位移电涡流传感器测量电路设计)
电涡流传感器的位移特性实验报告

电涡流传感器的位移特性实验报告一、实验目的了解电涡流传感器测量位移的工作原理和特性。
二、实验仪器电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表二、实验原理通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量四、实验内容与步骤1 •按图2-1安装电涡流传感器。
图2-1传感器安装示意图器的被测体。
调节测微头?L 属圆盘的平面贴到电涡流传感器的探测端,使铁质金,固定测微头。
—模損t图2-2电涡流传感器接线示意图X(m m )0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .0U o ( 0.0 0.2 0.3 0.5 0.6 0.8 0.9 1.1 1.3 1.4 V ) 2 1 7 3 7 3 9 4 0 h 5X(m m )1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.92.0U O ( 1.6 1.8 1.9 2.1 2.3 2.4 2.6 2.8 3.0 3.2々n ffimT>< 匕・[: wk一一「QVi电福流传感器实验樟机3 •传感器连接按图 2-2,实验模块输出端 入端也相接 压 20V 档,, 导线从实验台上接入+15V 电源 ” 4合上实验台上电源开关,记下数显表读 数,然后每隔0.1mm 读一个数,直到输出几乎 不变为止。
将结果列入表2-1。
表2-1 铁质被测体程切关选择压表量号 测犠咲 岸顽『Vc >p :喘千粧卸丄旳分3找出纟线性据域表数据正、画出位移测論的最曲线为出(即豔线性段正灵敏度和测度算测量范围(1)由上图可得系统灵敏度:S=A V/ △W=1.6825V/mm(2)由上图可得非线性误差:当x=1mm时:Y=1.6825 >1-0.1647=1.5178VA m =Y-1.46=0.0578VyFS=2.32V8 f = A m /yFS X 100%=2.49%当x=3mm时:Y=1.6825 X-0.1647=4.4828VA m =Y-3.84=1.0428V yFS=3.84V8 f = A m /yFS X 100%=27.15%五、思考题需嬴涡±感器的的量与如因计有感如果答:量程与线性度、灵敏度、初始值均有关系。
电涡流传感器的仿真与设计

电涡流传感器的仿真与设计电涡流传感器是一种基于电磁感应原理的传感器,具有非接触、高精度、高灵敏度等优点,因此在工业、科研、医疗等领域得到广泛应用。
本文将介绍电涡流传感器的仿真与设计,包括其原理、应用和未来发展。
电涡流传感器的工作原理是利用电磁感应原理,当一个导体置于变化的磁场中时,导体内部会产生感应电流,这种电流被称为电涡流。
电涡流的大小和方向取决于磁场的变化,因此,通过测量磁场的变化,可以推导出被测物体的位置、速度、尺寸等参数。
在进行电涡流传感器的设计和应用之前,通常需要进行仿真和验证。
本文将介绍如何使用仿真工具进行电涡流传感器的设计和验证。
需要搭建一个包含激励源、传感器和数据采集器的电路。
激励源用于产生磁场,传感器用于感测磁场的变化,数据采集器用于采集传感器的输出信号。
激励电源的配置应根据传感器的工作频率、功率和电压等参数进行选择。
通常,激励电源的频率与传感器的谐振频率一致,以获得最佳的测量效果。
将传感器与数据采集器连接,使得传感器能够感测到磁场的变化并将输出信号传输给数据采集器。
数据采集器应选择具有较高灵敏度和分辨率的型号,以保证测量结果的准确性。
运行仿真程序并分析仿真结果,以验证设计的可行性和有效性。
可以通过调整激励电源的参数、传感器的位置和方向等来优化仿真结果,并分析各种情况下传感器的响应特性和测量误差。
在完成仿真后,可以开始进行电涡流传感器的硬件和软件设计。
电路设计应考虑传感器的供电、信号的放大和滤波、抗干扰措施等因素。
可以根据仿真结果来选择合适的元件和电路拓扑结构,以满足传感器在不同情况下的性能要求。
根据应用场景的不同,选择合适的传感器类型和材料。
例如,对于高温环境,应选择能够在高温下正常工作的传感器;对于需要测量非金属材料的场景,可以选择使用高频激励源来减小对非金属材料的感测误差。
根据电路设计和传感器选择的结果,编写数据采集器的程序。
程序中应包括信号的读取、处理、存储和传输等功能,以便将传感器的输出信号转换为有用的测量结果。
电涡流传感器位移实验报告

电涡流传感器位移实验报告背景电涡流传感器是一种非接触式位移传感器,广泛应用于工业领域中的位移测量。
它基于涡流效应,通过感应涡流的变化来测量目标物体的位移。
在实验中,我们使用了一种常见的电涡流传感器,将其应用于位移测量,并对其性能进行了评估和分析。
实验目的本实验旨在通过测量电涡流传感器对不同位移的响应,评估其性能指标(如灵敏度、线性度等),并提出相应的改进建议,以提高位移测量的精确性和稳定性。
实验装置与方法实验装置•电涡流传感器:型号ABC-123,频率范围0-10kHz•信号发生器:频率范围0-10kHz,可调幅度•示波器:带宽100MHz,采样率1GS/s•电压表:精度0.1mV实验步骤1.准备实验装置,保证电涡流传感器与信号发生器、示波器的连接正确。
2.设置信号发生器的频率为2kHz,并将幅度调至适当水平。
3.将电涡流传感器固定在实验台上,使其与目标物体相对静止并平行。
4.使用示波器测量电涡流传感器输出的电压信号,并记录数据。
5.调整信号发生器的频率和幅度,重复步骤4,以获得不同位移下的电压信号。
数据分析与结果实验数据我们通过实验获得了电涡流传感器在不同位移下的电压信号数据,如下所示:位移 (mm) 电压 (mV)0 1.21 1.52 1.83 2.14 2.45 2.7曲线拟合与性能评估我们将实验数据进行曲线拟合,以评估电涡流传感器的性能指标。
首先,我们使用最小二乘法对数据进行线性拟合。
得到的拟合直线的方程为:V = 0.3d + 1.2其中V表示电压(mV),d表示位移(mm)。
通过拟合直线,我们可以计算出电涡流传感器的灵敏度为0.3 mV/mm,表示单位位移引起的电压变化量。
其次,我们计算了电涡流传感器的线性度。
线性度是衡量传感器输出与输入之间线性关系程度的指标,通常以百分比表示。
通过计算每个数据点与拟合直线之间的残差,并将其转化为线性度,我们得到了电涡流传感器的线性度为95%。
结果分析与建议通过对实验数据的分析和性能评估,我们得到了以下结论:1.电涡流传感器表现出良好的线性关系,其灵敏度为0.3 mV/mm。
电涡流传感器转速测量实验

电涡流传感器转速测量实验
电涡流传感器V-n 曲线图
U/V
转速n /r p m 电涡流传感器转速测量实验报告
⼀、实验⽬的:
了解电涡流传感器测量转速的原理与⽅法。
⼆、实验仪器:
电涡流传感器、转动源、+5V 、+4、±6、±8、±10V 直流电源、电涡流传感器模块
三、实验原理:
根据电涡流传感器对不同材质的被测物输出不同和静态位移特性,选择合适的⼯作点即可测量转速。
四、实验内容与步骤
1、将电涡流传感器安装到转动源传感器⽀架上,引出线接电涡流传感器实验模块。
2、合上主控台电源,选择不同电源+4V 、+6V 、+8V 、+10V 、12V (±6)、16V (±8)、20V (±10)、24V 驱动转动源,可以观察到转动源转速的变化,待转速稳定后,记录驱动电压对应的转速,也可⽤⽰波器观测磁电传感器输出的波形。
五、数据分析与记录
1、数据记录表格
2、⽤matlab 绘制的V-n 曲线图如下图所⽰
3、电涡流传感器传感器测量转速原理
传感器线圈由信号激励,使它产⽣⼀个交变磁场,当被测导体靠近线圈时,在磁场作⽤范围的导体表层,产⽣了与此磁场相交链的电涡流,⽽此电涡流⼜将产⽣⼀交变磁场阻碍外磁场
的变化。
因此当被测体与传感器间的距离改变时,传感器的Q值和等效阻抗Z、电感L均发⽣变化,于是把位移量转换成电量。
六、实验报告
1.分析电涡流传感器传感器测量转速原理。
2.根据记录的驱动电压和转速,作V-n曲线。
电涡流传感器特性与位移测量实验

(操作性实验)班级:学号:学生姓名:实验题目:电涡流传感器特性与位移测量实验一、实验目的1、掌握电涡流传感器的特性和工作原理。
2、掌握电涡流传感器静态特性的标定方法。
二、实验仪器及器件电涡流线圈、金属涡流片、电涡流变换器、测微仪、示波器、电压表。
三、实验内容及原理3.1实验原理电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。
当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。
将阻抗变化经涡流变换器变换成电压V输出,则输出电压是距离X的单值函数。
3.2实验内容1、利用所需部件,连接一个利用电涡流位移传感器测量位移的测试系统。
2、掌握实验原理,列出实验步骤。
3、根据实验步骤进行测量。
4、记录测量数据,最少测5组数据。
5、根据数据描出实验曲线。
6、计算实验数据,得出电涡流位移传感器静态特性。
三、实验步骤1.安装好电涡流线圈和金属涡流片,注意两者必须保持平行。
安装好测微头,将电涡流线圈接入涡流变换器输入端。
涡流变换器输出端接电压表20V档。
2.开启仪器电源,用测微仪将电涡流线圈与涡流片分开一定距离,此时输出端有一电压值输出。
用示波器接涡流变换器输入端观察电涡流传感器的高频波形,信号频率约为1MHz。
3.用测微仪带动振动平台使平面线圈完全贴紧金属涡流片,此时涡流变换器输出电压为零。
涡流变换器中的振荡电路停振。
4.旋动测微仪使平面线圈离开金属涡流片,从电压表开始有读数起每位移0.25mm 记录一个读数,并用示波器观察变换器的高频振荡波形。
将V、X数据填入下表四、实验测试数据表格记录表1五、实验数据分析及处理1、非线性度:图一线性方程为y = -1.9757x - 1.5198表2非线性度%88.426.6277.0max 1==∆=FS y e 2、灵敏度-1.975S =∆3、重复性图二%63.026.604.0max ==∆=FS R y e4、迟滞%76.126.611.0e max ==∆=FS t y1正-2正 0 0.01 0.04 0.01 0.02 0.01 0.02 0.02 0.01 -0.01 1正-3正 -0.04 0 0.03 0.01 0.01 0 0.010.010 0 2正-3正-0.04-0.01-0.01-0.01-0.01-0.01 -0.01-0.010.011正-1反 0.09 0.06 0.06 0.08 0.1 0.07 0.07 0.07 0.07 0 2正-2反 0 0.04 0.01 0.07 0.07 0.06 0.05 0.04 0.05 0 3正-3反0.110.050.030.060.090.350.050.040.03六、实验结论与感悟 1、实验结论1实验结论 非线性度%88.426.63055.0max 1==∆=FS y e 灵敏度-1.9757S =∆ 重复性%63.026.604.0max ==∆=FS R y e迟滞%76.126.611.0e max ==∆=FS t y2实验心得在本次实验中,我了解了电涡流传感器的特性及工作原理,掌握了振荡频率与输出电压的关系,掌握了电涡流式传感器的静态标定方法。
电涡流传感器电路设计

电涡流传感器电路设计作者:汪晓凌杜嘉文来源:《硅谷》2013年第01期摘要:在无损测量当中,电涡流传感器测量因为能够实现工件在线非接触测量,测量精度高、无污染、制作价格低廉等优点,一直被作为一种重要的检测设备,在涡流技术高速发展的今天,电涡流的优势越来越明显应用也越来越广泛。
电涡流传感器是电涡流测量淬火层厚度的核心部分,传感器的测量精度直接影响整个测厚设备的精度,传统的电涡流传感器包括测量探头、整流滤波电路的设计、放大器的设计等,电涡流传感器的精确测量也离不开位移测厚标定器,这里主要研究电涡流测厚核心电路的设计。
关键词:无损测量;电涡流;测厚;电路0 引言电涡流无损检测具有很悠久的历史,从Michael Faradays总结出电磁感应定律,即变化的磁场能产生电场以来,电磁感应相关技术取得了巨大的发展。
后来Foster提出的通过分析系统的阻抗变化来分析涡流检测仪的干扰因素,为涡流检测提供了很好的理论依据,大大推动了电涡流无损检测技术的发展。
通过对阻抗分析法的有效运用,电涡流测量技术已经渗透到我们工业测量的方方面面,包括了航空航天、核工业、机械、冶金、石油、化工、机械、汽车等部门,电涡流无损技术的快速发展,相关研究和运用也越来越广泛,其中传感器的电路设计和测量精度的控制都是研究的焦点。
1 涡流检测原理图涡流检测是无损检测的一个分支,是运用电磁感应原理,将一半径为r的线圈通过正弦波电流后,线圈周围就会产生一交变磁场H1;若在距线圈x处有一电导率为a,磁导率为u厚度为d的金属板,线圈周围的交变磁场会在金属表面产生感应电流,也称作涡流。
金属表面也产生一个与原磁场方向相反的相同的相同频率的磁场H2,反射到探头线圈,导致载流线圈的阻抗和电感的变化,改变了线圈的电流大小及相位,原理图如图1所示。
图1 电涡流测厚原理图2 测厚探头的设计图2 电涡流测量电路整体设计图电涡流测量电路的整体测量电路设计图如图2所示,涡流探头测量物体厚度后引起阻抗的变化,通过电桥电路转化成电流信号输出,也由于信号很微弱,需要经过放大器进行功率放大输出,经过整波电路,把交流信号转化为直流信号,然后把那些高频的还有低频的号过滤掉,得到干扰较小的电流信号,经过放大器尽心比例放大后接入ARM7的A/D转换接口,把模拟信号转化为数字信号,对信号进行控制然后接入数字示波器,观察波形输出,把结果通过PC 机显示出来[1]。
电涡流位移传感器设计

HEFEI UNIVERSITY OF TECHNOLOGY《传感器原理及应用》课程考核论文题目电涡流位移传感器设计班级机设八班学号姓名成绩机械与汽车工程学院机械电子工程系二零一二年五月电涡流位移传感器摘要:随着现代测量、控制盒自动化技术的发展,传感器技术越来越受到人们的重视。
特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在各个领域的作用也日益显著。
传感器技术的应用在许多个发达国家中,已经得到普遍重视。
在工程中所要测量的参数大多数为非电量,促使人们用电测的方法来研究非电量,及研究用电测的方法测量非电量的仪器仪表,研究如何能正确和快速的非电量技术。
电涡流传感器已成为目前电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。
关键词:电涡流式传感器传感器技术电量非电量Abstract:With modern measurement, control box of automation technology development, the sensor technology is more and more attention by people. Especially in recent years, due to the development of science and technology and ecological balance the need, sensor in various fields are also increasingly significant role. The sensor technology application in many developed countries, has been paid attention to. In the project in measured parameters for the most power, the power to urge people to approach to the power, and the research method of the electricity measurement of electric instruments, to study how to correct and fast the power technology. The eddy current sensor has become the electrical measurement technology is very important means of detection, widely used in engineering survey and scientific experiments.Key words:Eddy current sensor, sensor technology ,non-power electrical measurement techniques,一:总体设计方案电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。
基于电涡流传感器的小位移测量系统设计

基于电涡流传感器的小位移测量系统设计于明军;孙福玉;韩铮;张迪【摘要】针对物理实验中对小位移的测量读数困难的问题,提出了一种基于电涡流传感器测量小位移的方法.根据谐振原理设计了涡流传感器检测和调理电路,利用位移量影响谐振电路Q值的特性,实现了小位移量到电压量的转换,使用单片机采集信号并用软件方法对测量结果校准.实验结果表明,系统可以准确测量小位移,同时可消除使用物理测量工具时产生的读数误差.【期刊名称】《实验技术与管理》【年(卷),期】2015(032)005【总页数】4页(P111-114)【关键词】位移测量;电涡流传感器;数据采集;微控制器【作者】于明军;孙福玉;韩铮;张迪【作者单位】赤峰学院物理与电子信息工程学院,内蒙古赤峰024400;赤峰学院物理与电子信息工程学院,内蒙古赤峰024400;赤峰学院物理与电子信息工程学院,内蒙古赤峰024400;赤峰学院物理与电子信息工程学院,内蒙古赤峰024400【正文语种】中文【中图分类】TP212.1电涡流传感器是一种非接触式的传感器件,它具有高线性度、高分辨力,可用于位移、振动和转速等静态和动态的相对位移变化测量[1]。
学生实验中对小位移的测量通常使用游标卡尺或千分尺,数据不能直观显示且存在读数误差。
本文利用电涡流传感器设计了一种小位移测量系统,能够自动显示测量结果,使用方便且测量精度高。
利用单片机采集、处理信号,电路简单,成本低廉[2]。
电涡流传感器的测量原理如图1所示,根据法拉第电磁感应定律,当传感器探头线圈通以正弦交变电流i1时,线圈周围空间产生正弦交变磁场H1,它使置于此磁场中的被测金属导体表面产生感应电流,即电涡流i2,电涡流又产生新的交变磁场H2, H2与H1方向相反,并力图削弱H1,从而导致探头线圈的等效电阻相应地发生变化[3-4]。
将被测金属导体上形成的电涡流等效成一个短路环中的电流,这样就可以得到如图2所示的等效电路。
电路中除了自感L1和L2,外,探头线圈和导体之间存在一个互感M,它随线圈与导体间距离的减小而增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成绩评定:_______
传感器技术
课程设计
题目位移电涡流传感器测量电路设计
电涡流传感器由于具有对介质不敏感、非接触的特点, 广泛应用于对金属的位移检测中。
为扩大电涡流传感器的测量范围, 采用恒频调幅式测量电路, 引用指数运算电路作为非线性补偿环节。
利用Matlab计算软件辅助设计了直径为60mn电涡流传感器探头,并结合测量电路进行实验。
实验结果表明最大测量范围接近90mm验证了该系统工作的稳定性,证明设计达到了预期效果。
关键词: 电涡流传感器; 测量电路;大位移; 线性化
一、设计目的-------------------- 1
二、设计任务与要求- --------------------- 1
2.1 设计任务 ---------------------- 1
2.2 设计要求 ---------------------- 1
三、设计步骤及原理分析--------------- 1
3.1 设计方法----------------------- 1
3.2 设计步骤 ---------------------- 2
3.3 设计原理分析 -------------------- 6
四、课程设计小结与体会--------------- 6
五、参考文献- ------------------------- 6
一、设计目的
1. 了解电涡流传感器测量位移的工作原理和特性。
2. 了解电涡流传感器的前景及用途
二、设计任务与要求
2.1设计任务
扩大电涡流传感器的测量范围,采用恒频调幅式测量电路,引用指数运算电路作为非线性补偿环节。
验证了该系统工作的稳定性,证明设计达到了预期效果。
2.2设计要求
1. 工作在常温、常压、稳态、环境良好;
2. 设计传感器应用电路并画出电路图;
3. 应用范围:测量物体的位移。
三、设计步骤及原理分析
3.1设计方法
电涡流传感器具有体积小、非接触、对介质不敏感的特点,被广泛应用于对金属位移等的测量中。
尽管用电涡流传感器非接触测量位移已经得到广泛的应用但是测量位移的线性范围受到传感器线圈直径的限制,位移测量范围为线圈直径的1/3~1/5,大直径的传感器,其测量范围最大可以接近到直径的1/2。
在许多领域希望能进一步扩大传感器的测量范围,以满足大位移的非接触测量。
文中采用指数运算电路作为非线性补偿环节来改善传感器原有的传输特性,扩大传感器测量范围。
由电磁感应定律可知:闭合金属导体中的磁通发生变化时,就会在导体中产生闭合的感应电涡流,阻碍磁通量的变化。
如图1所示,传感线圈由交流信号激励在产生焦耳热的同时,又要产生磁滞损耗,它们造成交变磁场能量的损失,进而使传感器的等效阻抗Z发生变化。
影响阻抗Z的因素有被测导体的电导率、磁导率、线圈的激励频率f及传感器与被测导体间的位移x等,只要保证这些影响因素只有位移x变化,其他都保持不变,则传感器
的等效阻抗Z将变成位移x的一元函数Z(x),经过线性化处理后用Z的变化就能很好地反映出x的变化,实现测量位移x的目的。
图1电涡流位移测豈原理
3.2设计步骤
321测量电路的设计
电涡流传感器的测量电路可以归纳为调幅式和调频式2种。
调幅式电路又可
细分成恒定频率的调幅式与频率变化的调幅式2种,文中采用恒定频率调幅式电路,其特点是输出可以被调理为直流电压,优势在于调节为直流电压后,采用指数运算电路对传感器的非线性段进行线性化补偿,可最大限度地扩大传感器测量范围。
测量电路由电涡流传感器、信号源电路、前级放大电路、检波滤波电路、指数补偿电路等5部分构成。
3.2.2传感器参数的确定
传感器的主要元件是一支固定于框架上的扁平线圈与一个电容并联所构成的并联谐振回路。
线圈尺寸和形状关系到传感器的灵敏度和测量范围,采用计算机Matlab计算软件得到传感器线圈的最优结构参数:外径为60mm内径为57mm轴向厚度为3mm匝数为80,线径为0.25mm.
3.2.3信号源电路
信号频率及其稳定性对检测效果的影响非常大,一般来说,若振荡频率变化1%, 输
出变化大约在10%以上。
DDS具有相位连续、转换速度快、信号稳定度高等优点。
采用AD9850与单片机产生正弦信号,经滤波、功率放大等处理后送给传感器。
AD9850与单片机组成的信号源电路,在参考时钟为125MHzF,输出频率分辨率可达
0.029Hz。
324前级放大电路
电涡流位移传感器是将位移量转化为电信号,由于信号为变化缓慢的非周期信号,而且比较微弱,只有通过放大才能驱动负载。
同时,要求放大电路要有高的输入阻抗,以减小测量电路的负载,提高LC并联谐振回路的品质因数。
采用低噪声、精密集成运算放大器OP37搭建同相输入前级放大电路,同时得到1M以上的高输入阻抗和较低的输出阻抗。
3.2.5检波滤波电路
采用二倍压检波电路与有源二阶低通滤波电路,如图2所示,得到与交流电压信号幅值变化相对应的直流电压信号。
电路还具有电压的调节作用,即调节反馈电阻RW1获取传感器线圈与被测位移为0处所对应的输出电压,为后面的指数非线性补偿等处理做准备。
图2检波与滤波电路
3.2.6指数补偿电路
当位移x在50mn以外变化时,电涡流传感器输出电压仍有变化,只是变化十分缓慢。
为增大测量范围,需要一个补偿环节,其传输特性如图3第三象限中曲线2 所示,它与第一象限中传感器输出特性(曲线1)一起,实现最终第四象限的线性结果。
在第三象限较远处,当输入(横轴方向)逐渐增大变化时,输出(纵轴方向)的变化率不断增大,这种曲线类似指数运算。
故利用2支双极型晶体管与精密、低噪声运放AD704设计一个指数运算电路,可以达到上述要求。
图3非线性化补偿图解
如图4所示,在进行指数补偿之前,通过运算放大器A3的减法运算得到位移x 的对应变化电压V2,运算放大器A4和A5的作用是选择指数补偿的起点电压。
5V 电压基准Vrefl、Vref2及后面Vref3均由低噪声、低漂移、精密电压基准MAX6250 提供;开关二极管D3保证输出电压的单一方向,即V3>0,对指数补偿电路起保护作用。
图4非线性补偿起点获取电路
指数补偿电路如图5所示,放大器A6 A7与三极管Q1、Q2组成指数补偿电路放大器A8与A9组成豪兰德(Howland)电流源电路,为指数运算电路提供如图所示的恒定电流:
图5指数补偿电路
由于指数运算电路只对较远处起作用,对较近的距离反而具有衰减的负面效应,为解决此问题,将指数运算电路输出V4与图5中通过A3减法运算得到位移x 的对应变化电压V2相加得到最终的输出电压Vout。
3.2 . 7实验结果
把电涡流位移传感器固定在一方,在另一方放置一块厚度为2cm,面积为(200*200)mm2的钢板作为被测导体,当钢板移动时,用游标卡尺读出位移x,在数字电压表上读出补偿前后电压值Voutl和Vout2,并转化成对应的相对电压Vob1 和Vob2(输出电压值Vout与最大输出电压Vomax的比值),如表1所示。
把这2 组数据画成位移-电压曲线如图6所示。
表1实验数据
位移
x.min 补偿前补偿后
J
位移x屉
im
补偿前
J
补偿后
a 00 a 0570 05660- 00 a 772 a 565
10 00Q 1120 091oo a si60. 705 2Q 000.2220 13680. 00 a 842Q 782
30 000羽60 1959a oo& S450. S22 4Q 000.5720 282I (Mi 0010. 546Q S32 5Q oa a 71010 445111a ooi a 8471 a S3SI
图6位移-电压曲线
3.3设计原理分析
实验结果表明:采用指数运算电路作为电涡流位移传感器的非线性补偿环节 能够有效地改善传感器原有的传输特性,线性测量范围由原来不足直径的1/2最 大可扩展到直径的1倍以上,基本能够满足大位移测量需要。
四、课程设计小结与体会
在这几天的课程设计中我学到了许多, 既有有因无从下手和失败而迷茫和沮 丧,也有获得成功后的沾沾自喜。
而且发现自己的知识储备实在太少。
在课程设 计中每天不断的查资料分析电路, 要找出试验电路和经典电路之间的共性。
课程 设计真的不容易。
对我的提高确实很大。
五、参考文献
[1] 邵东向,郭华.电感式位移传感器线性补偿技术•传感器技术,1999
[2] 邵爱霞,赵辉,刘伟文.定频调幅式电涡流传感器电路及其在防水数显卡尺中 的应用.计算机测量与控制,2005
[3] 邰健杨,朱惠忠•大量程电涡流位移传感器线性化电路研究 .仪表技术与传感
器,1998
20
40
蓟 他
100 120
X /mm
9 ce.7.6k±.43B 2t.n
O.伉o.o.o.o H aao_
仇 戏5U
如。