纳米材料的制备与合成
纳米材料的制备方法与技巧

纳米材料的制备方法与技巧纳米材料是一种具有纳米级尺寸(1纳米=10^-9米)的材料,在材料科学和纳米技术领域有着广泛的应用。
制备纳米材料的方法有很多种,下面将介绍几种常用且重要的纳米材料制备方法与技巧。
1. 物理法物理法是通过物理手段实现纳米材料的制备,其中包括热蒸发法、磁控溅射法和高能球磨法等。
热蒸发法是将材料在高温条件下蒸发,并通过凝结形成纳米材料。
磁控溅射法是将材料置于惰性气体环境下,利用高能离子撞击材料表面产生离子化原子或离子,并通过表面扩散形成纳米材料。
高能球磨法是通过球磨机将原料粉末进行机械剪切和冲击,使其粒度减小到纳米级别。
2. 化学合成法化学合成法是通过化学反应合成纳米材料,其中包括溶液法、气相法和电化学法等。
溶液法是将金属盐或金属有机化合物溶解在溶剂中,通过控制反应条件和添加适当的保护剂或模板剂制备纳米材料。
气相法是在控制的气氛和温度下通过气相反应合成纳米材料,例如化学气相沉积法。
电化学法是通过利用电化学原理,在电解质溶液中施加电压或电流,使材料在电极表面形成纳米颗粒。
3. 生物法生物法是利用生物体或其代谢物合成纳米材料,其中包括生物模板法、生物还原法和植物提取法等。
生物模板法是使用生物体或其组织的特殊形态或功能作为模板,在其表面合成纳米材料。
生物还原法是利用生物体或其细胞酶的还原活性将金属离子还原为金属纳米团簇。
植物提取法是通过植物提取物作为还原剂和模板,在其作用下合成纳米材料。
4. 加工法加工法是通过物理或化学加工手段制备纳米材料,其中包括机械法、电化学法和光电化学法等。
机械法是通过机械加工方式如研磨、切割等将材料分解成纳米颗粒。
电化学法是通过在电解质中施加电压或电流,使材料在电极表面形成纳米结构。
光电化学法是通过光催化反应,在光照条件下制备纳米材料。
在纳米材料的制备过程中,还需要注意一些技巧和注意事项。
首先,要精确控制反应条件,包括温度、压力和pH值等。
不同条件对于纳米材料的形成过程和性能具有重要影响。
纳米材料的制备方法

纳米材料的制备方法纳米材料的制备方法多种多样,具体选择的方法取决于所需纳米材料的性质、应用需求以及实验条件等因素。
以下是几种常见的纳米材料制备方法:1.化学合成法:-溶液法:将适当的化学物质在溶剂中混合反应,控制反应条件如温度、pH值等,通过溶液中原子、离子或分子的自组装形成纳米结构。
常见的溶液法包括溶胶-凝胶法、共沉淀法、沉积法等。
-气相沉积法:将气态前驱物质通过化学反应沉积到基底表面,形成纳米结构。
气相沉积法包括化学气相沉积(CVD)、物理气相沉积(PVD)等。
2.物理方法:-机械球磨法:通过机械力的作用使粉末颗粒在球磨罐中产生碰撞和摩擦,从而实现颗粒的细化和形态的改变,制备纳米颗粒或纳米结构。
-溅射法:利用高能粒子轰击靶材表面,使靶材表面原子或分子脱落并沉积到基底表面,形成纳米薄膜或纳米结构。
3.生物合成法:-利用生物体内的生物合成过程,通过调控生物体的生理条件或添加适当的试剂,使生物体产生纳米材料。
常见的生物合成法包括植物合成、微生物合成等。
4.模板法:-利用模板的空间排列结构和特定的化学性质,将原料物质定向沉积或填充到模板孔道中,通过模板的模板效应制备纳米结构。
常见的模板法包括硅模板法、自组装模板法等。
5.激光法:-利用激光束对物质进行光照,控制激光的能量和焦点位置,使材料在局部区域发生化学或物理变化,形成纳米结构。
常见的激光法包括激光烧蚀、激光诱导化学气相沉积等。
这些制备方法各有特点,可以根据纳米材料的具体要求选择适合的方法进行制备。
同时,纳米材料的制备过程中需要注意控制反应条件、纯度和结构等关键因素,以确保制备得到高质量的纳米材料。
纳米材料的制备和合成

纳米科技概念的提出与发展
n“The
principles of physics, as far as I can see, do not speak
against the possibility of maneuvering things atom by atom.”
“Put the atoms down where the chemist says, and so you make the
electron-rich interior whose effective circular van der Waals
packing just touches that of the nanotube framework.
第六页,共81页
什么是纳米材料(nanomaterial)?
纳米材料是指在三维空间中至少有一维处于纳米尺度
high-resolution, low-temperature scanning tunneling microscope (STM)
(Science----1 February 2002)
第二十四页,共81页
Nano rings
JACS 2005
第二十五页,共81页
Nano-flowers
中科院物理所先进材料与结构分析实验室李超荣
• 纳米技术是一门高新技术,它对21世纪材料科学和微型器 件技术
的发展具有重要影响,纳米技术,就是要做到,从小到大,从下到上
。要什么东西,将分子、原子搭起来,就是什么东西,原材料浪
费为零,能耗降到极低,彻底从技术上解决了环保问题。
第九页,共81页
什么是纳米技术(nanotechnology)?
纳米技术是当前全球都在谈论的热门话题。所谓纳米技术,
纳米材料的合成和表征方法技巧

纳米材料的合成和表征方法技巧纳米材料是一种尺寸在1到100纳米之间的材料,具有独特的物理、化学和生物学性能。
纳米材料的合成和表征方法对于研究其性质和应用具有重要意义。
本文将探讨几种常见的纳米材料合成和表征方法技巧。
一、溶剂热法溶剂热法是一种常用的纳米材料合成方法,通过在高温、高压条件下进行反应,使反应物溶解在溶剂中,并逐渐形成纳米颗粒。
该方法具有反应温度和时间可控、纳米颗粒尺寸可调的优点。
在合成纳米材料的过程中,选择合适的溶剂是关键。
通常选择的溶剂应具有较高的沸点和相对较低的相对极性,具有适当的溶解性和稳定性。
常用的溶剂有乙二醇、正庚烷、N,N-二甲基甲酰胺等。
在溶剂热法中,合成剂和溶剂必须在密封容器中加热。
在合成过程中,根据不同的反应需求,可采用不同的加热方式,如水浴加热、电子源加热或高压反应釜。
二、溶胶凝胶法溶胶凝胶法是一种通过溶胶的凝胶化过程得到纳米材料的方法。
其基本原理是先制备溶胶,然后使其凝胶化。
凝胶形成后,通过干燥、热处理等方法,可以得到纳米颗粒。
在凝胶制备过程中,常用的溶胶剂有水、醇类、酸、氨等。
通过调节溶胶剂的性质和浓度,可以控制纳米颗粒的形貌和尺寸。
需要注意的是,溶胶凝胶法中的凝胶化过程对于纳米颗粒的形成至关重要。
凝胶化一般通过化学反应或物理交联实现,如水解反应、凝胶离子交换等。
三、X射线衍射(XRD)表征X射线衍射是一种常用的纳米材料表征方法,可用于分析物质的结晶性和晶格参数。
通过测量材料对入射X射线的散射角度和强度,可以推断出材料的晶体结构和晶粒尺寸。
X射线衍射实验通常使用X射线衍射仪进行。
在实验过程中,需调整X射线的入射角度和测量角度,使得出射光束和检测器的位置最佳。
同时,需选取合适的X射线波长和强度,以提高衍射信号的强度和质量。
通过对X射线衍射谱的分析,可以得到纳米材料的结晶度、晶粒尺寸、晶面方位和晶格畸变等信息。
这些信息有助于了解纳米材料的物理性质和结构特征。
四、透射电子显微镜(TEM)表征透射电子显微镜是一种常用的纳米材料表征方法,可提供纳米级别的材料结构、形貌和晶体结构等信息。
纳米材料的合成方法详解

纳米材料的合成方法详解纳米材料的合成是现代材料科学和纳米技术领域的一个重要研究方向。
纳米材料具有独特的物理、化学和生物学特性,因此在能源、环境、医学和电子等多个领域具有广泛的应用潜力。
本文将详细介绍几种常见的纳米材料合成方法。
1. 化学气相沉积法 (Chemical Vapor Deposition, CVD)化学气相沉积法是一种将气体中的原子或分子通过化学反应转变为固态纳米材料的方法。
其基本原理是在高温和特定气氛中,将气体中的原料物质通过热解或催化反应转化成所需的纳米材料,在基底表面沉积形成薄膜或纳米颗粒。
该方法可以合成具有较高结晶度和优异性能的纳米材料,但需要精确控制反应条件和选择合适的基底材料。
2. 溶胶-凝胶法 (Sol-Gel Method)溶胶-凝胶法是一种通过将溶液中的单质或化合物逐渐凝胶成固态材料的方法。
它通常包括溶胶制备、凝胶形成和热处理三个步骤。
在溶胶制备阶段,通过水解、聚合或凝聚反应将单体或溶液中的前驱物转化为凝胶。
凝胶形成阶段通过调节反应条件和控制胶体粒子的生长来控制纳米材料的尺寸和形貌。
最后,通过高温热处理可以去除有机物,形成纯净的纳米材料。
溶胶-凝胶法可以制备各种形态的纳米材料,如纳米粒子、纳米薄膜和纳米杂化材料。
3. 高能球磨法 (High-Energy Ball Milling, HEBM)高能球磨法是一种通过球磨罐中的高能球和固体颗粒之间的碰撞和反复磨擦来实现颗粒的细化和合成的方法。
高能球磨法可以合成均匀分散的纳米颗粒和纳米复合材料,因其简单、可控性好和成本较低而广泛应用于纳米材料合成的研究中。
通过控制球磨时间、球料的比例和球料的硬度等参数,可以实现纳米颗粒尺寸的调控和纳米材料的功能化。
4. 水热法 (Hydrothermal Method)水热法是一种利用高温高压水环境下的化学反应合成纳米材料的方法。
它通过水热反应在溶液中形成晶种,并通过重结晶或晶格修饰来得到所需的纳米材料。
纳米材料制备工艺详解

纳米材料制备工艺详解纳米材料是指在纳米尺度下具有特殊物理、化学和生物性能的材料。
纳米材料制备工艺是指通过特定的方法和工艺将原材料转变为纳米级别的材料。
本文将详细介绍纳米材料制备工艺的几种常见方法和工艺。
一、化学合成法化学合成法是一种常见的纳米材料制备工艺,它通过控制反应条件和添加特定的试剂来控制纳米颗粒的尺寸和形态。
其中最常见的方法是溶胶-凝胶法、气相合成法和水热合成法。
溶胶-凝胶法是利用溶胶在适当的温度下形成凝胶,并通过热处理和其他后续工艺步骤得到纳米颗粒。
这种方法适用于制备氧化物、金属和半导体纳米材料。
气相合成法是通过控制气相反应条件和反应物浓度来制备纳米颗粒。
常见的气相合成方法包括化学气相沉积和气相凝胶法。
这种方法适用于制备纳米粉体、纳米线和纳米薄膜等。
水热合成法利用高温高压的水环境下进行合成反应,通过溶液中的离子交换和沉淀来制备纳米颗粒。
这种方法适用于制备金属氧化物、碳化物和磷化物等纳米材料。
二、物理制备法物理制备法主要是利用物理性能的改变从宏观材料中得到纳米尺度的材料。
常见的物理制备法包括磁控溅射法、高能球磨法和激光烧结法。
磁控溅射法是通过在真空环境下,利用磁场控制离子轰击靶材溅射出材料颗粒来制备纳米材料。
这种方法适用于制备金属、合金和氧化物等纳米材料。
高能球磨法是通过使用高能的机械能,在球磨罐中将原料粉末进行碰撞、摩擦和剧烈混合,使材料粉末粒径不断减小到纳米尺度。
这种方法适用于制备金属和合金纳米材料。
激光烧结法是通过使用高功率激光束将材料粉末快速加热熔结,然后迅速冷却形成纳米颗粒。
这种方法适用于制备高熔点金属和陶瓷纳米材料。
三、生物制备法生物制备法是利用生物体内的特定酶或微生物来制备纳米材料。
这种方法具有环境友好、低成本和高度可控性的优点。
目前最常用的方法是利用微生物和植物来制备纳米材料。
微生物制备法通过利用微生物的代谢活性来合成纳米颗粒。
其中最常见的是利用细菌、酵母菌和藻类来制备金属和半导体纳米颗粒。
植物纳米材料的合成与应用

植物纳米材料的合成与应用植物纳米材料是指通过植物提取物,或者利用植物细胞、细胞壁、叶片、籽粒等生物材料,合成出具有纳米级尺寸的颗粒、纤维、膜等结构的材料。
相对于传统的合成方法,植物纳米材料的合成技术更为环保、可持续,且材料本身具有天然的抗氧化、抗菌、抗病毒等生物活性,被广泛用于医疗卫生、环境保护、食品安全等领域。
一、植物纳米材料的制备方法1. 生物还原法生物还原法是指通过微生物或者植物提取物将金属离子还原成纳米级颗粒。
例如将植物叶绿素与金属离子结合,经过还原反应得到具有生物活性的纳米颗粒。
这种方法具有环保、经济、易于控制尺寸等特点。
2. 激光剥离法激光剥离法是指通过激光对植物细胞、细胞壁进行切割,得到纳米级颗粒或者膜。
这种方法具有无损、高效的优点,但是需要较高的设备成本和技术要求。
3. 超声波法超声波法是指利用超声能量对植物细胞、细胞壁进行处理,使其分解成纳米级颗粒。
这种方法具有高效、低温等特点,但是需要破坏细胞壁,可能会影响材料的生物活性。
二、植物纳米材料的应用1. 医疗卫生植物纳米材料具有天然的生物活性,可以用于制备各种医疗卫生用品,例如抗菌口腔漱口水、抗氧化面膜、感染创口敷料等。
此外,植物纳米材料还可以用于制备肿瘤治疗药物的载体,提高药物的治疗效果和减少副作用。
2. 环境保护植物纳米材料可以用于环境污染治理,例如利用植物纳米材料制备出具有吸附能力和催化降解能力的吸附材料,用于处理废水和污染气体。
此外,植物纳米材料还可以用于制备具有良好防水、防尘性能的涂料,应用于建筑和交通领域。
3. 食品安全植物纳米材料可以用于食品安全保护,例如制备具有抗氧化、抗菌、防腐能力的食品包装材料,延长食品的保质期。
此外,植物纳米材料还可以用于制备高效去除有害物质的食品净化剂,提高食品的安全性和品质。
三、植物纳米材料的未来发展随着生物科技和纳米技术的不断发展,植物纳米材料将在各个领域得到更加广泛的应用。
未来,植物纳米材料的制备技术将更加先进、高效和环保,材料的性能也将更加优越。
ZnO纳米材料的合成与应用研究

ZnO纳米材料的合成与应用研究概述:ZnO纳米材料作为一种具有广泛应用前景的半导体材料,其合成与应用研究一直备受关注。
本文旨在探讨ZnO纳米材料的合成方法以及其在各个领域的应用,从而深入了解其在科学研究和工业应用中的潜力。
一、ZnO纳米材料的合成方法1. 水热法合成水热法是一种常用的制备ZnO纳米材料的方法。
它通过调节反应条件和反应时间,可以获得具有不同形貌和尺寸的ZnO纳米颗粒。
水热法合成ZnO纳米材料具有简单、低成本、可扩展性强等优点,因此受到了广泛关注。
2. 溶胶-凝胶法合成溶胶-凝胶法是一种通过溶胶中的化学反应和胶体形成过程制备纳米材料的方法。
在ZnO纳米材料的合成中,可以通过溶胶-凝胶法控制反应条件,如温度、浓度和PH值等,以实现获得具有不同形貌和尺寸的纳米颗粒。
3. 气相法合成气相法是制备ZnO纳米材料的一种常用方法。
它通过将金属有机化合物或金属化合物加热到高温,然后通过氧化反应生成ZnO纳米颗粒。
气相法合成的ZnO纳米材料具有高纯度、高晶度和尺寸可控性好等特点。
二、ZnO纳米材料在光电子领域的应用1. 光催化应用ZnO纳米材料具有优异的光催化性能,可以利用其吸收紫外光的特性来分解有害有机物和杀灭细菌。
因此,ZnO纳米材料被广泛应用于光催化净化空气、水处理和消毒等领域。
2. 光电器件应用由于ZnO纳米材料的特殊电学性质和优异的光电性能,它在光电器件领域具有广泛应用潜力。
例如,ZnO纳米材料可以用于制备光电传感器、光电调制器、太阳能电池等。
三、ZnO纳米材料在生物医学领域的应用1. 抗菌材料ZnO纳米材料具有较高的抗菌性能,可以通过抑制细菌的生长来达到消毒和杀菌的目的。
因此,在生物医学领域,ZnO纳米材料被广泛应用于医疗设备、外科用品和医疗纺织品等。
2. 肿瘤治疗由于ZnO纳米材料的优异光学性质,在肿瘤治疗中可以利用其光热效应。
将ZnO纳米材料注入肿瘤组织,并利用红外激光的吸收来使其产生局部高温,从而实现对肿瘤的治疗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米材料的合成与制备 (1)摘要 (1)关键词 (1)The synthesis and preparation of nanomaterials (1)Abstract (1)Keywords (1)引言 (1)1纳米材料的化学制备 (1)1.1纳米粉体的湿化学法制备 (1)1.2纳米粉体的化学气相法制备 (2)1.2.1气体冷凝法 (2)1.2.2溅射法 (2)1.2.3真空蒸镀法 (2)1.2.4等离子体方法 (3)1.2.5激光诱导化学气相沉积法(LICVD) (3)1.2.6爆炸丝方法 (3)1.2.7燃烧合成法 (3)1.3纳米薄膜的化学法制备 (4)1.4纳米单相及复相材料的制备 (4)2纳米材料的物理法制备 (5)2.1纳米粉体(固体)的惰性气体冷凝法制备 (5)2.2纳米粉体的高能机械球磨法制备 (5)2.3纳米晶体非晶晶化方法制备 (6)2.4深度塑性变形法制备纳米晶体 (6)2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (6)2.6纳米薄膜物理气相沉积技术 (6)3纳米材料的应用展望 (7)4 总结 (7)参考文献 (8)纳米材料的合成与制备摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。
从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。
关键词纳米材料,合成,制备The synthesis and preparation of nanomaterialsAbstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects.Keywords nano materials, synthesis, preparation引言纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。
正是因为纳米材料具有这些优良性能,因此纳米材料在今后一定有着广泛的应用。
本文系统地阐述纳米材料的结构、性能、制备以及应用,以获得对纳料材料更为深刻和全面的理解。
[1]纳米材料的制备科学在当前纳米材料科学研究中占据极为重要的地位。
新的材料制备工艺和过程的研究与控制对纳米材料的微观结构和性能具有重要的影响.纳米材料的合成与制备包括粉体、块体及薄膜材料的制备。
1纳米材料的化学制备1.1纳米粉体的湿化学法制备湿化学法制备工艺主要适用于纳米氧化物粉体,它具有无需高真空等苛刻物理条件、易放大的特点,并且得到的粉体性能比较优异。
上海硅酸盐所在采用共沉淀法、乳浊液法、水热法图等湿化学法制备氧化错超细粉体的工作中,得到了10~15nm的性能优良的纳米粉体.由于湿化学方法中对超细粒子的团聚体的形成及强度的控制是非常重要的,采用共沸蒸馏、有机溶剂洗涤等方法,有效地控制了氧化错纳米粉体的合成及硬团聚的形成.特别是有巨大比表面积的纳米粉体能达到微米粉体的素坯成型密度,并且能在比微米粉体烧结温度低500~600℃的温度下烧结致密,达到理论密度的89 5%以上,晶粒尺寸只有1 0nm左右。
其它的溶液化学方法还可包括如金属盐的还原法制备金属纳米颗粒和金属一氧化物复合材料等。
[2]1.2纳米粉体的化学气相法制备气相法制备纳米材料在较高温度下,使用固体原材料蒸发成蒸气或直接使用气体原料,经过化学反应,或者使气体直接达到过饱和状态,凝聚成固态纳米微粒并收集得到纳米材料的方法称之为气相法。
气相方法是制备纳米粉体,晶须,纤维,薄膜的主要方法,但该方法所需设备复杂,制造成本较高,气相法可以分为气体冷凝法,溅射法,真空蒸镀法,混合等离子体法,激光诱导化学气相沉积法,爆炸丝法及燃烧合成法等。
[3]1.2.1气体冷凝法气体冷凝法是在1963年由Ryozi Uyeda及其合作者提出的,即通过在纯净的惰性气体(氩,氮气)中蒸发和冷凝过程获得纳米微粒。
20世纪80年代初,Gleiter 等人提出了将该方法制备的纳米微粒在超高真空条件下紧压致密可以得到多晶体,从而进一步完善了该方法[3]。
该方法加热源有以下几种:电阻加热,等离子体喷射,高频感应,电子束,激光加热等。
该方法可以通过调节惰性气体压力,蒸发物质的分压即蒸发温度或速率,或者惰性气体的温度来控制纳米微粒的大小。
例如采用SiH4- CH3NH2- NH3系统制备了Si/C/N复合粉末,微粒粒径是30~72nm[5]。
1.2.2溅射法该方法采用金属板分别作为阴、阳极,阴极为蒸发用材料,在两电极间充入氩气(40~250Pa),两电极间电压范围是0.3~ 1.5kV。
由于电极间辉光放电使Ar 离子形成,在电场作用下Ar离子冲击阴极靶材表面,使靶材原子从其表面蒸发形成纳米粒子。
粒子大小及尺寸分布主要取决于两电极间的电压、电流和气体压力,靶材的表面积越大,原子的蒸发速度越高,纳米颗粒的获得量越多。
用溅射法制备纳米微粒有以下优点:(1)可制备多种纳米金属,包括高熔点和低熔点金属;(2)能制备多组元的化合物纳米微粒,例如Al52Ti48,Cu91Mn9及ZrO2等;(3)可获得较大量的纳米颗粒材料。
1.2.3真空蒸镀法该方法的原理是在高真空中采用电子束加热,使金属粒子蒸发,打开快门使粒子转入圆盘表面,从而进入圆盘表面的油膜而形成纳米粒子。
然后含微粒子的油被摔到真空室沿壁的容器中,蒸馏,浓缩溶液,得到纳米粒子的糊状物。
采用该方法制备纳米粒子有以下优点:(1)可制备单金属颗粒,例如Ag,Au,Pd,Cu,Fe,Ni,Co,Al,In 等金属粒子,粒径大约8nm。
(2)粒径分步窄,并且均匀;(3)粒径尺寸可通过调节蒸发速度,油的黏度,圆盘转速等进行控制。
1.2.4等离子体方法该方法是采用RF等离子与DC等离子组合的混和方式来获得纳米粒子的方法,该方法按照所制产物的不同又可分为如下几种方法:(1)等离子蒸发方法。
大颗粒金属和气体流入等离子室生成金属纳米颗粒;(2)反应性等离子蒸发方法。
大颗粒金属和气体流入等离子室,同时通入反应性气体,生成化合物纳米粒子;(3)等离子CVD方法。
化合物随载气流入等离子室,同时通入反应性气体,生成化合物纳米粒子。
例如吉林大学采用DC等离子体方法生产了Ti,Co,Ni,Cr,Mn等金属纳米粉;青岛化工学院采用该方法实现了年产300kg纳米材料产品的水平,可制备金属,合金,氧化物,氮化物等。
等离子体方法制备纳米粒子有以下特点:(1)可制备纯度较高的纳米粒子;(2)可以制备各种纳米粒子产品,并且可实现批量生产;(3)反应速度快,所得纳粒粒径小。
1.2.5激光诱导化学气相沉积法(LICVD)LICVD方法是一种新的制备超微颗粒的方法,其基本原理是利用反应气体分子对特定波长激光束的吸收,引起反应气体分子激光光解,激光热解,激光光敏化和激光化学合成反应,然后在一定条件下获得纳米粒子。
该方法具有制备的纳米粒子表面清洁,粒子大小可以控制,不团聚,粒度分布均匀等优点,并且可制备几到几十个纳米的非晶态或晶态纳米微粒。
目前,LICVD方法已制备出多种单质,无机化合物和复合材料纳米粉末,并已经进入规模生产阶段,例如美国麻省理工学院(MIT)在1986年建成年产几十吨的装置。
1.2.6爆炸丝方法该方法基本原理是先将金属丝固定在一个充满惰性气体(5×106Pa)的反应室内,丝两端的接头是两个电极,电极分别与大电容相连形成回路,加15kV高压,金属丝在500~800kA电流下加热,金属丝熔断后在电流中断的瞬间,接头处的高压放电,使熔融后的金属进一步加热变为蒸气,在惰性气体碰撞下形成纳米金属或合金粒子从而沉降在容器的底部。
该方法适用于工业上连续生产纳米金属,合金和金属氧化物粉体。
1.2.7燃烧合成法该方法的原理是通过金属有机先驱物分子热解获得纳米粉体或者金属与金属化合物在惰性气体的保护下混合,燃烧,发生置换反应生成金属纳米粉。
例如美国辛辛那提大学用针状或平板电极,以电力协助碳氢化合物燃烧来氧化卤化物蒸气制取了纳米相的TiO2,SnO2,SiO2晶粒。
近年来,随着纳米科技的深入发展及对纳米材料需求的不断扩大,纳米材料的规模化生产要求越来越迫切,从而相继出现了新的纳米制备技术和方法。
例如,超声等离子体粒子沉积方法,电火花侵蚀法,电子束蒸发方法等。
1.3纳米薄膜的化学法制备纳米薄膜的化学制备主要包括电化学方法和化学气相沉积方法。
电化学沉积可用于合成具有纳米结构的纯金属、合金、金属-陶瓷复合涂层以及块状材料。
其纳米结构的获得,关键在于制备过程中晶粒成核与生长的控制。
化学气相沉积包括常压、低压、等离子辅助气相沉积等。
这一工艺方法在半导体、氧化物、氮化物、碳化物纳米微粒薄膜中应用较多。
电化学沉积方法作为一种十分经济而又简单的传统工艺手段,可用于合成具有纳米结构的纯金属、合金、金属一陶瓷复合涂层以及块状材料,包括直流电镀、脉冲电镀、无极电镀、共沉积等技术.其纳米结构的获得,关键在于制备过程中晶粒成核与生长的控制.电化学方法制备的纳米材料在抗腐蚀、抗磨损、磁性、催化、储氢、磁记录等方面均具有良好的应用前景。
在Ni-P纳米涂层材料的研究中,通过材料纳米结构的控制,制备了不同粒径的纳米涂层,发现符合Hall 一Petch关系的晶粒临界尺寸为8nm。