人工智能与社会教学大纲

合集下载

《人工智能》详细教学大纲.doc

《人工智能》详细教学大纲.doc

《人工智能》教学大纲 课程名称:人工智能 英语名称:Artificial Intelligence 课程代码:130234 课程性质:专业必修 学分学时数: 5/80 适用专业:计算机应用技术 修(制)订人: 修(制)订日期:2009年2月 审核人: 审核日期: 审定人: 审定日期: 一、课程的性质和目的 (一)课程性质 人工智能是计算机科学理论基础研究的重要组成部分,人工智能课程是计算机科学技术专业的专业拓展选修课。

通过本课程的学习使学生了解人工智能的提出、几种智能观、重要研究领域,掌握人工智能求解方法的特点。

掌握人工智能的基本概念、基本方法,会用知识表示方法、推理方法和机器学习等方法求解简单问题等。

(二)课程目的 1、基本理论要求: 课程介绍人工智能的主要思想和基本技术、方法以及有关问题的入门知识。

要求学生了解人工智能的主要思想和方法。

2、基本技能要求: 学生在较坚实打好的人工智能数学基础(数理逻辑、概率论、模糊理论、数值分析)上,能够利用这些数学手段对确定性和不确定性的知识完成推理;在理解Herbrand 域概念和Horn 子句的基础上,应用Robinson 归结原理进行定理证明;应掌握问题求解(GPS )的状态空间法,能应用几种主要的盲目搜索和启发式搜索算法(宽度优先、深度优先、有代价的搜索、A 算法、A*算法、博弈数的极大—极小法、α―β剪枝技术)完成问题求解;并能熟悉几种重要的不确定推理方法,如确定因子法、主观Bayes 方法、D —S 证据理论等,利用数值分析中常用方法进行正确计算。

3、职业素质要求:结合实战,初步理解和掌握人工智能的相关技术。

二、教学内容、重(难)点、教学要求及学时分配 第一章:人工智能概述(2学时)……………………………………………………………………装……订……线…………………………………………………………………………………………………………… …………………………1、讲授内容:(1)人工智能的概念(2)人工智能的研究途径和方法(3)人工智能的分之领域(4)人工智能的基本技术(5)人工智能的发展概况2、教学要求:了解:研究途径和方法、人工智能的分之领域、基本技术和发展概况。

人工智能 课程大纲

人工智能 课程大纲

人工智能课程大纲第一部分:介绍人工智能(Artificial Intelligence,简称AI)是目前信息技术领域的热门话题,它涉及到机器智能的发展和应用。

本课程旨在帮助学生了解人工智能的基本概念、原理和应用,使他们具备一定的人工智能技术应用能力。

第二部分:课程目标1. 掌握人工智能的基本概念和分类;2. 熟悉人工智能的代表性算法和技术;3. 具备人工智能技术的应用和实践能力;4. 培养学生的创新思维和问题解决能力。

第三部分:课程内容1. 人工智能发展历史和基本概念;2. 人工智能主要技术分类和代表性算法;3. 机器学习、深度学习和神经网络;4. 自然语言处理、图像识别和智能推荐;5. 人工智能在各领域的应用案例。

第四部分:教学方法1. 理论课堂教学:讲授人工智能的基本理论知识;2. 实践教学:通过编程实践,帮助学生掌握人工智能算法和技术;3. 项目案例分析:讲解人工智能在各个领域的应用案例,激发学生创新思维。

第五部分:考核方式1. 平时表现(包括课堂参与、作业完成情况等)占比30%;2. 期中考试占比30%;3. 期末项目实践占比40%。

第六部分:参考教材1. 《人工智能基础》;2. 《Python深度学习》;3. 《机器学习实战》;4. 《神经网络与深度学习》。

第七部分:教学团队本课程由具有丰富教学经验和人工智能实践经验的教师团队共同执教,以确保教学质量和效果。

结语通过本课程的学习,相信学生们能够全面了解人工智能的基本理论和应用技术,为未来在相关领域的发展和应用打下坚实的基础。

希望学生们能够主动参与课程学习和实践,不断提高自身的人工智能技术能力,为社会发展和创新贡献自己的力量。

2024年《人工智能》详细教学大纲

2024年《人工智能》详细教学大纲
语音情感分析
结合语音识别和自然语言处理技术,对语音中的情感进行 分析和识别,是实现智能语音交互的重要研究方向。
18
05 计算机视觉技术与应用
2024/2/29
19
图像处理和计算机视觉基础概念
1 2
图像处理基础
像素、分辨率、色彩空间、图像变换等基本概念 。
计算机视觉概述
视觉感知、视觉计算模型、视觉任务分类等。
能力目标
能够运用所学知识分析和 解决人工智能领域的实际 问题,具备一定的实践能 力和创新能力。
素质目标
培养学生的创新思维、团 队协作和终身学习能力, 提高学生的综合素质和职 业素养。
5
课程安排与时间表
课程安排
本课程共分为理论授课、实验操作和课程设计三个环节,其中理论授课主要讲解 人工智能的基本原理和方法,实验操作帮助学生掌握相关技术和工具的使用,课 程设计则要求学生综合运用所学知识完成一个实际项目。
分割(如FCN、U-Net)等。
2024/2/29
03
实例分割与语义分割
Mask R-CNN、PANet等实例分割方法;DeepLab、PSPNet等语义分
割方法。
21
三维重建、视频理解等前沿技术介绍
三维重建技术
基于多视图的三维重建、基于深度学习的三维重建(如体素网格 、点云处理)等。
视频理解技术
马尔科夫决策过程在强化学习中的应用
03
将强化学习问题建模为马尔科夫决策过程,利用求解方法求解
最优策略。
25
智能推荐系统、游戏AI等应用场景分析
智能推荐系统
利用强化学习技术,根据用户历史行为和环境反馈,学习推荐策略,实现个性化推荐。例 如,电商平台的商品推荐、音乐平台的歌曲推荐等。

人工智能详细教学大纲

人工智能详细教学大纲

人工智能详细教学大纲第一章:导论1.1 人工智能的定义和基本概念- 人工智能的定义和起源- 人工智能的发展历程1.2 人工智能的应用领域- 人工智能在医疗领域的应用- 人工智能在金融领域的应用- 人工智能在交通领域的应用第二章:机器学习基础2.1 机器学习的概述- 监督学习、无监督学习、强化学习的基本原理和区别- 机器学习的应用场景2.2 数据预处理- 缺失值处理- 异常值检测与处理- 特征选择与降维2.3 常见的机器学习算法- 逻辑回归- 决策树- 支持向量机- 集成学习第三章:深度学习3.1 深度学习的原理与应用- 深度学习的发展历程- 神经网络的基本结构和工作原理3.2 常用的深度学习框架- TensorFlow- PyTorch- Keras3.3 深度学习的应用案例- 图像分类与识别- 自然语言处理- 人脸识别第四章:自然语言处理4.1 自然语言处理的基础知识- 词向量表示- 语法分析和语义分析4.2 文本分类与情感分析- 文本特征提取- 文本分类算法4.3 机器翻译与问答系统- 神经机器翻译- 阅读理解模型第五章:计算机视觉5.1 计算机视觉的基本概念- 图像处理与特征提取- 目标检测与图像分割5.2 图像识别与物体识别- 卷积神经网络(CNN)- 目标检测算法(如YOLO、Faster R-CNN)5.3 视觉生成与图像风格迁移- 生成对抗网络(GAN)- 图像风格迁移算法第六章:人工智能伦理与法律6.1 人工智能的伦理问题- 隐私与数据安全- 就业与职业变革- 人工智能的道德问题6.2 人工智能的法律问题- 数据保护法与隐私权- 人工智能专利与知识产权- 算法歧视与公平性第七章:人工智能未来发展趋势7.1 人工智能的挑战和机遇- 人工智能的挑战与限制- 人工智能带来的机遇与可能性7.2 人工智能与人类的关系- 人工智能助力人类创新与发展- 人工智能对就业和教育的影响总结与展望本教学大纲全面介绍了人工智能的基本概念、机器学习、深度学习、自然语言处理、计算机视觉等领域的基础知识与应用。

2024版《人工智能》课程教学大纲

2024版《人工智能》课程教学大纲

计算机体系结构
理解计算机硬件组成、操 作系统及基本工作原理。
数据结构与算法
掌握基本数据结构(如数 组、链表、栈、队列等) 和常用算法(如排序、查 找等)。
计算机网络
了解网络协议、网络架构 及网络安全等基础知识。
数学基础
线性代数
掌握向量、矩阵、线性方程组等基本概念和运算。
概率论与数理统计
理解概率分布、随机变量、数理统计等基本概念 和方法。
介绍神经网络优化的一些常用方 法,如梯度下降、动量法、
Adam等优化算法的原理和应用。
卷积神经网络(CNN)
卷积层
池化层
讲解卷积层的工作原理和实 现方法,包括卷积核、步长、 填充等概念。
介绍池化层的作用和实现方 法,包括最大池化、平均池 化等。
CNN模型
介绍一些经典的CNN模型, 如LeNet-5、AlexNet、 VGGNet、GoogLeNet、 ResNet等,并分析其网络结 构和特点。
无监督学习
K-均值聚类
层次聚类
将数据划分为K个簇,使得同一簇内的数据尽 可能相似,不同簇间的数据尽可能不同。
通过不断将数据点或已有簇合并成新的簇, 直到满足某种停止条件。
主成分分析(PCA)
自编码器
通过线性变换将原始数据变换为一组各维度 线性无关的表示,可用于高维数据的降维。
一种神经网络结构,通过编码器和解码器对 输入数据进行压缩和重构,实现特征提取和 降维。
句ห้องสมุดไป่ตู้分析技术
短语结构分析
识别句子中的短语结构,如名词短语、动词短语等。
依存关系分析
分析句子中单词之间的依存关系,如主谓关系、动宾关系等。
句法树构建
根据短语结构和依存关系构建句子的句法树,表示句子的结构信 息。

《人工智能》课程教学大纲

《人工智能》课程教学大纲

《人工智能》课程教学大纲一、课程基本信息开课单位 信息与网络工程学院 课程类别 个性拓展课程名称 人工智能课程编码 GT28101 开课对象 网络工程专业、计算机科学与技术专业开课学期第4或6学期学时学时//学分 36学时学时/2/2学分(理论课:学分(理论课:2828学时学时/1.5/1.5学分;实验课:学分;实验课: 8 8学时学时/0.5/0.5学分) 先修课程 离散数学、数据结构、程序设计课程简介:人工智能是计算机科学的重要分支,是研究如何利用计算机来模拟人脑所从事的感知、推理、学习、思考、规划等人类智能活动,来解决需要用人类智能才能解决的问题,以延伸人们智能的科学。

该课程主要讲述人工智能的基本概念及原理、知识与知识表示、机器推理、搜索策略、神经网络、机器学习、遗传算法等方面内容。

二、课程教学目标《人工智能》是计算机科学与技术专业的一门专业拓展课,通过本课程的学习使本科生对人工智能的基本内容、基本原理和基本方法有一个比较初步的认识,掌握人工智能的基本概念、基本原理、知识的表示、推理机制和智能问题求解技术。

启发学生开发软件的思路,培养学生对相关的智能问题的分析能力,提高学生开发应用软件的能力和水平。

三、教学学时分配《人工智能》课程理论教学学时分配表章次 主要内容学时分配教学方法或手段 第一章 人工智能概述 3 讲授法、多媒体 第二章 智能程序设计语言 5 讲授法、多媒体 第三章 图搜索技术4 探究式、多媒体 第四章 基于谓词逻辑的机器推理 6 讲授法、多媒体 第五章 机器学习与专家系统 4 概述法、多媒体 第六章智能计算与问题求解6 启发式、多媒体合计28《人工智能》课程实验内容设置与教学要求一览表序号实验项目名称实验内容教学要求学时分配实验类别实验类型每组人数实实验一 一分支与循环程序设计1) Prolog 运行环境; 2)2)利用利用PROLOG 进行事实库、规则库的编写; 3)3)分支程序设计;分支程序设计;4)4)循环程序设计;循环程序设计;5)5)输入出程序设计。

人工智能课程教学大纲

人工智能课程教学大纲

人工智能课程教学大纲课程名称:人工智能教学大纲课程目标:本课程旨在帮助学生了解人工智能的基本概念、原理和技术,并培养学生在人工智能领域的批判性思维和问题解决能力。

通过学习本课程,学生将能够理解人工智能的背景、应用和发展趋势,并能够独立设计和实现简单的人工智能系统。

课程内容:1. 人工智能概述- 人工智能的定义与应用领域- 人工智能的历史与发展- 人工智能与机器学习的关系2. 机器学习基础- 监督学习、无监督学习和强化学习的基本概念- 常用机器学习算法及其原理- 机器学习的评估方法和误差分析3. 深度学习- 神经网络的基本原理与结构- 卷积神经网络与循环神经网络的应用- 深度学习的训练与优化方法4. 自然语言处理- 语言的表示与处理方法- 文本分类、语义分析和机器翻译的基本原理- 自然语言生成与对话系统的应用5. 计算机视觉- 图像处理与特征提取- 目标检测、图像分类和图像生成的基本原理- 视觉感知与智能交互的应用6. 人工智能伦理与社会影响- 人工智能的道德与伦理问题- 人工智能在社会中的挑战与机遇- 人工智能的未来发展趋势课程教学方法:本课程采用讲授、案例分析和实践项目结合的教学方法。

通过理论讲解、实例分析和实践操作,帮助学生理解和应用人工智能的基本原理和技术。

学生将完成实践项目,设计和实现一个简单的人工智能系统,并对其性能进行评估和优化。

课程评估方式:- 平时作业和课堂表现:占总成绩的30%- 实践项目报告:占总成绩的40%- 期末考试:占总成绩的30%参考教材:- Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning [M]. MIT Press, 2016.- Sebastian Raschka, Vahid Mirjalili. Python Machine Learning [M]. Packt Publishing, 2017.- Dan Jurafsky, James H. Martin. Speech and Language Processing [M]. Pearson, 2019.备注:该人工智能课程教学大纲仅作参考,实际课程内容和安排可能会根据教师和学校要求进行调整。

人工智能导论教学大纲

人工智能导论教学大纲

人工智能导论教学大纲人工智能导论教学大纲人工智能(Artificial Intelligence,简称AI)是一门涵盖多个学科领域的前沿科技,它的发展和应用对于现代社会的发展具有重要意义。

为了更好地推动人工智能的研究和应用,培养人才成为至关重要的任务。

本文将介绍一份人工智能导论教学大纲,旨在帮助学生全面了解人工智能的基本概念、原理和应用。

一、导论在导论部分,将介绍人工智能的定义、发展历程以及当前的研究热点。

通过引入一些具体的应用案例,可以让学生对人工智能的重要性和广泛应用有一个初步的认识。

二、人工智能的基本概念在这一部分,将介绍人工智能的基本概念,如机器学习、深度学习、自然语言处理等。

通过对这些概念的解释和实例的引用,可以帮助学生建立对人工智能的整体认知。

三、人工智能的核心技术在这一部分,将介绍人工智能的核心技术,如数据挖掘、模式识别、推理与规划等。

通过对这些技术的解释和实际案例的分析,可以帮助学生了解人工智能技术的基本原理和应用场景。

四、人工智能的应用领域在这一部分,将介绍人工智能在各个领域的应用,如医疗健康、金融、交通等。

通过对这些应用案例的分析和讨论,可以帮助学生了解人工智能在不同领域的具体应用和前景。

五、人工智能的伦理和社会影响在这一部分,将介绍人工智能的伦理问题和社会影响。

通过对人工智能在隐私、就业、道德等方面的影响进行讨论,可以帮助学生思考人工智能的发展对社会和个人产生的影响,以及如何应对相关问题。

六、人工智能的发展趋势在这一部分,将介绍人工智能的发展趋势和未来展望。

通过对人工智能技术的前沿研究和应用领域的展望,可以帮助学生了解人工智能的发展动态,激发他们对人工智能研究的兴趣。

七、实践项目在这一部分,将组织学生进行人工智能相关的实践项目。

通过实际操作和实践经验的积累,可以帮助学生更好地理解人工智能的原理和应用,并培养他们的创新能力和问题解决能力。

八、总结与展望在这一部分,将对整个课程进行总结,并对人工智能的未来发展进行展望。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能与社会
课程教学大纲课程英文名称:Artificial Intelligence and Society 开课院系:计算机科学与技术学院课程性质:科技素质教育课程课程目的:
人工智能是一门边沿学科,属于自然科学、社会科学、技术科学三向交叉学科。

今天,各样的智能机器人,不断能够帮助人类进行生产劳作,甚至可以料理家务,人们在整个的发展的过程当中希望利用外来之物来强化自身,摆脱自然力的束缚,人类从中可以得到解放,这是一个千古梦想,也是中国梦的梦境之一。

这个梦想怎么样才能变成现实,最精彩的是人希望有一种智力的工具,它依靠信息科学技术来把信息资源转化成为这种工具,帮助人来扩展自己的信息功能、智力功能,这样就可以把人类从很多繁重的劳动,包括体力劳动和智力劳动中解放出来。

人工智能是对资源、科学、技术、工具的集大成,这个是人类争取从自然力解放的一个非常重要的途径。

学过这门课程后使学生对现代社会的人工智能应用有一个初步的认识,在今后的工作中适应现代社会的发展,为实现中国富强梦做出更大贡献。

课程内容:
一、二进制的前世今生
1. 计数的发展历史,计数历史贡献
2. 二进制的诞生,二进制的发展历史
3. 二进制的计算能力,二进制在科技进步中的作用
二、现代计算机的诞生
1. 计算工具的发展历史,计算工具的历史贡献
2. 机械式计算器的诞生,机械式计算器的历史作用
3. 现代计算机诞生,现代计算机的计算能力
三、人工智能的起源
1. Turing 思想和Turing 机
2. 人工智能的诞生的三大标志
3. 人工智能语言的发展
4. 智能博弈技术的发展
四、人类智能与计算机模拟
1. 智能仿真模拟能力
2. 计算机仿真模拟领域
3. 计算机仿真模拟能力
五、模糊世界和模糊信息
1. 人类世界的模糊性
2. 粒度计算的基本原理
3. 粒度计算的应用
4. 典型模糊案例分析
六、自然语言理解
1. 自然语言理解的发展概况
2. 自然语言理解遇到的困难
3. 典型自然语言理解案例分析
七、逻辑推理
1. 一阶谓词逻辑概述
2. 一阶谓词逻辑推理的典型案例分析
3. 逻辑悖论案例分析
八、专家系统
1. 知识的表示、知识的存储技术
2. 知识的推理技巧
3. 专家系统案例分析
九、机器博弈
1. 机器博弈的研究意义
2. 棋类博弈案例分析
3. 军事博弈应用
4. 经济博弈应用
十、智能机器人
1. 机器人的思维方式
2. 机器人的分析和规划
3. 机器人案例分析
十一、机器人的五官
1. 视觉图像处理案例分析
2. 语音处理案例分析
3. 信息输出案例分析
十二、多Agent 系统
1. 机器人协作的意义
2. 机器人协作技术
3. 机器人协作案例分析
十三、智能检索
1. 信息社会与信息爆炸
2. 智能检索的技术
3. 智能检索案例分析
十四、智能控制和智能调度
1. 智能控制的意义
2. 智能调度的意义
3. 智能控制案例分析
4. 智能调度案例分析
十五、智能楼宇和智能交通
1. 家庭生活智能化的意义
2. 智能楼宇案例解析
3. 智能交通案例解析
学时分配:
主要教学参考书:
[1] 蔡自兴、徐光祐,人工智能及其应用(第4版),清华大学出版社,2010年。

[2] S J Russell, P Norvig, 人工智能:一种现代的方法(第3版,影印版),清华
大学出版社,2011年。

[3] 王世辉、石睿,现代信息技术应用,北京师范大学出版社,2011年。

[4] 董克,刘明锐,仿造人类智能一一机器人与人工智能发展(走进未知世界丛
书),上海交通大学出版社,2004年。

⑸[美]克里斯汀著,闾佳译,最有人性的人”一—人工智能带给我们的启示,人民邮
电出版社,2012年。

⑹李明,机器人,上海科学技术出版社,2012年。

相关文档
最新文档