《数列的概念与简单表示法》同步训练题
高中数学(人教版必修5)配套练习:2.1 数列的概念与简单表示法

一、选择题
1.下列有关数列的说法正确的是( )
①同一数列的任意两项均不可能相同;
②数列-1,0,1 与数列 1,0,-1 是同一个数列;
③数列中的每一项都与它的序号有关.
A.①②
B.①③
C.②③
D.③
[答案] D
[解析] ①是错误的,例如无穷个 3 构成的常数列 3,3,3,…的各项都是 3;②是错误的,
∴an=2n-1+1.
11
22
33
44
(3)a1=2=11+1,a2=5=22+1,a3=10=32+1,a4=17=42+1…,
n
∴an=n2+1.
2
4
8
16
(4)a1=1=2,a2=3,a3=2=4,a4= 5 …,
2n
∴an=n+1.
1
1
11
1
1
11
(5)a1=-3=-1 × 3,a2=8=2 × 4,a3=-15=-3 × 5,a4=24=4 × 6, 1
2n [答案] an=2n-12n+1
2 2 4 2 × 2 6 2 × 3 8 2 × 4 10 2 × 5 [解析] 3=1 × 3,15=3 × 5,35=5 × 7,63=7 × 9,99=9 × 11,…,∴an=
2n 2n-12n+1.
8.已知数列 3,7,11,15,19,…,那么 3 11是这个数列的第________项.
[答案] A [解析] 据题意,由关系式 an+1=f(an)得到的数列{an},满足 an+1>an,即该函数 y=f(x) 的图象上任一点(x,y)都满足 y>x,结合图象,只有 A 满足,故选 A. 3.若数列的前 4 项分别为 2,0,2,0,则这个数列的通项公式不能是( ) A.an=1+(-1)n+1 B.an=1-cosnπ
数列的概念与简单表示法练习(可编辑修改word版)

n { n n 2 n一.选择题 数列的概念与简单表示法练习1. 下列解析式中不是数列1, -1,1, -1,1 ,的通项公式的是( )A. a = (-1)nB. a n = (-1)n +1C. a n = (-1)n -1D. a n =1,n 为奇数 -1,n 为偶数 2. 数列2,5,2 2,11 的一个通项公式是() A. a n B. a n C. a n D. a n 3. 已知数列{a n } , a n = 1 n (n + 2) (n ∈ N ) ,那么 1 是这个数列的第( )项. + 120A. 9B. 10C. 11D. 12 4. 数列{a n }, a n = f (n ) 是一个函数,则它的定义域为( ) A. 非负整数集 B. 正整数集C. 正整数集或其子集D. 正整数集或{1, 2, 3, 4, , n } 5. 已知数列{a } , a = 2n 2 -10n + 3 ,它的最小项是( )A. 第一项B. 第二项C. 第三项D. 第二项或第三项6. 已知数列{a n } ,a 1 = 3, a 2 = 6 ,且 a n +2 = a n +1 - a n ,则数列的第五项为( ) A. 6B. -3C. -12D. -6 二.填空题7.已知数列{a n } , a n = kn - 5,且a 8 = 11 ,则 a 17 = .8.已知 f (x ) = log (x 2 + 7) , a = f (n ) ,则{a n } 的第五项为 .9.数列15 , 24 , 35 , 48 , 63 , , 的一个通项公式为 .2 5 10 17 26 10. 已知数列{a n } 满足 a 1 = -2 , a 三.解答题= 2 + 2a n 1- a n ,则 a 4 = . 11. 已知数列{a n } 中, a 1 = 3, a 10 = 21,通项 a n 是项数 n 的一次函数, ①求{a n } 的通项公式,并求 a 2005 ; ②若{b n } 是由 a 2 , a 4 , a 6 , a 8, , 组成,试归纳{b n } 的一个通项公式.3n - 33n -1 3n +1 3n +3 n +112. 已知{a n } 满足 a 1 = 3, a n +1 = 2a n +1,试写出该数列的前5 项,并用观察法写出这个数列的一个通项公式.13. 已知数列 中,(1),且 对任意 n∈N*恒成立,求实数 λ 的取值范围;(2),求常数 的值14 根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式. (1) a 1 =0, a n +1 = a n +(2n -1)(n∈N);(2) a =1, a= 2a n (n∈N); 1 n +1 a n + 2(3) a 1 =3, a n +1 =3 a n -2 (n∈N).。
高中数学《 数列的概念与简单表示法》(训练)(含答案)

§2.1数列的概念与简单表示法1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法.4.数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.知识拓展1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,n ∈N *.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1.3.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)所有数列的第n 项都能使用公式表达.( )(3)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (4)1,1,1,1,…,不能构成一个数列.( )(5)任何一个数列不是递增数列,就是递减数列.( )(6)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) 题组二 教材改编2.[P33A 组T4]在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.233.[P33A 组T5]根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.题组三 易错自纠4.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________.5.数列{a n }中,a n =-n 2+11n (n ∈N *),则此数列最大项的值是________. 6.已知数列{a n }的前n项和S n =n 2+1,则a n =________题型一 由数列的前几项求数列的通项公式1.数列0,23,45,67,…的一个通项公式为( )A .a n =n -1n +2(n ∈N *)B .a n =n -12n +1(n ∈N *)C .a n =2(n -1)2n -1(n ∈N *)D .a n =2n2n +1(n ∈N *)2.数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________.思维升华 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理. (3)如果是选择题,可采用代入验证的方法.题型二 由a n 与S n 的关系求通项公式典例 (1)已知数列{a n }的前n 项和S n =3n 2-2n +1(n ∈N *),则其通项公式为________________.(2)若数列{a n }的前n 项和S n =23a n +13(n ∈N *),则{a n }的通项公式a n =________.思维升华 已知S n ,求a n 的步骤 (1)当n =1时,a 1=S 1. (2)当n ≥2时,a n =S n -S n -1.(3)对n =1时的情况进行检验,若适合n ≥2的通项则可以合并;若不适合则写成分段函数形式. 跟踪训练 (1)(2017·河南八校一联)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________.(2)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________.题型三 由数列的递推关系求通项公式典例 根据下列条件,确定数列{a n }的通项公式. (1)a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ; (2)a 1=1,a n +1=2n a n ; (3)a 1=1,a n +1=3a n +2.引申探究 在本例(2)中,若a n =n -1n ·a n -1(n ≥2,且n ∈N *),其他条件不变,则a n =________.思维升华 已知数列的递推关系求通项公式的典型方法 (1)当出现a n =a n -1+m 时,构造等差数列. (2)当出现a n =xa n -1+y 时,构造等比数列. (3)当出现a n =a n -1+f (n )时,用累加法求解. (4)当出现a na n -1=f (n )时,用累乘法求解.跟踪训练 (1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N *),则数列{a n }的通项公式a n =______________.(2)在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.题型四 数列的性质命题点1 数列的单调性典例 已知a n =n -1n +1,那么数列{a n }是( )A .递减数列B .递增数列C .常数列D .摆动数列 命题点2 数列的周期性典例 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=_______________________________________.命题点3 数列的最值典例 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19 C.119 D.1060思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.跟踪训练 (1)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1, a 1=35,则数列的第 2 018项为________.(2)(2019安徽名校联考)已知数列{a n }的首项为2,且数列{a n }满足a n +1=a n -1a n +1,数列{a n }的前n 项的和为S n ,则S 2 016等于( ) A .504 B .588 C .-588 D .-504解决数列问题的函数思想典例 (1)数列{a n }的通项公式是a n =(n +1)·⎝⎛⎭⎫1011n,则此数列的最大项是第________项. (2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是__________. 思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析.1.(2017·湖南长沙一模)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( )A .a n =(-1)n -1+1 B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =2sinn π2D .a n =cos(n -1)π+1 2.(2018·葫芦岛质检)数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-22233.(2017·黄冈质检)已知在正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .4C .2 2D .454.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2 018等于( )A .3B .2 C.12 D.235.(2018·长春调研)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133C .4D .06.(2017·江西六校联考)已知数列{a n }满足a n =⎩⎪⎨⎪⎧(5-a )n -11,n ≤5,a n -4,n >5,且{a n }是递增数列,则实数a 的取值范围是( )A .(1,5) B.⎝⎛⎭⎫73,5 C.⎣⎡⎭⎫73,5 D .(2,5) 7.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5=________.8.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.9.(2018·大庆模拟)已知数列{a n }的通项公式a n =(n +2)·⎝⎛⎭⎫67n,则数列{a n }的项取最大值时,n =________.10.(2017·太原模拟)已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N *),则a n =__________. 11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.12.已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3T n =S 2n +2S n ,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.13.(2017·江西师大附中、鹰潭一中联考)定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n =d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2 015a 2 013等于( ) A .4×2 0152-1 B .4×2 0142-1 C .4×2 0132-1 D .4×2 0132 14.若数列⎩⎨⎧⎭⎬⎫n (n +4)⎝⎛⎭⎫23n 中的最大项是第k 项,则k =________.15.在数列{a n }中,a 1=1,a 2=2,若a n +2=2a n +1-a n +2,则a n 等于( ) A.15n 2-25n +65B .n 3-5n 2+9n -4C .n 2-2n +2D .2n 2-5n +4 16.(2017·太原五中模拟)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________.§2.1数列的概念与简单表示法题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.(×)(2)所有数列的第n项都能使用公式表达.(×)(3)根据数列的前几项归纳出数列的通项公式可能不止一个.(√)(4)1,1,1,1,…,不能构成一个数列.(×)(5)任何一个数列不是递增数列,就是递减数列.( × )(6)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( √ ) 题组二 教材改编2.[P33A 组T4]在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23 答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.3.[P33A 组T5]根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.答案 5n -4 题组三 易错自纠4.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________. 答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 5.数列{a n }中,a n =-n 2+11n (n ∈N *),则此数列最大项的值是________. 答案 30解析 a n =-n 2+11n =-⎝⎛⎭⎫n -1122+1214, ∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 6.已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N * 解析 当n =1时,a 1=S 1=2,当n ≥2时, a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N *.题型一 由数列的前几项求数列的通项公式1.数列0,23,45,67,…的一个通项公式为( )A .a n =n -1n +2(n ∈N *)B .a n =n -12n +1(n ∈N *)C .a n =2(n -1)2n -1(n ∈N *)D .a n =2n2n +1(n ∈N *)答案 C解析 注意到分子0,2,4,6都是偶数,对照选项排除即可.2.数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________.答案 (-1)n 1n (n +1)解析 这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n1n (n +1).思维升华 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理. (3)如果是选择题,可采用代入验证的方法.题型二 由a n 与S n 的关系求通项公式典例 (1)已知数列{a n }的前n 项和S n =3n 2-2n +1(n ∈N *),则其通项公式为________________.答案 a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2,n ∈N *解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2,n ∈N *.(2)若数列{a n }的前n 项和S n =23a n +13(n ∈N *),则{a n }的通项公式a n =________.答案 (-2)n -1解析 由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.思维升华 已知S n ,求a n 的步骤 (1)当n =1时,a 1=S 1. (2)当n ≥2时,a n =S n -S n -1.(3)对n =1时的情况进行检验,若适合n ≥2的通项则可以合并;若不适合则写成分段函数形式. 跟踪训练 (1)(2017·河南八校一联)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________. 答案 -2n -1解析 由题意得S n +1=2a n +1+1,S n =2a n +1, 两式相减得S n +1-S n =2a n +1-2a n , 即a n +1=2a n ,又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项、2为公比的等比数列,所以a n =-2n -1. (2)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2解析 当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式.∴a n =⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2.题型三 由数列的递推关系求通项公式典例 根据下列条件,确定数列{a n }的通项公式.(1)a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ; (2)a 1=1,a n +1=2n a n ; (3)a 1=1,a n +1=3a n +2. 解 (1)∵a n +1=a n +ln ⎝⎛⎭⎫1+1n , ∴a n -a n -1=ln ⎝⎛⎭⎫1+1n -1=ln n n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 32+ln 2+2=2+ln ⎝ ⎛⎭⎪⎫n n -1·n -1n -2·…·32·2=2+ln n (n ≥2). 又a 1=2适合上式,故a n =2+ln n (n ∈N *). (2)∵a n +1=2n a n ,∴a n a n -1=2n -1 (n ≥2),∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=(1)22n n -.又a 1=1适合上式,故a n =(1)22n n -(n ∈N *).(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,故a n =2·3n -1-1(n ∈N *).引申探究 在本例(2)中,若a n =n -1n ·a n -1(n ≥2,且n ∈N *),其他条件不变,则a n =________.答案 1n解析 ∵a n =n -1n a n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n.思维升华 已知数列的递推关系求通项公式的典型方法 (1)当出现a n =a n -1+m 时,构造等差数列. (2)当出现a n =xa n -1+y 时,构造等比数列. (3)当出现a n =a n -1+f (n )时,用累加法求解.(4)当出现a na n -1=f (n )时,用累乘法求解.跟踪训练 (1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N *),则数列{a n }的通项公式a n =______________. 答案 3×2n -1-2解析 由a n +2+2a n -3a n +1=0, 得a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列,∴a n +1-a n =3×2n -1, ∴当n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3, 将以上各式累加,得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1), ∴a n =3×2n -1-2(当n =1时,也满足).(2)在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.答案 4-1n解析 原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,逐项相加得a n =a 1+1-1n ,故a n =4-1n.题型四 数列的性质命题点1 数列的单调性典例 已知a n =n -1n +1,那么数列{a n }是( )A .递减数列B .递增数列C .常数列D .摆动数列 答案 B解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列.命题点2 数列的周期性典例 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=_______________________________________.答案 12解析 ∵a n +1=11-a n ,∴a n +1=11-a n=11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,n ≥3, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值典例 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19 C.119 D.1060答案 C解析 令f (x )=x +90x (x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大.思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.跟踪训练 (1)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1, a 1=35,则数列的第 2 018项为________. 答案 15解析 由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 018=a 504×4+2=a 2=15.(2)(2017·安徽名校联考)已知数列{a n }的首项为2,且数列{a n }满足a n +1=a n -1a n +1,数列{a n }的前n 项的和为S n ,则S 2 016等于( ) A .504 B .588 C .-588 D .-504 答案 C解析 ∵a 1=2,a n +1=a n -1a n +1,∴a 2=13,a 3=-12,a 4=-3,a 5=2,…,∴数列{a n }的周期为4,且a 1+a 2+a 3+a 4=-76,∵2 016÷4=504,∴S 2 016=504×⎝⎛⎭⎫-76=-588,故选C.解决数列问题的函数思想典例 (1)数列{a n }的通项公式是a n =(n +1)·⎝⎛⎭⎫1011n,则此数列的最大项是第________项. (2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是__________. 思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析.解析 (1)∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9,10项. (2)由a n +1>a n 知该数列是一个递增数列, 又∵通项公式a n =n 2+kn +4, ∴(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,∴k >-3. 答案 (1)9或10 (2)(-3,+∞)1.(2017·湖南长沙一模)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A .a n =(-1)n -1+1 B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =2sin n π2D .a n =cos(n -1)π+1 答案 C解析 对n =1,2,3,4进行验证,知a n =2sinn π2不合题意,故选C. 2.(2018·葫芦岛质检)数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223答案 C解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021.3.(2017·黄冈质检)已知在正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .4C .2 2D .45 答案 B解析 由题意得a 2n +1-a 2n =a 2n -a 2n -1=…=a 22-a 21=3,故{a 2n }是以3为公差的等差数列,即a 2n =3n -2.所以a 26=3×6-2=16.又a n >0,所以a 6=4.故选B.4.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2 018等于( )A .3B .2 C.12 D.23答案 A解析 由已知a 3=a 2a 1=32,a 4=a 3a 2=12,a 5=a 4a 3=13,a 6=a 5a 4=23,a 7=a 6a 5=2,a 8=a 7a 6=3,∴数列{a n }具有周期性,且T =6, ∴a 2 018=a 336×6+2=a 2=3.5.(2018·长春调研)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4 D .0 答案 D解析 ∵a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大为0. 6.(2017·江西六校联考)已知数列{a n }满足a n =⎩⎪⎨⎪⎧(5-a )n -11,n ≤5,a n -4,n >5,且{a n }是递增数列,则实数a 的取值范围是( )A .(1,5) B.⎝⎛⎭⎫73,5 C.⎣⎡⎭⎫73,5 D .(2,5) 答案 D解析 ∵a n =⎩⎪⎨⎪⎧(5-a )n -11,n ≤5,a n -4,n >5,且{a n }是递增数列,∴⎩⎪⎨⎪⎧5-a >0,a >1,5(5-a )-11<a 2,解得2<a <5,故选D.7.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5=________.答案 85解析 借助递推关系,由a 8递推依次得到a 7=2113,a 6=138,a 5=85.8.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2解析 当n ≥2时,a n =S n -S n -1=2n +1, 当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.9.(2018·大庆模拟)已知数列{a n }的通项公式a n =(n +2)·⎝⎛⎭⎫67n,则数列{a n }的项取最大值时,n =________. 答案 4或5解析 假设第n 项为最大项,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,即⎩⎨⎧(n +2)·⎝⎛⎭⎫67n≥(n +1)·⎝⎛⎭⎫67n -1,(n +2)·⎝⎛⎭⎫67n≥(n +3)·⎝⎛⎭⎫67n +1,解得⎩⎪⎨⎪⎧n ≤5,n ≥4, 即4≤n ≤5,又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574.10.(2017·太原模拟)已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N *),则a n =__________. 答案2n 2-n +2解析 由a n -a n +1=na n a n +1,得1a n +1-1a n=n ,则由累加法得1a n -1a 1=1+2+…+(n -1)=n 2-n 2,又因为a 1=1,所以1a n =n 2-n2+1=n 2-n +22,所以a n =2n 2-n +2(n ∈N *).11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式. 解 (1)由S n =12a 2n +12a n (n ∈N *)可得 a 1=12a 21+12a 1,解得a 1=1, S 2=a 1+a 2=12a 22+12a 2,解得a 2=2, 同理,a 3=3,a 4=4. (2)S n =a n 2+12a 2n ,①当n ≥2时,S n -1=a n -12+12a 2n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列, 故a n =n .12.已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3T n =S 2n +2S n ,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式. 解 (1)由3T 1=S 21+2S 1,得3a 21=a 21+2a 1,即a 21-a 1=0.因为a 1>0,所以a 1=1. (2)因为3T n =S 2n +2S n ,① 所以3T n +1=S 2n +1+2S n +1,②②-①,得3a 2n +1=S 2n +1-S 2n +2a n +1.因为a n +1>0,所以3a n +1=S n +1+S n +2,③ 所以3a n +2=S n +2+S n +1+2,④④-③,得3a n +2-3a n +1=a n +2+a n +1, 即a n +2=2a n +1, 所以当n ≥2时,a n +1a n =2.又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2),即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2,所以对n ∈N *,都有a n +1a n=2成立, 所以数列{a n }的通项公式为a n =2n -1,n ∈N *.13.(2017·江西师大附中、鹰潭一中联考)定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n =d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2 015a 2 013等于( ) A .4×2 0152-1 B .4×2 0142-1 C .4×2 0132-1 D .4×2 0132 答案 C解析 由题知⎩⎨⎧⎭⎬⎫a n +1a n 是首项为1,公差为2的等差数列,则a n +1a n =2n -1,所以a n =a n a n -1×a n -1a n -2×…×a 2a 1×a 1=(2n -3)×(2n -5)× (1)所以a 2 015a 2 013=(2×2 015-3)(2×2 015-5)×…×1(2×2 013-3)(2×2 013-5)×…×1=4 027×4 025=(4 026+1)(4 026-1)=4 0262-1=4×2 0132-1.14.若数列⎩⎨⎧⎭⎬⎫n (n +4)⎝⎛⎭⎫23n 中的最大项是第k 项,则k =________.答案 4解析 设数列为{a n },则a n +1-a n =(n +1)(n +5)·⎝⎛⎭⎫23n +1-n (n +4)·⎝⎛⎭⎫23n =⎝⎛⎭⎫23n ⎣⎡⎦⎤23(n 2+6n +5)-n 2-4n =2n3n +1(10-n 2). 所以当n ≤3时,a n +1>a n ; 当n ≥4时,a n +1<a n .因此,a 1<a 2<a 3<a 4,a 4>a 5>a 6>…, 故a 4最大,所以k =4.15.在数列{a n }中,a 1=1,a 2=2,若a n +2=2a n +1-a n +2,则a n 等于( ) A.15n 2-25n +65 B .n 3-5n 2+9n -4 C .n 2-2n +2 D .2n 2-5n +4 答案 C解析 由题意得(a n +2-a n +1)-(a n +1-a n )=2,因此数列{a n +1-a n }是以1为首项,2为公差的等差数列,a n +1-a n =1+2(n -1)=2n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+3+…+(2n -3)=1+(1+2n -3)(n -1)2=(n -1)2+1=n 2-2n +2,又a 1=1=12-2×1+2,因此a n =n 2-2n +2(n ∈N *),故选C.16.(2017·太原五中模拟)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________. 答案 1n(n ∈N *)解析 因为数列{a n }是首项为1的正项数列, 所以a n ·a n +1≠0,所以(n +1)a n +1a n -na na n +1+1=0.令a n +1a n=t (t >0),则(n +1)t 2+t -n =0, 分解因式,得[(n +1)t -n ](t +1)=0, 所以t =n n +1或t =-1(舍去),即a n +1a n =nn +1.方法一 (累乘法)因为a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12·23·34·45·…·n -1n ,所以a n =1n (n ∈N *).方法二 (迭代法) 因为a n +1=nn +1a n,所以a n =n -1n a n -1=n -1n .n -2n -1.a n -2=n -1n .n -2n -1.n -3n -2.a n -3=...=n -1n .n -2n -1.n -3n -2.. (1)2a 1,所以a n =1n (n ∈N *).方法三 (特殊数列法)因为a n +1a n =n n +1,所以(n +1)a n +1na n=1.所以数列{na n }是以a 1为首项,1为公比的等比数列. 所以na n =1×1n -1=1. 所以a n =1n (n ∈N *).。
数列的概念与简单表示法随堂练习(含答案)

数列的概念与简单表示法(时间:45分钟分值:100分)一、选择题1. 下列四个关于数列的说法:①数列可以看成一个定义在N *(或它的有限子集{1,2,…,n })上的函数; ②数列的项数是有限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中正确说法的序号是( )A. ①②③B. ②③④C. ①③D. ①②③④ 答案:C解析:∵②中数列项数可以有无限项,故②错.④中数列的通项公式不一定唯一,有的有多个,故④错.①③正确.故选C.2. [2013·陕西五校模拟]已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则a 2等于 ( )A. 4B. 2C. 1D. -2 答案:A解析:∵S n =2a n -2,∴S 1=a 1=2a 1-2.即a 1=2,又S 2=a 1+a 2=2a 2-2,∴a 2=4.3. [2013·西安模拟]已知数列2,5,22,11,…,则25在这个数列中的项数为( )A. 6B. 7C. 19D. 11 答案:B 解析:设2,5,8,11,…形成的数列为{a n },被开方数形成的数列为{b n },从形式上讲,每一项都有二次根号,被开方数为2,5,8,11,…,易归纳出数列{b n }的一个通项公式为b n =3n -1,所以a n =3n -1,25=20=3n -1,解得n =7,所以25是这个数列的第7项.4. [2013·金版原创]已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2012=( ) A. 12B. 2C. -1D. 1 答案:B解析:由a 1=12,a n +1=11-a n 得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…,于是a 3n +1=12,a 3n +2=2,a 3n +3=-1,因此a 2012=a 3×670+2=2,故选B. 5. [2013·济宁质检]已知S n 是数列{a n }的前n 项和,S n +S n +1=a n +1(n ∈N *),则此数列是( )A. 递增数列B. 递减数列C. 常数列D. 摆动数列 答案:C解析:∵S n +S n +1=a n +1,∴当n ≥2时,S n -1+S n =a n .两式相减得a n +a n +1=a n +1-a n ,∴a n =0(n ≥2).当n =1时,a 1+(a 1+a 2)=a 2,∴a 1=0,∴a n =0(n ∈N *),故选C.6. [2013·赤峰模拟]已知数列{a n }的通项公式为a n =(n +2)(78)n ,则当a n 取得最大值时,n 等于( )A. 5B. 6C. 5或6D. 7 答案:C解析:由题意知⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1, ∴⎩⎨⎧ (n +2)(78)n ≥(n +1)(78)n -1,(n +2)(78)n ≥(n +3)(78)n +1.∴⎩⎪⎨⎪⎧n ≤6,n ≥5.∴n =5或6. 二、填空题7. 在数列{a n }中,a 1=1,a n +1=2n a n (n ∈N *),则数列{a n }的通项公式为a n =________.答案:2n (n -1)2解析:由题意知,a n +1a n =2n ,a n a n -1=2n -1,a n -1a n -2=2n -2,…,a 2a 1=2,又a 1=1, 所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·…·2·1=2n (n -1)2.8. [2013·唐山模拟]在数列{a n }中,a 1=1,a n +1-a n =2n +1,则数列的通项a n =________. 答案:n 2解析:∵a n +1-a n =2n +1.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=(2n -1)+(2n -3)+…+5+3+1=n 2(n ≥2).当n =1时,也适用a n =n 2.9. [2013·海口质检]如图是同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第23个图案中需用黑色瓷砖________块.答案:100解析:用a n 表示第n 个图的黑色瓷砖块数,则a 1=12,a 2=16,a 3=20,…,由此可得{a n }是以12为首项,以4为公差的等差数列.∴a 23=a 1+(23-1)×4=12+22×4=100.三、解答题10. 已知下列数列{a n }的前n 项和S n ,求{a n }的通项公式:(1)S n =2n 2-3n ;(2)S n =3n +2.解:(1)当n =1时,a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5,由于a 1也适合此等式,∴a n =4n -5.(2)当n =1时,a 1=S 1=5,当n ≥2时,a n =S n -S n -1=(3n +2)-(3n -1+2)=2·3n -1. ∴a n =⎩⎪⎨⎪⎧5, n =1,2·3n -1 n ≥2. 11. [2013·宜春月考]数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解:(1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16,即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍),∴从第7项起各项都是正数.12. [2013·金版原创]已知数列{a n }满足a 1=1,a n =a 1+12a 2+13a 3+…+1n -1a n -1(n >1). (1)求数列{a n }的通项公式;(2)若a n =2013,求n .解:(1)∵a 1=1,且a n =a 1+12a 2+13a 3+…+1n -1a n -1(n >1). ∴a 2=a 1=1,a n +1=a 1+12a 2+13a 3+…+1n -1a n -1+1n a n (n ≥1). ∴a n +1-a n =1na n (n ≥2). ∴a n +1=n +1n a n, ∴a n +1n +1=a n n(n ≥2). ∴a n n =a n -1n -1=…=a 22=12, ∴a n =n 2(n ≥2). ∴a n =⎩⎪⎨⎪⎧ 1 (n =1)n 2(n ≥2). (2)∵a n =n 2=2013,∴n =4026.。
高一数列的概念及简单表示方法知识点+例题+练习 含答案

1.数列的定义按照一定次序排列的一列数称为数列,数列中的每个数都叫做这个数列的项. 2.数列的分类 分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限按项与项间的大小关系分类 递增数列 a n +1__>__a n 其中n ∈N *递减数列 a n +1__<__a n 常数列 a n +1=a n按其他标准分类有界数列 存在正数M ,使|a n |≤M 摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式.5.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1 , n =1,S n -S n -1, n ≥2.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达.( × )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ )(3)1,1,1,1,…,不能构成一个数列.( × )(4)任何一个数列不是递增数列,就是递减数列.( × )(5)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( √ ) (6)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( √ )1.已知数列{a n }中,a 1=1,1a n +1=1a n +3 (n ∈N *),则a 10=________. 答案128解析 由题意得1a n +1-1a n=3.∴1a 2-1a 1=3,1a 3-1a 2=3,1a 4-1a 3=3,1a 5-1a 4=3,…,1a 10-1a 9=3,对递推式叠加得1a 10-1a 1=27,故a 10=128.2.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图).则第7个三角形数是________. 答案 28解析 根据三角形数的增长规律可知第七个三角形数是1+2+3+4+5+6+7=28. 3.数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1 (n ≥1,n ∈N *),则数列{a n }的通项公式是__________. 答案 a n =3n -1解析 由a n +1=2S n +1可得a n =2S n -1+1 (n ≥2),两式相减得a n +1-a n =2a n ,即a n +1=3a n (n ≥2).又a 2=2S 1+1=3,a 3=3·a 2=32·a 1=32, a 4=3a 3=33… a n =3a n -1=3n -1.4.(教材改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.答案 5n -45.已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=2,当n ≥2时, a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.题型一 由数列的前几项求数列的通项公式例1 (1)数列0,23,45,67,…的一个通项公式为________.①a n =n -1n +1(n ∈N *) ②a n =n -12n +1(n ∈N *)③a n =2(n -1)2n -1(n ∈N *) ④a n =2n 2n +1(n ∈N *)(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.答案 (1)③ (2)2n +1n 2+1解析 (1)注意到分母0,2,4,6都是偶数,对照所给项排除即可.(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.思维升华 根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…. 解 (1)数列中各项的符号可通过(-1)n 表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6,故通项公式为a n =(-1)n (6n -5). (2)数列变为89⎝⎛⎭⎫1-110,89⎝⎛⎭⎫1-1102,89⎝⎛⎭⎫1-1103,…, 故a n =89⎝⎛⎭⎫1-110n . (3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母小3. 因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,故a n =(-1)n 2n -32n .题型二 由数列的前n 项和求数列的通项公式例2 设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式. 解 (1)令n =1时,T 1=2S 1-1,因为T 1=S 1=a 1,所以a 1=2a 1-1,所以a 1=1. (2)n ≥2时,T n -1=2S n -1-(n -1)2, 则S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2] =2(S n -S n -1)-2n +1=2a n -2n +1. 因为当n =1时,a 1=S 1=1也满足上式, 所以S n =2a n -2n +1(n ≥1),当n ≥2时,S n -1=2a n -1-2(n -1)+1, 两式相减得a n =2a n -2a n -1-2,所以a n =2a n -1+2(n ≥2),所以a n +2=2(a n -1+2), 因为a 1+2=3≠0,所以数列{a n +2}是以3为首项,公比为2的等比数列. 所以a n +2=3×2n -1,所以a n =3×2n -1-2, 当n =1时也成立, 所以a n =3×2n -1-2.思维升华 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.(1)已知数列{a n }的前n 项和S n =n +1n +2,则a 4=________.(2)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________.答案 (1)130 (2)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2解析 (1)a 4=S 4-S 3 =56-45=130. (2)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.题型三 由数列的递推关系求通项公式例3 (1)设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =________. (2)数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =________. 答案 (1)n (n +1)2+1 (2)2×3n -1-1解析 (1)由题意得,当n ≥2时, a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,符合上式,因此a n =n (n +1)2+1.(2)方法一 (累乘法)a n +1=3a n +2,即a n +1+1=3(a n +1), 即a n +1+1a n +1=3, 所以a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…,a n +1+1a n +1=3.将这些等式两边分别相乘得a n +1+1a 1+1=3n .因为a 1=1,所以a n +1+11+1=3n ,即a n +1=2×3n -1(n ≥1), 所以a n =2×3n -1-1(n ≥2), 又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1. 方法二 (迭代法) a n +1=3a n +2,即a n +1+1=3(a n +1)=32(a n -1+1)=33(a n -2+1) =…=3n (a 1+1)=2×3n (n ≥1), 所以a n =2×3n -1-1(n ≥2), 又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1.思维升华 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解. 当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解.(1)已知数列{a n }满足a 1=1,a n =n -1n·a n -1(n ≥2),则a n =________.(2)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5=________. 答案 (1)1n(2)16解析 (1)∵a n =n -1n a n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n .(2)当n =1时,S 1=2a 1-1,∴a 1=1. 当n ≥2时,S n -1=2a n -1-1, ∴a n =2a n -2a n -1,∴a n =2a n -1. ∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16.题型四 数列的性质命题点1 数列的单调性例4 已知数列{a n }的前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∵b n =2a n +1,∴b n =⎩⎨⎧23,n =1,1n , n ≥2,n ∈N *.(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴c n +1<c n .∴数列{c n }为递减数列. 命题点2 数列的周期性例5 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=_____________________________________.答案 12解析 ∵a n +1=11-a n,∴a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值例6 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项的值是________.答案119解析 令f (x )=x +90x (x >0),运用基本不等式得,f (x )≥290当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或10时,a n =119最大.思维升华 1.解决数列的单调性问题可用以下三种方法(1)用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列或是常数列. (2)用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.(3)结合相应函数的图象直观判断. 2.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 3.数列的最值可以利用数列的单调性或求函数最值的思想求解.(1)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1,a 1=35,则数列的第2 015项为________.(2)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是________. 答案 (1)25(2)0解析 (1)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 015=a 3=25.(2)∵a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大值为0.5.数列中的新定义问题典例 (1)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 014项与5的差,即a 2 014-5=__________.(用式子表示)(2)对于数列{x n },若对任意n ∈N *,都有x n +x n +22<x n +1成立,则称数列{x n }为“减差数列”.设b n =2t -tn -12n -1,若数列b 3,b 4,b 5,…是“减差数列”,则实数t 的取值范围是____________.思维点拨 (1)观察图形,易得a n -a n -1=n +2(n ≥2)可利用累加法求解.(2)由“减差数列”的定义,可得关于b n 的不等式,把b n 的通项公式代入,化归为不等式恒成立问题求解.解析 (1)因为a n -a n -1=n +2(n ≥2),a 1=5,所以a 2 014=(a 2 014-a 2 013)+(a 2 013-a 2 012)+…+(a 2-a 1)+a 1=2 016+2 015+…+4+5 =(2 016+4)×2 0132+5=1 010×2 013+5,所以a 2 014-5=1 010×2 013.(2)由数列b 3,b 4,b 5,…是“减差数列”, 得b n +b n +22<b n +1(n ≥3), 即t -tn -12n +t -t (n +2)-12n +2<2t -t (n +1)-12n ,即tn -12n +t (n +2)-12n +2>t (n +1)-12n ,化简得t (n -2)>1. 当n ≥3时,若t (n -2)>1恒成立,则t >1n -2恒成立,又当n ≥3时,1n -2的最大值为1,则t 的取值范围是(1,+∞).答案 (1)1 010×2 013 (2)(1,+∞)温馨提醒 解决数列的新定义问题要做到:(1)准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要求的形式,切忌同已有概念或定义相混淆.(2)方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法.[方法与技巧]1.求数列通项或指定项.通常用观察法(对于交错数列一般用(-1)n 或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2.强调a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2. 3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路:(1)算出前几项,再归纳、猜想;(2)利用累加法或累乘法可求数列的通项公式.4.数列的性质可利用函数思想进行研究.[失误与防范]1.数列a n =f (n )和函数y =f (x )定义域不同,其单调性也有区别:y =f (x )是增函数是a n =f (n )是递增数列的充分不必要条件.2.数列的通项公式可能不存在,也可能有多个.3.由a n =S n -S n -1求得的a n 是从n =2开始的,要对n =1时的情况进行验证.A 组 专项基础训练(时间:40分钟)1.数列23,-45,67,-89,…的第10项是________. 答案 -2021解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021. 2.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =__________.答案 n 2(n -1)2解析 设数列{a n }的前n 项积为T n ,则T n =n 2,当n ≥2时,a n =T n T n -1=n 2(n -1)2. 3.若S n 为数列{a n }的前n 项和,且S n =n n +1,则1a 5=________. 答案 30解析 当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),所以1a 5=5×6=30. 4.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为________.答案 7解析 ∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n .∵a 7=22-21=1>0,a 8=22-24=-2<0,∴n =7时,数列{a n }的前n 项和最大.5.已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的______________条件.答案 充分不必要解析 若数列{a n }为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是有3>2λ,λ<32.由λ<1可推得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件.6.(2015·大连双基测试)已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2 解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2. 7.数列{a n }中,已知a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 7=________. 答案 1解析 由已知a n +1=a n +a n +2,a 1=1,a 2=2,能够计算出a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1.8.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________. 答案 2n -1解析 当n =1时,S 1=a 1=2a 1-1,得a 1=1,当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.9.数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍去).所以从第7项起各项都是正数.10.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n. (1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1, 整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1, a 3=42a 2, ……a n -1=n n -2a n -2, a n =n +1n -1a n -1. 将以上n 个等式两端分别相乘,整理得a n =n (n +1)2. 显然,当n =1时也满足上式.综上可知,{a n }的通项公式a n =n (n +1)2. B 组 专项能力提升(时间:20分钟)11.已知数列{a n }满足a 1=33,a n +1-a n n =2,则a n n的最小值为________. 答案 10.5解析 由题意可知a n +1=a n +2n ,由迭代法可得a n =a 1+2[1+2+3+4+…+(n -1)]=n 2-n+33,从而a n n =n +33n -1.当n =6时,a n n取得最小值10.5. 12.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21=________. 答案 72解析 ∵a n +a n +1=12,a 2=2, ∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 13.定义:称n P 1+P 2+…+P n为n 个正数P 1,P 2,…,P n 的“均倒数”.若数列{a n }的前n 项的“均倒数”为12n -1,则数列{a n }的通项公式为____________. 答案 a n =4n -3解析 ∵n a 1+a 2+…+a n =12n -1, ∴a 1+a 2+…+a n n =2n -1, ∴a 1+a 2+…+a n =(2n -1)n ,a 1+a 2+…+a n -1=(2n -3)(n -1)(n ≥2),当n ≥2时,a n =(2n -1)n -(2n -3)(n -1)=4n -3;a 1=1也适合此等式,∴a n =4n -3.14.若数列{n (n +4)(23)n }中的最大项是第k 项,则k =________. 答案 4解析 由题意得⎩⎨⎧ k (k +4)(23)k ≥(k +1)(k +5)(23)k +1,k (k +4)(23)k ≥(k -1)(k +3)(23)k -1,所以⎩⎪⎨⎪⎧k 2≥10,k 2-2k -9≤0,由k ∈N *可得k =4. 15.(2015·开封模拟)已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.。
高中数学选择性必修二 专题4 1 数列的概念与简单表示法(含答案)同步培优专练

专题4.1 数列的概念与简单表示法知识储备知识点一数列及其有关概念思考1数列1,2,3与数列3,2,1是同一个数列吗?【答案】不是.顺序不一样.思考2根据你对于数列的定义的理解,看看能不能回答下面的问题:(1)按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,……,排在第n位的数称为这个数列的第n项.(2) 数列的一般形式可以写成a1,a2,…,a n,…,简记为{a n}.思考3数列的记法和集合有些相似,那么数列与集合的区别在哪儿?【答案】数列中的数讲究顺序,集合中的元素具有无序性;数列中可以出现相同的数,集合中的元素具有互异性.知识点二通项公式思考1数列1,2,3,4,…的第100项是多少?你是如何猜的?【答案】100.由前四项与它们的序号相同,猜第n项a n=n,从而第100项应为100.思考2上例中的a n=n当序号n取不同的值,就可得到不同的项,所以可以把a n=n当作数列1,2,3,4,…的项的通用公式,这个公式就叫通项公式.你能把通项公式推广到一般数列吗?【答案】如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.思考3数列的通项公式a n=f(n)与函数解析式y=f(x)有什么异同?【答案】如图,数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,n})为定义域的函数a n=f(n)当自变量按照从小到大的顺序依次取值时所对应的一列函数值.不同之处是定义域,数列中的n必须是从1开始且连续的正整数,函数的定义域可以是任意非空数集.知识点三数列的分类(1)按项数分类,项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列.(2)按项的增减趋势分类,从第二项起,每一项都大于它的前一项的数列叫做递增数列;从第二项起,每一项都小于它的前一项的数列叫做递减数列;各项相等的数列叫做常数列;从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列. 知识点四 递推公式思考1 (1)已知数列{a n }的首项a 1=1,且有a n =3a n -1+2(n >1),则a 4=________. (2) 已知数列{a n }中,a 1=a 2=1,且有a n +2=a n +a n +1(n ∈N *),则a 4=________. 【答案】(1)53 (2)3思考2 上例是一种给出数列的方法,叫递推公式.你能概括一下什么叫递推公式吗?【答案】如果数列{a n }的第1项或前几项已知,并且数列{a n }的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式.思考3 我们已经知道通项公式和递推公式都能给出数列.那么通项公式和递推公式有什么不同? 【答案】通项公式和递推公式都是给出数列的方法.已知数列的通项公式,可以直接求出任意一项;已知递推公式,要求某一项,则必须依次求出该项前面所有的项. 知识点五 数列的表示方法思考1 以数列2,4,6,8,10,12,…为例,你能用几种方法表示这个数列? 【答案】(1)解析法、列表法、图象法.数列可以用通项公式、图象、列表等方法来表示. (2)对数列2,4,6,8,10,12,…可用以下几种方法表示: ①通项公式法:a n =2n .②递推公式法:⎩⎪⎨⎪⎧a 1=2,a n +1=a n +2,n ∈N *.③列表法:④图象法:思考2 归纳一下数列的表示方法.【答案】数列的表示方法有通项公式法、图象法、列表法、递推公式法.能力检测注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、单选题1.下列说法正确的是( )A .数列1,3,5,7与数集{1,3,5,7}是一样的B .数列1,2,3与数列3,2,1是相同的C .数列11n ⎧⎫+⎨⎬⎩⎭是递增数列 D .数列()11nn ⎧⎫-⎪⎪+⎨⎬⎪⎪⎩⎭是摆动数列【答案】D【解析】数列是有序的,而数集是无序的,所以A ,B 不正确;选项C 中的数列是递减数列;选项D 中的数列是摆动数列. 2.已知数列12,23,34,…,1n n +,则0.96是该数列的( ) A .第20项 B .第22项 C .第24项 D .第26项【答案】C 【解析】由1nn +=0.96,解得n =24. 3.在数列1,1,2,3,5,8,x,21,34,55中,x 等于( ) A .11 B .12 C .13 D .14 【答案】C【解析】观察数列可知,后一项是前两项的和,故x =5+8=13.4.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是( ) A.15B .5C .6D .231log 3log 325+【答案】B【解析】a1·a2·a3·…·a30=log23×log34×log45×…×log3132=log232=log225=5. 5.已知递减数列{a n}中,a n=kn(k为常数),则实数k的取值范围是() A.R B.(0,+∞)C.(-∞,0) D.(-∞,0]【答案】C【解析】a n+1-a n=k(n+1)-kn=k<0.6.数列{a n}中,a n=-n2+11n,则此数列最大项是()A.第4项B.第6项C.第5项D.第5项和第6项【答案】D【解析】a n=-n2+11n=-2112n⎛⎫-⎪⎝⎭+1214,∵n∈N+,∴当n=5或n=6时,a n取最大值.故选D.7.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n.①第二步:将数列①的各项乘n,得到数列(记为)a1,a2,a3,…,a n.则n≥2时,a1a2+a2a3+…+a n-1a n=()A.n2B.(n-1)2 C.n(n-1) D.n(n+1)【答案】C【解析】由题意得a k=nk.k≥2时,a k-1a k=2211(1)1nnk k k k⎛⎫=-⎪--⎝⎭.∴n≥2时,a1a2+a2a3+…+a n-1a n=n21111112231n n⎡⎤⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦=n211n⎛⎫-⎪⎝⎭=n(n-1).故选C.8.由1,3,5,…,2n-1,…构成数列{a n},数列{b n}满足b1=2,当n≥2时,b n=a b n-1,则b6的值是()A.9 B.17C.33 D.65【答案】C【解析】∵b n=a b n-1,∴b2=a b1=a2=3,b3=a b2=a3=5,b4=a b3=a5=9,b5=a b4=a9=17,b6=a b5=a17=33.二、多选题9.(多选)一个无穷数列{a n }的前三项是1,2,3,下列可以作为其通项公式的是( ) A .a n =nB .a n =n 3-6n 2-12n -6C .a n =12n 2-12n +1 D .a n =26611n n -+ 【答案】AD【解析】对于A ,若a n =n ,则a 1=1,a 2=2,a 3=3,符合题意;对于B ,若a n =n 3-6n 2-12n +6,则a 1=-11,不符合题意;对于C ,若a n =12n 2-12n +1,当n =3时,a 3=4≠3,不符合题意;对于D ,若a n =26611n n -+,则a 1=1,a 2=2,a 3=3,符合题意.故选A 、D. 10.(多选)数列{F n }:1,1,2,3,5,8,13,21,34,…称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入的,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n 项和为S n ,则下列结论正确的是( ) A .S 5=F 7-1 B .S 5=S 6-1 C .S 2 019=F 2 021-1 D .S 2 019=F 2 020-1【答案】AC【解析】根据题意有F n =F n -1+F n -2(n ≥3),所以S 3=F 1+F 2+F 3=1+F 1+F 2+F 3-1=F 3+F 2+F 3-1=F 4+F 3-1=F 5-1,S 4=F 4+S 3=F 4+F 5-1=F 6-1,S 5=F 5+S 4=F 5+F 6-1=F 7-1,…,所以S 2 019=F 2 021-1.故选A 、C.11.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin 2n n a π= D .cos(1)1n a n π=-+【答案】BD【解析】因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD.12.“太极生两仪,两仪生四象,四象生八卦……”大衍数列,来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,是中华传统文化中隐藏着的世界数学史上第一道数列题.大衍数列中的每一项都代表太极衍生过程中,曾经经历过的两仪数量总和,从第一项起依次为0,2,4,8,12,18,24,32,40,50,…….记大衍数列为{}n a ,其前n 项和为*,n S n ∈N ,则( )A .20220a =B .357202111115051011a a a a ++++=C .232156S =D .246489800a a a a ++++=【答案】BCD【解析】根据数列前10项依次是0,2,4,8,12,18,24,32,40,50,,则奇数项为:2112-,2312-,2512-,2712-,2912-,,偶数项为:222,242,262,282,2102,,所以通项公式为221,(2,(2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数)为偶数),对于A , 22020020==2a ,故A 错误;对于B ,35720211111a a a a ++++22222222=++++31517120211----1111224466820202022⎛⎫=++++⎪⨯⨯⨯⨯⎝⎭111111*********20202505100222202211⎛⎫=⨯-+-++-=-= ⎪⎝⎭,故B 正确; 对于C ,()()2313232422S a a a a a a =++++++222212323122+++-=,由()()22221211236n n n n +++++=,所以()()2323231461112215626S ++⎛⎫=-= ⎪⎝⎭,故C 正确;对于D ,24648a a a a ++++()222221242922421224=⨯+⨯+⨯++⨯=++()()242412241298006+⨯+=⋅=,故D 正确.故选:BCD三、填空题13.已知数列{a n }的通项公式a n =19-2n ,则使a n >0成立的最大正整数n 的值为________. 【答案】9【解析】由a n =19-2n >0,得n <192.∵n ∈N *,∴n ≤9.14.已知数列{a n }的通项公式a n =1nn +,则a n ·a n +1·a n +2=________. 【答案】3n n + 【解析】a n ·a n +1·a n +2=1n n +·12n n ++·23n n ++=3n n +. 15.数列{a n }的前n 项和为S n ,若S n +S n -1=2n -1(n ≥2),且S 2=3,则a 1+a 3的值为________. 【答案】-1【解析】∵S n +S n -1=2n -1(n ≥2),令n =2, 得S 2+S 1=3,由S 2=3得a 1=S 1=0, 令n =3,得S 3+S 2=5,所以S 3=2,则a 3=S 3-S 2=-1,所以a 1+a 3=0+(-1)=-1.16.如图(1)是第七届国际数学教育大会(简称ICME7)的会徽图案,会徽的主体图案是由如图(2)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(2)中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为a n =________.【解析】因为OA 1=1,OA 2,OA 3…,OA n ,…,所以a 1=1,a 2,a 3…,a n . 四、解答题17.已知数列{}n a 的前n 项和2321n S n n =-+,(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前多少项和最大.【解析】(1)当1n =时,11321132a S ==-+=;当2n ≥时,()()()22132132111n n n a S S n n n n -⎡⎤=-=-+----+⎣⎦332n =-;所以:32,1332,2n n a n n =⎧=⎨-≥⎩;(2)因为()22321321n S n n n n =-+=--+()216257n =--+;所以前16项的和最大.18.在数列{}n a 中,2293n a n n =-++.(1)-107是不是该数列中的某一项?若是,其为第几项? (2)求数列中的最大项.【解析】(1)令22107,293107,291100n a n n n n =--++=---=,解得10n =或112n =-(舍去).所以10107a =- (2)229105293248n a n n n ⎛⎫=-++=--+ ⎪⎝⎭, 由于*n ∈N ,所以最大项为213a = 19.数列{a n }满足a 1= 1 ,a n +1 +2a n a n +1- a n =0. (1)写出数列的前5项;(2)由(1)写出数列{a n }的一个通项公式;(3)实数199是否为这个数列中的一项?若是,应为第几项? 【答案】(1)见解析(2)121n a n =-(3)50【解析】(1)由已知可得11a =,213a =,315a =,417a =,519a =.(2)由(1)可得数列的每一项的分子均为1,分母分别为1,3,5,7,9,…,所以它的一个通项公式为121n a n =-. (3)令119921n =-,解得50n =,故199是这个数列的第50项.20.已知数列2299291n n n ⎧⎫-+⎨⎬-⎩⎭. (1)求这个数列的第10项; (2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间1233⎛⎫ ⎪⎝⎭,内有无数列中的项?若有,是第几项?若没有,说明理由.【解析】(1)设a n =f (n )=2299291n n n -+-=(31)(32)(31)(31)n n n n ---+=3231n n -+.令n =10,得第10项a 10=f (10)=2831. (2)令3231n n -+=98101,得9n =300. 此方程无正整数解,所以98101不是该数列中的项. (3)证明:∵a n =3231n n -+=1-331n +, 且n ∈N *,∴0<1-331n +<1, ∴0<a n <1.∴数列中的各项都在区间(0,1)内. (4)令13<a n =3231n n -+<23, ∴3196,9662,n n n n +<-⎧⎨-<+⎩∴7,68,3n n ⎧>⎪⎪⎨⎪<⎪⎩∴当且仅当n =2时,上式成立,故在区间1233⎛⎫⎪⎝⎭,内有数列中的项,且只有一项为a 2=47. 21.已知函数f (x )=x -1x.数列{a n }满足f (a n )=-2n ,且a n >0.求数列{a n }的通项公式. 【解析】∵f (x )=x -1x,∴f (a n )=a n -1n a ,∵f (a n )=-2n .∴a n -1na =-2n ,即2n a +2na n -1=0. ∴a n =-n.∵a n >0,∴a n-n .22.已知数列{a n }的通项公式为a n =22n n (n ∈N *),则这个数列是否存在最大项?若存在,请求出最大项;若不存在,请说明理由.【解析】存在最大项.理由:a 1=12,a 2=2222=1,a 3=2332=98,a 4=2442=1,a 5=2552=2532,….∵当n≥3时,221122(1)2(1)22nnnna n na n n++++=⨯==1211n⎛⎫+⎪⎝⎭2<1,∴a n+1<a n,即n≥3时,{a n}是递减数列.又∵a1<a3,a2<a3,∴a n≤a3=9 8 .∴当n=3时,a3=98为这个数列的最大项.。
2.1数列的概念与简单表示法同步练习(含详解)

2.1 数列的概念与简单表示法一、选择题1.(3分)下列说法正确的是()A.数列1,3,5,7可表示为{1,3,5,7}B.数列1,0,﹣1,﹣2与数列﹣2,﹣1,0,1是相同的数列C.数列{}的第k项为1+D.数列0,2,4,6,…可记为{2n}2.(3分)已知数列{n2+n},那么()A.0是数列中的一项B.21是数列中的一项C.702是数列中的一项D.以上答案都不对3.(3分)数列11,13,15,…,2n+1的项数是()A.n B.n﹣3 C.n﹣4 D.n﹣5 4.(3分)若,则a n与a n+1的大小关系是()A.a n>a n+1B.a n<a n+1C.a n=a n+1D.不能确定5.(3分)数列{a n}满足a n=4a n﹣1+3,且a1=0,则此数列的第5项是()A.15 B.255 C.16 D.36 6.(3分)已知数列1,,,,…,,…,则3是它的()A.第22项B.第23项C.第24项D.第28项7.(3分)数列1,0,1,0,1,…的一个通项公式是()A.B.C.D.8.(3分)在数列{a n}中,对所有的正整数n都成立,且,则a5=()A.0B.1C.﹣1 D.2 9.(3分)在数列1,1,2,3,5,8,x,21,34,55中,x等于()A.11 B.12 C.13 D.14 10.(3分)在数列{a n}中,,则a5=()A.B.C.D.11.(3分)600是数列1×2,2×3,3×4,4×5,…的第()项.A.20 B.24 C.25 D.30 12.(3分)数列﹣1,,﹣,,…的一个通项公式是()A.3(1)()21nnn nan-+=+B.(1)(3)21nnn nan-+=+C.2(1)[(1)1]21nnnan-+-=-D.(1)(2)21nnn nan-+=+13.(3分)一个数列{a n},其中a1=3,a2=6,a n+2=a n+1﹣a n,那么这个数列的第五项是()A.6B.﹣3 C.﹣12 D.﹣6 14.(3分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=15.(3分)已知数列,则是这个数列的()A.第六项B.第七项C.第八项D.第九项16.(3分)下面对数列的理解有四种:①数列可以看成一个定义在N*上的函数;②数列的项数是无限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是()A.①②③B.②③④C.①③D.①②③④17.(3分)数列7,77,777,7777,77777,…的通项公式为_________.18.(3分)数列{a n}中,,那么150是其第_________项.19.(3分)已知,则a5=_________.20.(3分)在数列{a n}中,a1=a,以后各项由递推公式给出,写出这个数列的前4项:_________、_________、_________、_________,并由此写出一个通项公式a n=_________.21.(3分)已知数列{a n}的通项公式,它的前8项依次为_________、_________、_________、_________、_________、_________、_________、_________.22.(3分)已知f(1)=2,f(n+1)=(n∈N*),则f(4)=_________.23.数列{a n}中,已知a n=(﹣1)n n+a(a为常数),且a1+a4=3a2,求a100.24.已知数列{a n}的通项公式a n=5+3n,求:(1)a7等于多少;(2)81是否为数列{a n}中的项,若是,是第几项;若不是,说明理由.2.1 数列的概念与简单表示法一、选择题1.(3分)下列说法正确的是()A.数列1,3,5,7可表示为{1,3,5,7}B.数列1,0,﹣1,﹣2与数列﹣2,﹣1,0,1是相同的数列C.数列{}的第k项为1+D.数列0,2,4,6,…可记为{2n}考点:数列的概念及简单表示法.分析:本题考查的知识点是数列的概念胶简单表示法,根据数列的定义及表示方法对四个答案逐一进行分析即可得到答案.解答:解:由数列的定义可知A中{1,3,5,7}表示的是一个集合,而非数列,故A错误;B中,数列中各项之间是有序的,故数列1,0,﹣1,﹣2与数列﹣2,﹣1,0,1是不同的数列,故B错误;C中,数列{}的第k项为=1+,故C正确;数列0,2,4,6,的通项公式为a n=2n﹣2,故D错.故选C.点评:在理解和掌握数列的概念及表示法的时候,要用类比的思想,注意区分数列与集合的关系,及数列的函数的关系.2.(3分)已知数列{n2+n},那么()A.0是数列中的一项B.21是数列中的一项C.702是数列中的一项D.以上答案都不对考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:已知数列{a n}的通项公式为a n=n2+n,可以把a n=0,21,702代入进行求解,注意n是正整数.对四个选项进行一一判断.解答:解:因为数列{a n}的通项公式为a n=n2+n,(n∈N*)∴当a n=0时,n2+n=0⇒n∈∅;当a n=21时,n2+n=21⇒n∈∅;当a n=702时,n2+n=702⇒n∈∅;以上答案都不对.故选D.点评:此题主要考查数列简单表示法,数列的概念及其应用,是一道基础题.3.(3分)数列11,13,15,…,2n+1的项数是()A.n B.n﹣3 C.n﹣4 D.n﹣5考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:由数列11,13,15,…,2n+1可知:该数列是一个首项为11,公差为2的等差数列,即可得到通项公式a n=11+(n﹣1)×2=2n+9.令2k+9=2n+1,解出即可.解答:解:由数列11,13,15,…,2n+1可知:该数列是一个首项为11,公差为2的等差数列,∴通项公式a n=11+(n﹣1)×2=2n+9.令2k+9=2n+1,解得k=n﹣4,(n≥5).故选C.点评:数列等差数列的通项公式是解题的关键.4.(3分)若,则a n与a n+1的大小关系是()A.a n>a n+1B.a n<a n+1C.a n=a n+1D.不能确定考点:数列的函数特性.专题:点列、递归数列与数学归纳法.分析:化简数列{a n}的通项公式为a n=1﹣,显然当n增大时,a n的值增大,故数列{a n}是递增数列,由此得到结论.解答:解:∵数列{a n}的通项公式是a n===1﹣,(n∈N*),显然当n增大时,a n的值增大,故数列{a n}是递增数列,故有a n<a n+1,故选B.点评:本题主要考查数列的函数特性,化简数列{a n}的通项公式为a n=1﹣,是解题的关键,属于基础题.5.(3分)数列{a n}满足a n=4a n﹣1+3,且a1=0,则此数列的第5项是()A.15 B.255 C.16 D.36考点:数列递推式.专题:计算题.分析:分别令n=2,3,4,5代入递推公式计算即可.解答:解:a2=4a1+3=3a3=4a2+3=4×3+3=15a4=4a3+3=4×15+3=63a5=4a4+3=4×63+3=255故选B.点评:本题考查数列递推公式简单直接应用,属于简单题.6.(3分)已知数列1,,,,…,,…,则3是它的()A.第22项B.第23项C.第24项D.第28项考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:先化简3=,进而利用通项即可求出答案.解答:解:∵3=,令45=2n﹣1,解得n=23.∴3是此数列的第23项.故选B.点评:理解数列的通项公式得意义是解题的关键.7.(3分)数列1,0,1,0,1,…的一个通项公式是()A.B.C.D.考点:数列的概念及简单表示法.专题:探究型.分析:由数列的项的变化规律可以看出,1,0交错出现,由此规律去对四个选项进行验证即可得出正确答案解答:解:A选项不正确,数列首项不是1;B选项正确,验证知恰好能表示这个数列;C选项不正确,其对应的首项是﹣1;D选项不正确,其对应的首项为0,不合题意.故选B点评:本题考查数列的概念及数列表示法,求解的关键是从数列的前几项中发现数列各项变化的规律,利用此规律去验证四个选项.8.(3分)在数列{a n}中,对所有的正整数n都成立,且,则a5=()A.0B.1C.﹣1 D.2考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:由数列{a n}中,对所有的正整数n都成立,令n=6得,把a7代入即可解得a6,依此类推解得a5.解答:解:∵数列{a n}中,对所有的正整数n都成立,∴令n=6得,∵,∴,解得a6=.令n=5,得,∴,解得a5=1.故选B.点评:正确理解数列的递推公式和递推关系是解题的关键.9.(3分)在数列1,1,2,3,5,8,x,21,34,55中,x等于()A.11 B.12 C.13 D.14考点:数列的概念及简单表示法.专题:计算题.分析:从已知数列观察出特点:从第三项开始每一项是前两项的和即可求解解答:解:∵数列1,1,2,3,5,8,x,21,34,55 设数列为{a n}∴a n=a n﹣1+a n﹣2(n>3)∴x=a7=a5+a6=5+8=13故选C点评:本题考查了数列的概念及简单表示法,是斐波那契数列,属于基础题.10.(3分)在数列{a n}中,,则a5=()A.B.C.D.考点:数列的概念及简单表示法.专题:计算题.分析:利用递推关系式依次直接求出数列的第五项即可.解答:解:在数列{a n}中,,所以a2=,a3=,,.故选A.点评:本题是基础题,考查数列的递推关系式的应用,考查计算能力.11.(3分)600是数列1×2,2×3,3×4,4×5,…的第()项.A.20 B.24 C.25 D.30考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:由数列1×2,2×3,3×4,4×5,…通过观察可得通项公式a n=n(n+1),令n(n+1)=600,解出即可.解答:解:由数列1×2,2×3,3×4,4×5,…可得通项公式a n=n(n+1),令n(n+1)=600,∵24×25=600,∴n=24.故选B.点评:由数列1×2,2×3,3×4,4×5,…通过观察可得通项公式a n=n(n+1)是解题的关键.12.(3分)数列﹣1,,﹣,,…的一个通项公式是()A.3(1)()21nnn nan-+=+B.(1)(3)21nnn nan-+=+C.2(1)[(1)1]21nnnan-+-=-D.(1)(2)21nnn nan-+=+考点:数列递推式.专题:计算题.分析:采用特殊值法来求解.取n=1代入即可.解答:解:因为这是一道选择题,可以采用特殊值法来求解.取n=1代入,发现只有答案D成立,故选D.点评:由于选择题自身的特点是只要答案,不要过程,所以在做能用数代入的题目时,可以直接代入求解,把过程简单化.13.(3分)一个数列{a n},其中a1=3,a2=6,a n+2=a n+1﹣a n,那么这个数列的第五项是()A.6B.﹣3 C.﹣12 D.﹣6考点:数列的概念及简单表示法.专题:计算题.分析:利用递推关系式,分别计算a3=3,a4=﹣3,a5=﹣6即可.解答:解:由题意,a3=6﹣3=3,a4=3﹣6=﹣3,a5=﹣3﹣3=﹣6,故选D.点评:本题主要考查递推关系式的运用,属于基础题.14.(3分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=考点:数列递推式.专题:规律型.分析:由图中所给的星星个数:1,1+2,1+2+3,…,1+2+3+…+n;得出数列第n项,即通项公式.解答:解析:从图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;∴a n=1+2+3+4+…+n=.答案:C点评:这是一个简单的自然数求和公式,由观察得出猜想,一般不需要证明.考查学生的观察猜想能力.15.(3分)已知数列,则是这个数列的()A.第六项B.第七项C.第八项D.第九项考点:等差数列与等比数列的综合;数列的概念及简单表示法.专题:规律型.分析:本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式a n2=2+(n﹣1)×3=3n﹣1=20,得解,n=7解答:解:数列,各项的平方为:2,5,8,11,…∵5﹣2=11﹣8=3,即a n2﹣a n﹣12=3,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.点评:本题通过观察并利用构造法,构造了新数列{a n2}为等差数列,从而得解,构造法在数列中经常出现,我们要熟练掌握.16.(3分)下面对数列的理解有四种:①数列可以看成一个定义在N*上的函数;②数列的项数是无限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是()A.①②③B.②③④C.①③D.①②③④考点:数列的概念及简单表示法.分析:①因为a n=f(n)(n∈N*),所以数列可以看成一个定义在N*上的函数;②数列的项数可以是有限的,例如1,2,3这3个数组成一个数列;③由①可知:数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式不是唯一的,例如数列1,0,1,0,…,可用或,(n∈N*),两种形式表示.解答:解:①∵a n=f(n)(n∈N*),∴数列可以看成一个定义在N*上的函数,故正确;②数列的项数可以是有限的,如1,2,3这3个数组成一个数列,故不正确;③∵a n=f(n)(n∈N*)或(n∈A⊆N*),∴数列若用图象表示,从图象上看都是一群孤立的点,正确;④数列的通项公式不是唯一的,如数列1,0,1,0,…,可用或,(n∈N*),故不正确.综上可知:只有①③正确.故选C.点评:正确理解数列的定义、数列与函数的关系是解题的关键.二、填空题17.(3分)数列7,77,777,7777,77777,…的通项公式为.考点:归纳推理;数列的概念及简单表示法.专题:探究型.分析:观察发现7=,77=,777=,…从而归纳出通式得到答案解答:解:由于7=,77=,777=,7777=,77777=…故数列7,77,777,7777,77777,…的通项公式为故答案为点评:本题考查归纳推理,解答的关键是对所给的项进行变形,从而归纳出通式,归纳推理是发现规律的一种常用的推理方式,要好好掌握18.(3分)数列{a n}中,,那么150是其第16项.考点:函数的概念及其构成要素.专题:函数的性质及应用.分析:由数列的通项公式,令其等于150,可解n的值,即为第几项.解答:解:由数列的特点可知:通项公式,令n2﹣7n+6=150,可解得n=16或n=﹣9(舍去),故150是第16项,故答案为:16.点评:本题考查等差数列的通项公式,正确求解数列的通项公式是解决问题的关键,属基础题.19.(3分)已知,则a5=.考点:数列递推式.专题:计算题.分析:根据数列的递推依次求得a2,a3,a4,则答案可求.解答:解:依题意可知a2=1+=2,a3=1+=,a4=1+=,a5=1+=故答案为点评:本题主要考查了数列的递推式.属基础题.20.(3分)在数列{a n}中,a1=a,以后各项由递推公式给出,写出这个数列的前4项:a、、、,并由此写出一个通项公式a n=.考点:函数的概念及其构成要素.专题:规律型;函数的性质及应用.分析:可根据递推公式写出数列的前4项,然后分析每一项与该项的序号之间的关系,归纳概括出a n与n 之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式.解答:解:∵a1=a,a n+1=,∴a2=,a3===,a4===.观察规律:a n=.故答案为:a,,,;.点评:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.21.(3分)已知数列{a n}的通项公式,它的前8项依次为1、3、、7、、11、、15.考点:数列的概念及简单表示法.专题:计算题;点列、递归数列与数学归纳法.分析:由题意,根据数列的通项公式依次对n赋值即可解出它的前八项解答:解:因为数列{a n}的通项公式,所以它的前8项依次为1、3、、7、、11、、15故答案为1、3、、7、、11、、15点评:本题考查数列的简单表示,对n赋值,代入相应的解析式进行求值是解答的关键22.(3分)已知f(1)=2,f(n+1)=(n∈N*),则f(4)=.考点:函数恒成立问题;函数的值.专题:计算题;函数的性质及应用.分析:由题设可看出,直接根据所给的恒成立的等式依次求出n=2,3,4时的函数值,即可得到正确答案解答:解:因为f(1)=2,f(n+1)=(n∈N*)恒成立,所以f(2)=,f(3)=,f(4)==故答案为点评:本题考查函数恒成立问题,列举法依次求出出n=2,3,4时的函数值是解答此类题的主要方式三、解答题23.数列{a n}中,已知a n=(﹣1)n n+a(a为常数),且a1+a4=3a2,求a100.考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:由已知a n=(﹣1)n n+a(a为常数),可得a1,a2,a3,a4用a表示,再利用a1+a4=3a2,即可解得a,从而得出a100.解答:解:由已知a n=(﹣1)n n+a(a为常数),可得a1=a﹣1,a2=a+2,a3=a﹣3,a4=a+4.∵a1+a4=3a2,∴a﹣1+a+4=3(a+2),解得a=﹣3.∴.∴.点评:利用已知关系式分别取n=1,2,3,4求出a是解题的关键.24.已知数列{a n}的通项公式a n=5+3n,求:(1)a7等于多少;(2)81是否为数列{a n}中的项,若是,是第几项;若不是,说明理由.考点:等差数列的性质.专题:等差数列与等比数列.分析:(1)直接将n=7代入即可;(2)利用通项公式解出n是否是正整数即可得到答案.解答:解:(1)∵数列{a n}的通项公式a n=5+3n∴a7=5+3×7=26(2)假设81是数列{a n}中的项,则81=5+3n∴n=∵n∈N*所以81不是数列{a n}中的项.点评:此题考查了等差数列的性质,属于基础性的题目.。
高中数学(人教版必修5)配套练习:2.1 数列的概念与简单表示法

第二章 2.1一、选择题1.下列有关数列的说法正确的是( ) ①同一数列的任意两项均不可能相同; ②数列-1,0,1与数列1,0,-1是同一个数列; ③数列中的每一项都与它的序号有关. A .①② B .①③ C .②③D .③2.下面四个结论:①数列可以看作是一个定义在正整数集(或它的有限子集{1,2,3…,n })上的函数. ②数列若用图象表示,从图象上看都是一群孤立的点. ③数列的项数是无限的. ④数列通项的表示式是唯一的. 其中正确的是( ) A .①② B .①②③ C .②③D .①②③④ 3.已知a n =n (n +1),以下四个数中,哪个是数列{a n }中的一项( ) A .18 B .21 C .25D .304.已知数列{a n }的通项公式是a n =n -1n +1,那么这个数列是( )A .递增数列B .递减数列C .常数列D .摆动数列5.数列1,-3,5,-7,9,…的一个通项公式为( ) A .a n =2n -1 B .a n =(-1)n (1-2n ) C .a n =(-1)n (2n -1)D .a n =(-1)n (2n +1)6.已知数列2,5,22,11,…,则25可能是这个数列的( ) A .第6项 B .第7项 C .第10项 D .第11项二、填空题7.23,415,635,863,1099,…的一个通项公式是________. 8.已知数列3,7,11,15,19,…,那么311是这个数列的第________项.三、解答题9.写出下列数列的一个通项公式. (1)-11+1,14+1,-19+1,116+1,…; (2)2,3,5,9,17,33,…; (3)12,25,310,417,526,…; (4)1,43,2,165,…;(5)-13,18,-115,124,…;(6)2,6,12,20,30,….10.已知数列{a n }中,a 1=2,a n +1=a n +n ,求a 5.一、选择题1.数列{a n }满足a 1=1,a n +1=2a n -1(n ∈N *),则a 1000=( ) A .1 B .1999 C .1000D .-12.对任意的a 1∈(0,1),由关系式a n +1=f (a n )得到的数列满足a n +1>a n (n ∈N *),则函数y =f (x )的图象是( )3.若数列的前4项分别为2,0,2,0,则这个数列的通项公式不能是( ) A .a n =1+(-1)n +1B .a n =1-cos n πC .a n =2sin 2n π2D .a n =1+(-1)n -1+(n -1)(n -2)4.函数f (x )满足f (1)=1,f (n +1)=f (n )+3 (n ∈N *),则f (n )是( )A .递增数列B .递减数列C .常数列D .不能确定二、填空题5.已知数列{a n }满足a 1=-2,a n +1=2+2a n1-a n,则a 6=__________.6.已知数列{a n }的通项公式a n =⎩⎪⎨⎪⎧3n +1(n 为奇数)2n -2(n 为偶数),则a 2·a 3=__________.三、解答题7.已知数列{a n }中,a n =nn +1,判断数列{a n }的增减性. 8.已知数列{a n }的通项公式为a n =n 2-5n +4. (1)求数列{a n }中有多少项是负数?(2)当n 为何值时,a n 有最小值?并求出最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档 《数列的概念与简单表示法》同步训练题
一、选择题
1、数列 ,1,0,1,0,1的一个通项公式是 ( )
A. ()2111+--=n n a
B. ()2111
+-+=n n a C. ()211--=n n a D. ()211n
n a ---=
2、已知数列() ,1
1,,91,41,12n n ---,它的第5项的值为 ( )
A. 51
B. 51-
C. 251
D. 251
-
3、已知031=--+n n a a ,则数列{}n a 是 ( )
A. 递增数列
B. 递减数列
C. 常数列
D. 摆动数列
4、已知数列 ,12,,7,5,3,1-n ,则53是它的 ( )
A. 第22项
B. 第23项
C. 第24项
D. 第28项
5、数列{}n a 的通项公式为n n a n 2832-=,则数列{}n a 各项中最小项是 (
)
A. 第4项
B. 第5项
C. 第6项
D. 第7项
6、已知数列的通项公式为1582+-=n n a n ,则3 ( )
A. 不是数列{}n a 中的项
B. 只是数列{}n a 中的第2项
实用文档
C. 只是数列{}n a 中的第6项
D. 是数列{}n a 中的第2项或第6项
7、数列 ,28,21,,10,6,3,1x 中,由给出的数之间的关系可知x 的值是( )
A. 12
B. 15
C. 17
D. 18
8、下列说法正确的是 ( )
A. 数列1,3,5,7可表示为{
}7,5,3,1 B. 数列1,0,2,1--与数列1,0,1,2--是相同的数列
C. 数列⎭
⎬⎫⎩⎨⎧+n n 1的第k 项是k 11+ D. 数列可以看做是一个定义域为正整数集*N 的函数
二、填空题
9、用适当的数填空:
①2,1, ,41,81, ,32
1 ②,25,16,9,4,1--- ,49-
③1,9,25, ,81
④1,0,
21,0,31,0, ,0,5
1,0
三、解答题
实用文档
10、数列{}n a 中,已知()
*2,31N n n n a n ∈-+=。
(1)写出110,+n a a ; (2)3
279是否是数列中的项?如果是,是第几项?
11、写出以下各数列的通项公式: ① ,81,41,21,1--
② ,1,0,1,0,1,0 ③ ,544,433,322,211
④ ,6,7,8,9,10
⑤ ,31,17,7,5,1 ⑥
,6463,3635,1615,43 ⑦ ,30
1,201,121,61,21 ⑧ ,9999,999,99,9
以下是答案
一、选择题
1、B
实用文档
2、D
3、A
4、B
5、B
6、D
7、B
8、.C
二、填空题
9、①21
16
1
②36
③49 ④41
三、解答题 10、
(1)3109
10=a 31321++=+n n a n
实用文档 (2)是,第15项 11、 ①121-⎪⎭⎫ ⎝⎛-=n n a
②()2
11n n a -+= ③1
22++=n n n a n ④n a n -=11 ⑤()n n n a 12-+= ⑥2411n a n -= ⑦()11+=n n a n ⑧110-=n n a。