注意一点,不能形成定势思维:有参数就一定要分类讨论.【例15】【2018江苏横林高级中学模拟】若命题“t R ∃∈, 20t a -<”是真命题,则实数a 的取值范围是____.【答案】()0,+∞【解析】2a t >,由于20t ≥,命题“t R ∃∈,20t a -<”是真命题,则0a >,实数a 的取值范围是()0,+∞.【例16】【2017湖北省黄冈模拟】若命题“2000,20x R x x m ∃∈-+≤”是假命题,则m 的取值范围是__________.【答案】()1,+∞【例17】【2017江苏盐城三模】若命题“t R ∃∈,220t t a --<”是假命题,则实数a 的取值范围是___________.【答案】(],1-∞-【解析】2,20t R t t a ∀∈--≥ 为真命题,∴440 1.a a ∆=+≤⇒≤-【例18】已知命题p :“0],2,1[2≥-∈∀a x x ”,命题q :“022,2=-++∈∃a ax x R x ”. 若命题“p 且q ”是真命题,则实数a 的取值范围为_______________.13 【分析】若命题“p 且q ”是真命题,则命题,p q 都是真命题,首先将命题,p q 对应的参数范围求出来,求交集即可.【点评】命题p 是恒成立问题,命题q 是有解问题.【例19】【泰州中学2017届高三上学期期中考试】已知命题2:,20p x R x x a ∃∈++≤是真命题,则实数a 的取值范围是_________.【答案】1a ≤【解析】由题设方程022=++a x x 有解,故044≥-a ,即1≤a ,故应填答案1a ≤.【跟踪练习】已知函数2()2f x x x =-,()2g x ax =+(a>0),若1[1,2]x ∀∈-,2[1,2]x ∃∈-,使得f(x 1)= g(x 2),则实数a 的取值范围是___________________. 【答案】]3,35(。