初高中数学衔接预习教材(共16讲):第4讲 分式运算

合集下载

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。

考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。

初升高数学衔接课程-- 分式运算 (教师版含解析)

初升高数学衔接课程-- 分式运算 (教师版含解析)

第2章 分式运算【知识衔接】————初中知识回顾————(一)分式的运算规律1、加减法 同分母分式加减法:c b a c b c a ±=± 异分母分式加减法:bc bd ac c d b a ±=±2、乘法:bd ac d c b a =⋅3、除法:bc ad c d b a d c b a =⋅=÷4、乘方:n nn ba b a =)( (二)分式的基本性质1、)0(≠=m bm am b a2、)0(≠÷÷=m mb m a b a ————高中知识链接————比例的性质(1)若d c ba=则bc ad = (2)若d c ba =则d d c b b a ±=±(合比性质) (3)若d c ba =(0≠-db )则d b d bc a c a -+=-+(合分比性质) (4)若d c b a ==…=n m ,且0≠+++n d b 则b a n d b m c a =++++++ (等比性质) 分式求解的基本技巧1、分组通分2、拆项添项后通分3、取倒数或利用倒数关系4、换元化简5、局部代入6、整体代入7、引入参数8、运用比例性质【经典题型】初中经典题型1.若代数式4x x -有意义,则实数x 的取值范围是( ) A . x =0 B . x =4 C . x ≠0 D . x ≠4【答案】D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D .2.化简:,结果正确的是( )A . 1B .C .D .【答案】B 【解析】试题分析:原式==.故选B .3.当x =______时,分式523x x -+的值为零. 【答案】5. 【解析】解:由题意得:x ﹣5=0且2x +3≠0,解得:x =5,故答案为:5.4.先化简,再求值: 22121x x x x x x ⎛⎫-÷ ⎪+++⎝⎭,其中x =22. 【答案】21x -,7. 【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.试题解析:原式=()22121x x x x x x ++-⋅+=()2211x x x x x +-⋅+=()()2111x x x x x-+⋅+=21x - 当x =22=(2221-=8-1=7.高中经典题型例1:化简232||211x x x x x +-+-- 解:原式=22|)|1()1()1(x x x -+- 当0≥x 且1≠x 时,原式=x +1当0<x 且1-≠x 时,原式=xx +-1)1(2 例2:化简:++++3223bab b a a a 442222223223311b a b a a b b a b ab b a a b -+-+--+-+-例3:计算2)(32222233332222-++÷---++nm m n n m m n n m m n n m m n n m m n 解:设a m n =,b nm =,则1=ab ∴原式=2)(32223322-++÷---++b a b a b a b a b a =ba ab b a b a ab b a ab b a +-+----++2)(32223322=2222232)()()(nm n m b a b a b a b a b a b a -+-=-+=+-⋅-+ 例4:计算abbc ac c b a ac ab bc b a c bc ac ab a c b +---++----+---222 解:既不便于分式通分,又不适合分组通分,试图考察其中一项,从中发现规律ca b a c a b a b a c a c a b a bc bc ac ab a c b ---=-----=--=+---11))(()()())((2 因此不难看出,拆项后通分更容易 ∴原式=))(())(())((b c a c b a a b c b a c c a b a c b ---+------- =))(()()())(()()())(()()(b c a c a c b c a b c b c b a b c a b a b a c a -----+----------- =ac b c a c a b c b c a b a -=---+-+-----2111111 例5:若1=abc ,求111++++++++c ac c b bc b a ab a 解:∵1=abc ,∴bc a 1=,将式中的a 全换成bc1 ∴原式=11111++++++++c bcc c b bc b bc bc b bc =11111=++++++++bc b bc bc b b bc b 例6:已知x z y x y z y x z z y x ++-=+-=-+且0≠xyz ,求分式xyzx z z y y x ))()((+++的值 解:分析:已知条件以连比的形式出现,可引进一个参数来表示这个连比,从而将分式化成整式。

初高中衔接专题讲义一、数与式的运算(4课时)(可编辑修改word版)

初高中衔接专题讲义一、数与式的运算(4课时)(可编辑修改word版)

专题一、数与式的运算课时一:乘法公式一、初中知识1.实数运算满足如下运算律:加法交换律,加法结合律,乘法交换律,乘法结合律,乘法对加法的分配律。

2.乘法公式平方差公式: (a +b)(a -b) =a 2-b 2完全平方公式: (a ±b)2=a 2± 2ab +b 2二、目标要求1.理解字母可以表示数,代数式也可以表示数,并掌握数与式的运算。

2.掌握平方差公式和完全平方公式的灵活运用,理解立方和与差公式,两数和与差的立方公式以及三数和的完全平方公式。

三、必要补充根据多项式乘法法则推导出如下乘法公式(1)(x +a)(x +b) =x 2+ (a +b)x +ab(2)(ax +b)(cx +d ) =acx2+ (ad +bc)x +bd(3)立方和公式: (a +b)(a 2-ab +b 2 ) =a3+b3(4)立方差公式: (a -b)(a 2+ab +b 2 ) =a 3-b3(5)两数和的立方公式:(a +b)3=a3+ 3a 2b + 3ab2+b3(6)两数差的立方公式:(a -b)3=a3- 3a 2b + 3ab 2-b3(7)三数和的平方公式:(a +b +c)2=a 2+b 2+c 2+ 2ab + 2bc + 2ac四、典型例题例1、计算:(1)(x + 2)(x - 5) (3)(2x -1)3(2)(2x + 3)(3x - 2) (4)(2a +b -c)2例2:已知x +y = 3 ,xy = 8 ,求下列各式的值(1)x 2y 2;(2)x 2xy y 2;(3)( x y)2;(4)x 3y 3分析:(1)x 2y 2( x y)2 2 xy(2)x 2xy y 2( x y)2 3 xy(3)( x y)2( x y)2 4 xy(4)x 3y 3( x y)( x 2xy y 2 ) ( x y)[( x y)2 3 xy] 例3:已知a +b +c = 4 ab +bc +ac = 4 求a 2+b 2+c 2的值分析: a2+b2+c2= (a +b +c)2- 2(ab +bc +ac) = 8变式:已知:x2- 3x +1= 0 ,求x3+1x3的值。

人教版《分式的运算》PPT教学模板

人教版《分式的运算》PPT教学模板
33xy 2y2
3x
21x 2 y8x2y
5 a
4xyyx
xyxy
人教版《分式的运算》完美实用课件 (PPT优 秀课件 )
人教版《分式的运算》完美实用课件 (PPT优 秀课件 )
例2 计算:
a24a4 a1 (1)a22a1a24
1
1
(2) 4
9m2
m27m
练习 计算:
注意:乘法
(1)3a3b 10ab
用符号语言表达: a c ac b d bd
人教版《分式的运算》完美实用课件 (PPT优 秀课件 )
人教版《分式的运算》完美实用课件 (PPT优 秀课件 )
合作学习
(3) 2 4 = 2 5=25
猜一猜
3 5 3 4 34
a c ? bd
两个分式相除,把除式的分子和分母颠倒位置
25a2b3 a2b2
运算时,分子 或分母能分
(2)x24y22xxy2y22xx222yxy 解的要分解.
人教版《分式的运算》完美实用课件 (PPT优 秀课件 )
人教版《分式的运算》完美实用课件 (PPT优 秀课件 )
例3 “丰收1号”小麦的试验田是边长为a米(a>1)的正方
形减去一个边长为1米的正方形蓄水池后余下的部分, “丰 收2号”小麦的试验田是边长为(a-1)米的正方形,两块 试验田的小麦都收获了500千克。 (1)哪种小麦的单位面积产量高? (2)高的单位面积产量是低的单位面积产量的多少倍?
人教版《分式的运算》完美实用课件 (PPT优 秀课件 )
小结
(1)分式的乘法法则和除法法则
(2)分子或分母是多项式的分式乘除法 的解题步骤是:
①将原分式中含同一字母的各多项式按降幂(或升幂) 排列;在乘除过程中遇到整式则视其为分母为1,分 子为这个整式的分式;

2024年初高中数学衔接讲座4

2024年初高中数学衔接讲座4
2024/2/29
函数的性质,如单调性、奇偶性、周 期性等,掌握判断函数性质的方法。
函数的应用问题,如最值问题、方程 根的问题等,理解问题背景,掌握问 题解决的方法和步骤。
10
03
几何部分衔接要点
Chapter
2024/2/29
11
平面几何知识点回顾
相似三角形和全等三角形的判定 定理和性质,以及其在几何证明 和计算中的应用。
重新审题,明确题目要求和条件, 找出正确的解题方向。
反思总结
在解题前要仔细阅读题目,充分理 解题意和要求,避免因为理解不准 确而导致解题方向错误。
25
拓展延伸题目挑战尝试
挑战题目一
尝试用多种方法证明同一命题的正确性
挑战目标
通过尝试不同的证明方法,加深对逻辑思维和证明方法的 理解和掌握。
挑战建议
可以选择一些具有多种证明方法的经典命题进行尝试,如 勾股定理、等差数列求和公式等。
18
05
逻辑思维与证明方法培养
Chapter
2024/2/29
19
逻辑推理能力训练
2024/2/29
命题与推理
01
了解命题的基本概念,掌握推理的基本方法,如直接推理、间
接推理等。
逻辑联结词与复合命题
02
理解逻辑联结词(如且、或、非)的含义,掌握复合命题的构
成及真假判断。
充分条件、必要条件与充要条件
初中数学问题通常较为直接,高中数 学问题则需要更多的分析和思考。
2024/2/29
5
学习方法与习惯调整
• 初中数学可以通过大量练习来提高成绩,高中数学则需要更多的思考和 总结。
• 初中数学可以依赖老师和课本,高中数学则需要更多的自主学习和探究 。

广东省广州市第三中学初高中数学教材衔接导学案:第四课 分式

广东省广州市第三中学初高中数学教材衔接导学案:第四课 分式

第四课 分式一、知识点1.分式的意义; 形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式A B具有下列性质:A A MB B M ⨯=⨯;A A M B B M ÷=÷ 2.繁分式:像ab c d+,2m n p m n p+++这样,分子或分母中又含有分式的分式叫做繁分式. 二、例题例1⑴代数式1111++x 有意义,则x 需要满足的条件是_________;(2)化简:2112111x x x x x +--++-(3)已知1()23f x x =-,求11()()2f f x x --的值.例2若54(2)2x A B x x x x +=+++,求常数,A B 的值.例3(1)试证:111(1)1n n n n =-++(其中n 是正整数); (2)证明:对任意大于1的正整数n ,有11112334(1)2n n +++<⨯⨯+.例4设c e a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.例5 已知13x x+=,求33222x x x x --+++的值.三、练习1.填空题:(1)1(2)n n =+(112n n -+)(2)若223x y x y -=+,则x y= (3)12a =,13b =,则2223352a ab a ab b -=+- (4)若2220x xy y +-=,则22223x xy y x y ++=+2.解方程22112()3()10x x x x+-+-=.3.已知3(1)(2)12x A B x x x x -=+----,求2A B +的值.4.已知21610x x --=,试求下列各式的值:(1)221x x +(2)331x x -5.正数,x y 满足222x y xy -=,求x y x y -+的值.6.计算1111...12233499100++++⨯⨯⨯⨯.7.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14 .。

初高中数学衔接课(高一)PPT课件图文(2024)

初高中数学衔接课(高一)PPT课件图文(2024)

02
展示正弦函数、余弦函数、正切函数的图像,分析三角函数的
周期性、奇偶性、单调性等性质。
三角恒等变换
03
介绍三角恒等式,如和差化积、积化和差等公式,以及它们在
三角函数计算中的应用。
13
数列与数学归纳法
2024/1/29
数列的概念及表示方法
阐述数列的定义、数列的通项公式及递推公式等基础知识 。
等差数列与等比数列
详细讲解等差数列和等比数列的定义、性质及求和公式。
数学归纳法及其应用
介绍数学归纳法的原理及步骤,通过实例演示数学归纳法 在证明数列问题中的应用。
14
04
初高中数学衔接关键点分析
2024/1/29
15
思维方式转变
从具象到抽象
初中数学以具象思维为主,而高 中数学则更强调抽象思维,需要 学生逐渐适应并培养抽象思维能
力。
从静态到动态
初中数学问题多为静态的,而高 中数学则涉及更多动态变化的问 题,需要学生理解并掌握变量之
间的关系。
从单一到多元
初中数学知识点相对单一,而高 中数学知识点更加多元化,需要 学生建立多元化的知识体系和思
维方式。
2024/1/29
16
学习方法调整
2024/1/29
课前预习与课后复习
高中数学内容相对复杂,需要学生做好课前预习和课后复习,加 深对知识点的理解和记忆。
教材内容
涵盖初中数学与高中数学衔接部 分的核心知识点,包括函数、方 程、不等式、数列、概率统计等

2024/1/29
教材结构
按照知识模块进行划分,每个模块 包含知识点讲解、例题分析、练习 题等内容,便于学生理解和掌握。
辅助资源

人教版八年级数学上册《分式的运算(第4课时)》示范教学课件

人教版八年级数学上册《分式的运算(第4课时)》示范教学课件
类比分数的混合运算的运算顺序,你能得出分式的混合运算的运算顺序吗?
思考
问题
算乘方,除法变乘法
约分,做乘法
观察运算类型:乘方、加法、除法
异分母分式相加减
式与数的混合运算有相同的运算顺序,即先算乘方,再算乘除,最后算加减.
归纳
有括号时,按照小括号、中括号、大括号的顺序,先做括号内的运算,再做括号外的运算.
上述法则可以用式子表示为
4.分式的加减法法则:
同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减.
上述法则可以用式子表示为
问题
在分数的混合运算过程中,运算顺序是什么?
分数的混合运算的运算顺序: 先算乘方,再算乘除,最后算加减,有括号的先算括号里面的.
例3 先化简,再求值: ,其中 x=-2.
分析:先根据分式的运算法则进行化简,再代入求值.
当x=-2时,原式=2-(-2)=4.
分式化简求值的“真相” 分式的化简与求值的一般思路是先化简,再将已知数代入求值,化简与求值的重点是化简,要注意分式混合运算的顺序,有时也会用到整体代入的思想.
人教八年级数学上册
分式的运算
第4课时
1.分式的乘法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.
上述法则可以用式子表示为
2.分式的除法法则:
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
上述法则可以用式子表示为
3.分式的乘方法则:
分式乘方要把分子、分母分别乘方.
在运算的过程中,我们也可以适当地运用一些运算律,从而达到简化运算的目的.
例1 计算 .
结果要化成最简分式或整式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲 分式的运算
1.分式的意义 形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式A B
具有下列性质: A A M B B M ⨯=⨯; A A M B B M
÷=÷. 2.繁分式 像a
b c d
+,2m n p m n p
+++这样,分子或分母中又含有分式的分式叫做繁分式. 【例1】若54(2)2
x A B x x x x +=+++,求常数,A B 的值. 解: ∵(2)()2542(2)(2)(2)
A B A x Bx A B x A x x x x x x x x x ++++++===++++, ∴5,24,
A B A +=⎧⎨=⎩ 解得 2,3A B ==.
【例2】(1)试证:111(1)1
n n n n =-++(其中n 是正整数); (2)计算:1111223910
+++⨯⨯⨯L ; (3)证明:对任意大于1的正整数n , 有11112334(1)2
n n +++<⨯⨯+L . (1)证明:∵11(1)11(1)(1)
n n n n n n n n +--==+++, ∴111(1)1
n n n n =-++(其中n 是正整数)成立. (2)解:由(1)可知
1111223910+++⨯⨯⨯L 11111(1)()()223910
=-+-++-L 1110=-=910. (3)证明:∵1112334(1)n n +++⨯⨯+L =111111()()()23341
n n -+-++-+L =1121n -+, 又n ≥2,且n 是正整数, ∴1n +1 一定为正数,∴1112334(1)n n +++⨯⨯+L <12
. 【例3】设c e a =,且e >1,2c 2-5ac +2a 2=0,求e 的值. 解:在2c 2-5ac +2a 2=0两边同除以a 2,得 2e 2-5e +2=0,∴(2e -1)(e -2)=0,
∴e =12
<1,舍去;或e =2. ∴e =2.
3.多项式除以多项式
做竖式除法时,被除式、除式都要按同一字母的降幂排列,缺项补零(除式的缺项也可以不补零,但做其中的减法时,要同类项对齐),要特别注意,得到每个余式的运算都是减法。

结果表示为:被除式=除式⨯商式+余式
【例4】计算)3()3(2
4x x x -÷- 解:39
39
33330030032222
442--+----++-+++-x x x x
x x x x x x
∴x x x x x 39)3()3()3(224-+--⨯-=-
练习1.)32()2713103(223-+÷-++x x x x x
2.)1()22(232-÷-+x x x
答案:1.32151443)32()2713103(2223-+-+
+=-+÷-++x x x x x x x x x 2.12)1()22(2232-+
+=-÷-+x x x x x x
1.对任意的正整数n ,1(2)n n =+ (112
n n -+); 2.若223
x y x y -=+,则x y =( ) (A )1 (B )54 (C )45
(D )65 3.正数,x y 满足222x y xy -=,求x y x y
-+的值. 4.计算1111...12233499100++++⨯⨯⨯⨯. 5.已知1453,21122192
3234+--=-+--=x x x B x x x x A ,求:22B A ÷ 6.填空:
(1)12a =,13
b =,则2223352a ab a ab b -=+-____ ____; (2)若2220x xy y +-=,则22
223x xy y x y
++=+__ __; 7.计算:1111132435911
++++⨯⨯⨯⨯L . 8.试证:对任意的正整数n ,有111123234(1)(2)
n n n +++⨯⨯⨯⨯++L <14 .
答案
1.12 2.B 3. 1- 4.99100
5.222)23(-=÷x B A 6.(1)37 (2)52
,或-15。

相关文档
最新文档