小浪底枢纽工程解读
小浪底排沙原理

小浪底排沙原理小浪底是位于黄河下游的一个重要水利枢纽工程,其排沙原理一直备受关注。
小浪底排沙原理是指通过一系列工程措施,将黄河中的泥沙进行有效排除,保障下游河道的通畅和安全。
下面我们就来详细了解一下小浪底排沙原理。
首先,小浪底排沙原理的核心在于“分流输沙”。
黄河水中携带着大量的泥沙,如果这些泥沙全部进入下游河道,将会对河道的通航和防洪安全造成严重影响。
因此,小浪底工程采取了分流输沙的措施,利用分流堤将主河道分为两条,一条是主航道,另一条是泄流道。
这样可以让泥沙在主航道和泄流道中分流运输,减少了泥沙对主航道的淤积和侵蚀,保障了下游的通航安全。
其次,小浪底排沙原理还包括了“泥沙淤积和清淤”环节。
在黄河水流通过小浪底时,由于水流减速,泥沙会发生淤积,如果不及时清淤,将会导致主航道淤积严重,影响通航安全。
因此,小浪底工程还设置了泥沙清淤系统,通过机械设备或人工清淤,将淤积在主航道中的泥沙清除,保障了主航道的通畅。
另外,小浪底排沙原理还涉及到“泥沙输移和沉积”环节。
在小浪底工程中,通过设置泥沙输移系统,将泥沙从主航道输送至泄流道,减少了主航道的泥沙含量,保障了通航安全。
同时,泄流道的泥沙也会在泄流道中沉积,形成河床,这些沉积的泥沙对于保护下游河道的稳定起到了积极的作用。
总的来说,小浪底排沙原理是一个复杂而系统的工程体系,通过分流输沙、泥沙淤积和清淤、泥沙输移和沉积等环节,保障了黄河下游河道的通畅和安全。
这一排沙原理的成功实施,为黄河水利工程的发展提供了宝贵的经验和借鉴,也为其他类似河流的治理提供了有益的参考。
综上所述,小浪底排沙原理是一个综合性、系统性的工程体系,其成功实施对于黄河下游的河道治理具有重要意义。
希望未来能够进一步完善和发展小浪底排沙原理,为黄河水利工程的可持续发展贡献更多的力量。
小浪底工程解读

小?浪?底?工?程小浪底工程小浪底水利枢纽工程位于洛阳市北40公里,它的成功建成标志着中国人对黄河的开发治理翻开了全新的一页。
1994年9月,小浪底工程正式开工,1997年10月成功实现大河截流。
经过6年多的努力,耗资400多亿元,小浪底主体工程于2001年底顺利完工。
小浪底工程总库容量为126.5亿立方米,控制流域面积69.4万平方公里,占黄河流域总面积的92.3%,发挥着防洪、减淤、防凌、供水、灌溉、发电等多种功能。
小浪底水库的蓄水可以缓解下游沿岸干旱,发挥灌溉效用,解除黄河断流的危险,有力地支持着下游地区社会经济的发展。
此外,小浪底工程具有重要的调水调沙作用。
黄河是世界上罕见的"地上悬河",随时有泛滥危险,小浪底工程通过人工调控流量将下游淤沙冲入大海,使黄河河床不再抬高。
同时,引入环境监督和规划机制的小浪底工程建设,不但没有污染河水和土壤,而且绿化、美化了生态环境。
再现小浪底的山光水色,力图将这里建成一个生态旅游区。
小浪底人在以行动告诉世人,生态环境保护才是整治河道,防止水土流失的根本。
小浪底不仅是一座大坝,更是一个国际大舞台。
由于引进了世界银行的贷款,小浪底工程在施工过程中首次与国际惯例全方位接轨。
来自51个国家的工程技术人员和上万名中国建设者同台竞技,互相学习,互相合作,使工程进度、投资和质量都得到了有力保证。
小浪底工程是治黄史上的里程碑,它蕴涵着爱国主义的时代精神和自强不息的人文情怀。
千百年来,中国人从未放弃对黄河的治理,但只有在新中国才能真正实现对黄河的有效治理和开发。
只有在改革开放不断深入,综合国力不断增强的今天,才能建成像小浪底这样的伟大工程。
(张玮)来源:人民网 2002年10月22日。
黄河小浪底水利枢纽工程

黄河小浪底水利枢纽工程黄河小浪底水利枢纽工程位于河南省洛阳市孟津县小浪底,在洛阳市以北黄河中游最后一段峡谷的出口处,南距洛阳市40公里。
上距三门峡水利枢纽130公里,下距河南省郑州花园口128公里。
是黄河干流三门峡以下唯一能取得较大库容的控制性工程。
黄河小浪底水利枢纽工程是黄河干流上的一座集减淤、防洪、防凌、供水灌溉、发电等为一体的大型综合性水利工程,是治理开发黄河的关键性工程,属国家“八五”重点项目。
小浪底工程浩大,总工期十一年。
水利工程概况工程全部竣工后,水库面积达272.3平方公里,控制流域面积69.42万平方公里;总装机容量为156万千瓦,年平均发电量为51亿千瓦时;防洪标准由目前的六十年一遇,提高到千年一遇;每年可增加40亿立方米的供水量。
小浪底水库两岸分别为秦岭山系的崤山、韶山和邙山;中条山系、太行山系的王屋山。
它的建成将有效地控制黄河洪水,可使黄河下游花园口的防洪标准由六十年一遇提高到千年一遇,基本解除黄河下游凌汛的威胁,减缓下游河道的淤积,小浪底水库还可以利用其长期有效库容调节非汛期径流,增加水量用于城市及工业供水、灌溉和发电。
它处在承上启下控制下游水沙的关键部位,控制黄河输沙量的100%。
1994年9月主体工程开工,1997年10月28日实现大河截流,1999年底第一台机组发电,2001年12月31日全部竣工,总工期11年,坝址控制流域面积69.42万平方公里,占黄河流域面积的92.3%。
水库总库容126.5亿立方米,长期有效库容51亿立方米。
工程以防洪、减淤为主,兼顾供水、灌溉和发电,蓄清排浑,除害兴利,综合利用。
工程建成后,可使黄河下游防洪标准由60年一遇提高到千年一遇,基本解除黄河下游凌汛威胁,可滞拦泥沙78亿吨,相当于20年下游河床不淤积抬高,电站总装机180万千瓦,年平均发电量51亿千瓦时。
小浪底工程坝址控制流域面积69.42万平方公里,占黄河流域面积的92.3%。
水库总库容126.5亿立方米,调水调沙库容10.5亿立方米,死库容75.5亿立方米,有效库容51.0亿立方米。
小浪底介绍和观后感

小浪底介绍和观后感
一、小浪底介绍。
小浪底啊,那可是个超厉害的地方!它位于黄河中下游的交界处,就像是黄河这条巨龙身上的一个关键枢纽。
从工程角度来说,小浪底水利枢纽工程那可是一项超级宏伟的大工程。它主要是用来防洪、防凌、减淤,还能兼顾供水、灌溉和发电呢。你想啊,黄河的水有时候就像个调皮捣蛋的孩子,水量大的时候那可是洪水猛兽,而小浪底就像一个严格又智慧的守护者。当洪水可能要来肆虐的时候,小浪底就发挥它的调蓄功能,把多余的水存起来,让下游的老百姓能安安稳稳地过日子,不用担心洪水一下子把家给淹了。
二、观后感。
我去小浪底游玩的时候,真的是被震撼到了。一到那儿,首先映入眼帘的就是那高大雄伟的大坝,感觉它就像一个巨人,横亘在黄河之上,无声地诉说着人类改造自然的伟大力量。
站在观景台上看放水的时候,我整个人都惊呆了。那水流从闸口咆哮而出,我脑海里突然就蹦出“黄河之水天上来”这句诗。那种力量感,就好像大自然所有的能量都在这一刻释放出来了。我身边的游客们也都和我一样,一个个眼睛瞪得大大的,嘴巴张得能塞下一个鸡蛋,大家都被这壮观的景象给镇住了。
而且小浪底不仅仅是一个水利工程,它还是一个特别适合游玩的地方。在周围的景区漫步,能感受到黄河文化的独特魅力。那些关于黄河的传说、故事似乎都在空气中飘荡着。我看到一些当地的老人坐在树下乘凉,给小孩子们讲述着黄河以前的样子,还有小浪底工程建设时的艰辛,那种传承的感觉真的很美好。
小浪底案例资料

第二部分:小浪底水利枢纽工程图片
21——毛主席1951年10月视察黄河
第二部分:小浪底水利枢纽工程图片
第二部分:小浪底水利枢纽工程图片
23——三门峡大坝
小浪底水利枢纽工程 第三部分:小浪底工程论证过程
第三部分:小浪底工程论证过程
1、小浪底水利枢纽坝址早已受到关注 1)新中国建立前,民国政府历次黄河勘察、调查、规 划报告中,均将小浪底作为建坝坝址。 2)新中国成立后,黄河全面治理的规划开始,1953年 黄委会组织力量进驻小浪底坝址开展勘探和测量工作。 3)1955年7月,一届全国人大二次会议通过《关于根 治黄河水害和开发黄河水利的综合规划》的决议,规划在 黄河干流由上而下布置46座梯级电站,小浪底是第40个梯 级,为径流式电站。
第三部分:小浪底工程论证过程
2、三门峡水库运行方式改变,加速了小浪底的论证 1)1958年8月三门峡工程建设期间,三门峡至花园口 区间出现暴雨,小浪底水文站实测洪水17000秒立方米,黄 河堤防多处出险。使人们认识到:仅靠三门峡水库不足以 保证黄河下游的安全。 2)1960年9月三门峡水库首次蓄水,1961年2月9日坝 前最高水位达332.5米,回水超过潼关,潼关段河床平均淤 高4.3米,致使渭河排水不畅,两岸地下水位抬高,河水浸 没农田,危及关中平原的安全。
3——工程全景(1)
第二部分:小浪底水利枢纽工程图片
4——工程全景(2)
第二部分:小浪底水利枢ቤተ መጻሕፍቲ ባይዱ工程图片
5——拦河大坝(1)
第二部分:小浪底水利枢纽工程图片
6——拦河大坝(2)
第二部分:小浪底水利枢纽工程图片
7——发电厂进水塔
第二部分:小浪底水利枢纽工程图片
8——发电厂地下厂房
黄河小浪底水利枢纽工程概况

小浪底水利枢纽工程概况:小浪底水利枢纽位于三门峡水利枢纽下游130公里、河南省洛阳市以北40公里的黄河干流上,控制流域面积69.4万平方公里,占黄河流域面积的92.3%。
坝址所在地南岸为孟津县小浪底村,北岸为济源市蓼坞村,是黄河中游最后一段峡谷的出口。
小浪底水利枢纽坝顶高程281m,正常高水位275m,库容126.5亿m3,淤沙库容75.5亿m3,调水调沙库容10.5亿立方米,长期有效库容51亿m3,千年一遇设计洪水蓄洪量38.2亿m3,万年一遇校核洪水蓄洪量40.5亿m3。
死水位230m,汛期防洪限制水位254m,防凌限制水位266m。
防洪最大泄量17000亿m3/s,正常死水位泄量略大于8000m3/s。
小浪底水库正常蓄水位时淹没影响面积277.8km2,施工区占地23.33km2,共涉及河南、山西两省的济源、孟津、新安、渑池、陕县、平陆、夏县、垣曲8县(市)33个乡镇,动迁年移民20万人。
[3]1991年9月,小浪底水利枢纽工程前期工程开工。
2009年4月,全部工程通过竣工验收,是国家“八五”重点建设项目。
[4]工程全部竣工后,水库面积达272.3平方公里,控制流域面积69.42万平方公里;总装机容量为180万千瓦,年平均发电量为51亿千瓦时;每年可增加40亿立方米的供水量。
小浪底水库两岸分别为秦岭山系的崤山、韶山和邙山;中条山系、太行山系的王屋山。
它的建成将有效地控制黄河洪水,可使黄河下游花园口的防洪标准由六十年一遇提高到千年一遇,基本解除黄河下游凌汛的威胁,减缓下游河道的淤积,小浪底水库还可以利用其长期有效库容调节非汛期径流,增加水量用于城市及工业供水、灌溉和发电。
它处在承上启下控制下游水沙的关键部位,控制黄河输沙量的100%,可滞拦泥沙78亿吨,相当于20年下游河床不淤积抬高。
1994年9月主体工程开工,1997年10月28日实现大河截流,1999年底第一台机组发电,2001年12月31日全部竣工,总工期11年,坝址控制流域面积69.42万平方公里,占黄河流域面积的92.3%。
小浪底工程(一)(图)解读

小浪底工程(一)(图)
小浪底水利枢纽工程采用先进技术、先进管理,在当今复杂的地层上建筑起了“最具挑战性”的雄伟工程,小浪底创下了一项世界之最和中国第一。
—世界上最大的地下“迷宫’。
小浪底洞群进水口,在一块长270m、最高120m的人造绝壁上,开糟凿了最大开挖直径达19.8m,有19个洞口的16条大直径的隧洞。
在左岸约1km2的单薄山体中,一共开凿了100多个地下洞室,整个山体几乎被掏空,构筑起世界上最大的地下“迷宫”。
—世界上最雄伟的进水塔群。
进水口10座进水塔连成一座宽276.4m,高113m,最大长度70m的钢筋混凝土塔群,混凝土浇筑量达80多万m3。
其工程规模,结构复杂和施工难度堪称世界之最。
—3条世界最大的孔板隧洞。
依照设计,在完成导流任务后的3条直径为14.5m的导流洞中,增设内径为10m和10.5m的环形突坎—孔板,使高速水流通过孔板环的一缩一扩,在洞中消减大量能量,从而降低流速,减少水流对建筑物的冲蚀和破坏。
每条导流洞增设3级孔板,改建成永久泄洪洞,是世界上最大的孔板消能泄洪洞。
—世界最大的消力池。
泄洪系统出口的3个一级消力池总长210m、宽356m、深28m。
由9条隧洞和1条溢洪道下泄的高速水流在其中进行两级消能,是世界上最大、最集中的消力池。
—3条直径为6.5m的排沙洞,采用双圈环绕坎黏接预应力混凝土衬砌技术,建筑出世界最大的排沙洞,同时填补了国内空白。
国内最大的地下厂房施工夜景
钢索架起的工业城堡国内最大的岩壁吊梁
世界上最大的地下“迷宫”。
小浪底水利枢纽拦沙初期调度与运用

小浪底水利枢纽拦沙初期调度与运用小浪底水利枢纽是中国河南省的一座大型水利工程,位于河南省南阳市方城县小浪底水库上游,是黄河上游河段上的一道天然固垛,也是太行山和华夏岭之间的唯一通道。
小浪底水利枢纽的建设改变了黄河上的洪水灾害形势,保护了黄河中下游的百姓生命财产安全,同时也为周边地区的农田灌溉提供了保障。
下面就小浪底水利枢纽的拦沙初期调度与运用进行一番探讨。
小浪底水利枢纽项目建成后,一直致力于减轻黄河上游的泥沙负荷,保护下游地区。
拦沙是小浪底水利枢纽的重要功能之一,通过封堵黄河上游的泥沙,可以减少下游河道的淤积,降低水位,改善河道流量条件,防止洪水发生。
因此,在小浪底水利枢纽的拦沙初期调度和运用中,需要注意以下几个方面。
首先,要做好河流水位的监测和预测工作。
河流水位的监测可以通过设置水位观测站点来进行,每天定时采集数据,及时分析水位变化趋势,预测未来的发展趋势。
只有了解了水位的变化规律,才能做出合理的拦沙调度,确保水利工程的正常运行。
其次,要制定合理的拦沙方案。
拦沙的目的是为了减少下游的泥沙负荷,改善河道流量条件,防止洪水发生。
因此,在制定拦沙方案时,需要考虑河道的特性和泥沙的运移规律,选择合适的时机和方式进行拦沙,保证不影响下游的生态环境和农田灌溉。
再次,要合理运用小浪底水利枢纽的调水功能。
小浪底水利枢纽具有调水、发电、航运等多种功能,通过调节水位,可以改变河道流量条件,进一步减少下游的泥沙负荷。
因此,在拦沙初期的调度和运用中,要合理运用小浪底水利枢纽的调水功能,加大来水量,清洗河道,保持河流畅通,同时要注意控制水位变化的幅度,防止给下游地区带来负面影响。
最后,要加强与下游地区的沟通与协调。
小浪底水利枢纽的拦沙工作是一项长期的任务,需要与下游地区的政府和相关部门进行密切合作。
通过及时沟通和信息共享,可以更好地了解下游地区的实际需求和情况,并根据需要进行调整和改进。
只有各方共同努力,才能更好地实现小浪底水利枢纽的拦沙初期调度和运用目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
枢纽工程来源:小浪底网发布日期: 2009-09-27 15:24:08一、工程所处地理位置小浪底水利枢纽位于三门峡水利枢纽下游130公里、河南省洛阳市以北40公里的黄河干流上,控制流域面积69.4万平方公里,占黄河流域面积的92.3%。
坝址所在地南岸为孟津县小浪底村,北岸为济源市蓼坞村,是黄河中游最后一段峡谷的出口。
二、工程规模小浪底水利枢纽坝顶高程281m,正常高水位275m,库容126.5亿m3,淤沙库容75.5亿m3,长期有效库容51亿m3,千年一遇设计洪水蓄洪量38.2亿m3,万年一遇校核洪水蓄洪量40.5亿m3。
死水位230m,汛期防洪限制水位254m,防凌限制水位266m。
防洪最大泄量17000亿m3/s,正常死水位泄量略大于8000m3/s.小浪底水库正常蓄水位时淹没影响面积277.8km2,施工区占地23.33km2,共涉及河南、山西两省的济源、孟津、新安、渑池、陕县、平陆、夏县、垣曲8县(市)33个乡镇,动迁年移民20万人。
三、水文地质条件.小浪底水利枢纽建设前的坝址地貌一)径流由于受地形、气候、产流条件的影响,黄河径流的地区分布很不平衡。
大部分径流来自兰州以上及龙门到三门峡区间。
受大气环流和季风的影响,黄河径流的年际变化较大,年内分配很不均衡。
干流及较大支流汛期径流量占全年的60%左右,每年3月份-6月份,径流量只占全年的10%-20%。
小浪底水利枢纽控制黄河90%的水量。
(二)洪水黄河流域的洪水主要由暴雨形成,发生时间为6-10月,其中大洪水和特大洪水的发生时间,兰州以上一般在7月-9月,三门峡-花园口之间在7月中旬到8月中旬。
黄河洪水的洪峰形式,上游为矮胖型,洪水历时较长,洪峰较低。
中游洪水形式为高瘦型,洪水历时较短,洪峰较高。
(三) 凌汛黄河下游河道呈东北向流入渤海。
一般元月初开始封河,二月底开河。
由于纬度的差异,山东河段比河南河段早十天左右封河,晚二十天左右开河。
封河期因冰凌阻水,泄流不畅,增加河道槽蓄水量;开河期上段先开,冰水及前期槽蓄水量一起下泄,由于下段尚未解冻,容易形成冰塞、冰坝,水位升高很快,造成凌汛。
同时,由于黄河下游河道上宽下窄,封河期槽蓄量大部分集中于上段,下段河段窄而多弯,容易卡凌雍水,更加重凌汛的威胁。
(四)泥沙黄河径流的泥沙含量居世界首位,多年平均含沙量37.6kg/m3,多年平均输沙量13.51亿T。
在一年之中,泥沙主要集中在汛期,干流站7-9月沙量占全年沙量的80%左右,支流站接近100%;汛期沙量又集中在几次暴雨洪水之中。
黄河泥沙约有1/4沉积在下游河床,致使下游河床每年以10cm速度抬高。
小浪底水利枢纽控制近100%的沙量。
(五)地质小浪底工程坝址河床覆盖层最深达70余米。
坝址区为二叠纪和三叠纪沉积的砂岩、粉砂岩和粘土岩交互地层。
岩层以8?-12?的缓倾角倾向北东,并含有连通性很好,磨擦系数f=0.2-0.25、C=0.005Mpa的泥化夹层。
岩体断裂构造及节理裂隙发育,横穿坝下的F1及左左右的80?等大断层均与枢纽建筑物有密切关系,断层和节理裂隙均为F238、F236、F28岸.高倾角,且大部分断层呈上下游方向展布。
左岸山体由于沟道切割形成了单薄分水岭,水库蓄水后存在稳定问题。
近坝区右岸包括右坝肩有多处大的滑坡和倾倒变形体。
坝址区基本地震烈度为7度。
四、工程开发任务小浪底水利枢纽开发任务以防洪、防凌、减淤为主,兼顾供水、灌溉、发电,除害兴利,综合利用。
(一)防洪、防凌水文气象资料分析表明,黄河可能出现55000m3/s的特大洪水,即使经过三门峡、陆浑、故县等水库拦蓄后,花园口站的洪峰流量仍将达到42000m3/s。
黄河下游防洪工程的设防标准仅为22000m3/s(花园口站),不到百年一遇。
三门峡水库对控制凌汛期流量起到了一定的作用,但由于可利用库容过小,防凌效果有限。
小浪底水利枢纽与已建的三门峡、陆浑、故县水库联合运用,并利用东平湖分洪,可使黄河下游防洪标准提高到千年一遇。
千年一遇以下洪水不再使用北金堤滞洪区,减轻常遇洪水的防洪负担。
与三门峡水库联合运用,共同调蓄凌汛期水量,可基本解除黄河下游凌汛威胁。
黄河下游防洪体系(二)减淤小浪底水利枢纽利用淤沙库容沉积泥沙,可使黄河下游河床20年内不淤积抬高。
非汛期下泄清水挟沙入海以及人造峰冲淤,对下游河床有进一步减淤作用。
.黄河下游堤防(三)供水、灌溉黄河下游控制灌溉面积约4000万亩,每年平均实灌面积1760万亩,年引水量80~100亿m3,由于黄河来水丰枯不匀,又缺乏足够的水量调节能力,灌溉用水保证率仅32%。
二十世纪七十年代以来,沿河工农业迅猛发展,城市供水需求急剧增长,山东利津至入海口河段几乎每年断流,水资源供需矛盾十分突出。
小浪底水利枢纽可减少下游断流的机率,平均每年可增加20亿m3的调节水量,满足下游灌溉与城市用水,提高灌溉保证率。
(四)发电小浪底水利枢纽装机6台,每台30万kw,总装机容量180万kw,额定水头112m,是河南电网理想的调峰电站。
五、工程的地位和作用小浪底工程是三门峡以下唯一能够取得较大库容的控制性工程,处在控制黄河下游水沙的关键部位,也是唯一能够担负下游防洪、防凌、兼顾工农业供水、发电的综合水利枢纽,具有优越的自然条件和重要的战略地位。
小浪底水库区为峡谷河段,有利于保持较大的长期有效库容,可以长期发挥调水调沙、兴利除害的效益,防洪运用比较可靠,不仅可以拦蓄特大洪水,还可以根据下游防洪需要适当控制中常洪水。
这是其它工程措施所不能比拟的。
小浪底水库拦调泥沙,能够较快地减缓下游河道淤积,还可以通过人造洪峰、调水调沙等运用方式,长期发挥较大的减淤作用,与其它减淤措施相比,在减淤效果、减淤单位投资、影响人口等方面,小浪底工程都具有明显的优越性。
小浪底水利枢纽在保证下游防洪、满足下游减淤的前提下,还可以调节径流,为下游工农业用水增加可利用的水源,发电调峰可以改善电力系统的运行条件。
综合各方面因素进行观察,小浪底水利枢纽是黄河下游防洪减淤工程中最优的方案。
六、建设管理的特殊性小浪底工程规模宏大,结构复杂,管理方式与国际惯例接轨,被中外专家称为世界上最具挑战性的工程之一。
(一)技术复杂.小浪底坝址地质情况复杂、水沙条件特殊,导致枢纽采用泄洪、排沙、发电建筑物集中布置在左岸,洞群进口分布在6个高程,进水塔、消力塘集中布置的特殊结构形式,技术十分复杂。
(1)洞室密集,是世界坝工史上洞室布置最密集的水利工程。
(2)进水塔上集中布置16条隧洞的进水口,是世界上最大最复杂的进水塔;(3)导流洞后期增设3级孔板环改建为永久泄洪洞,是世界上最大的孔板消能泄洪洞。
(4)水轮机的抗磨、防腐要求高。
(5)主坝基础覆盖层深、防渗墙厚。
(6)岩石破碎,地下厂房、进出口高边坡支护要求高。
(7)孔板洞、排沙洞、明流洞混凝土抗磨要求高。
(二)施工难度大(1)工程量大,施工强度高。
小浪底大坝总填筑方量5185万m3是中国最高、填筑量最大的土石坝。
土石坝明挖和填筑最高强度分别为110万m3/月和130万m3/月。
(2)大量建筑物布置在地下,石方洞挖最高强度约15万m3/月。
(3)洞室断面大、建筑物结构复杂,结构砼分层分块多。
3条导流洞洞身直径14.5m,开挖最大直径近20m,3条尾水洞开挖断面12.8m?19.5m(宽?高),均分3层开挖,施工难度大。
导流洞中闸室段开挖最大净高达42.26m,混凝土衬砌共分24层施工,上下部同时作业,每洞浇筑块多达133块。
进水塔孔洞多,体型复杂,钢筋林立,各类埋件和止水片多,很难提高浇筑强度。
(4)导流洞塌方导致工期延误,必须实施赶工,资源配置紧张,施工强度提高。
(三)合同管理占据突出位置,但合同管理的市场环境并未形成合同是小浪底工程处理甲乙方关系的法律准绳,是工程建设管理活动的基础。
在20世纪90年代,合同在小浪底工程中的地位与合同管理的大环境不匹配,使得合同管理工作处在学习、应用、碰撞、磨合的状态。
国际承包商认为合同是刚性的,一切按合同规定办,国内却还习惯于“业主”意志,“长官”意志,把合同看成是可以根据自己意愿修改的一种形式。
设计变更、市场供应的变化,往往造成业主违约,国家法令法规修改也带来合同规定的业主风险。
依据合同进行工程建设管理是小浪底工程的崭新课题。
(四)现场管理关系复杂小浪底工程主体土建标分别由三家外国承包商联营体中标。
中标联营体将部分项目以工程分包,劳务分包的形式分包给外公司和中国公司,在施工现场形成了业主发包,中标承包商分包或再分包的“中、外、中”、“中、外、外、中”的合同链。
由于业主与承包商,承包商与分包商国别不同,思想观念、文化背景、施工经验、管理水平上的差异很大,给工程建设管理带来极大困难。
(五)移民安置困难多小浪底工程移民动迁年人口20万人,以大农业安置为主,走整建制搬迁开发性移民的道路,是我国移民安置工作的新偿试。
小浪底工程移民工作标准高,政策性强,矛盾多,按工程进度要求完成各阶段移民安置任务的困难很大。
.七、枢纽建筑物小浪底水利枢纽由大坝、泄洪排沙建筑物、引水发电建筑物组成。
枢纽平面布置见图1-1。
枢纽为一等工程。
主要建筑物为一级建筑物。
(一)大坝拦河坝采用带内铺盖的斜心墙堆石坝,以垂直混凝土防渗墙为主要防渗幕,并利用黄河泥沙淤积形成天然铺盖,作为辅助防渗防线。
左岸垭口设壤土心墙副坝一座。
最大坝高160m,坝顶长1667m,坝体方量5185万m3。
坝型剖面见图1-2大坝典型剖面图大坝全景(二)泄洪、排沙建筑物泄洪、排沙建筑物由3条直径14.5m的导流洞;3条由导流洞改建的三级孔板消能泄洪洞;3条明流泄洪洞;3条直径6.5m压力排沙洞;1条直径3.5m压力灌溉洞;1座正常溢洪道;1座非常溢洪道(尚未建设);10座进水塔;1个综合消力塘组成。
洞群布置见图1-3。
进水塔布置图进水塔全景1、导流洞完成导流任务后改建为孔板导流洞承担导流任务。
14.5m条直径3截流后第一个汛期由消能泄洪洞。
2、孔板消能泄洪洞孔板消能泄洪洞是在压力洞内安装孔板环,使水流流经孔口时突然收缩,在孔口下游又突然扩散,形成强烈紊动的漩涡流,在水流内部产生强烈的剪切摩擦达到消能目的。
3条直径14.5m的导流洞改建成3条孔板泄洪洞后,每条孔板消能泄洪洞由进水塔、压力隧洞连接段(俗称龙抬头段)、三级孔板消能段、中间闸室、明流洞段和出口段组成。
孔板洞进水塔进口底板高程定为175.0m。
因进口高程低,水流含沙量高,且粗沙比例大,为防止事故闸门孔口因流速高产生磨蚀,同时也控制闸门总水压力不致过大,进口采用双孔布置。
塔内设检修门(2-4.5m?15.5m)和事故门(2-3.5m?12.0m)各一道。
事故门后由14.1m?12.0m渐变为?12.5m,渐变段轴线长度:1号孔板洞为35.5m,2号和3号孔板洞为24.85m。