七年级数学下册综合训练题
北师大版数学七年级下册综合训练100题-含答案

北师大版数学七年级下册综合训练100题含答案(题型:单选、多选、填空、解答题)一、单选题1.如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为()A.40°B.50°C.140°D.150°2.下列各组中的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.4,5,9D.3,9,73.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.如图,直线DE经过点A,DE∥BC,∥B=45°,∥1=65°,则∥2=()A.65°B.70°C.75°D.80°5.下列计算正确的是()A.(a2)3=a5B.a2a3=a6C.a6÷a3=a3D.a2+a3=a5 6.下面不是轴对称图形的是()A.B.C.D .7.下列说法中是真命题的有( )∥一条直线的平行线只有一条.∥过一点与已知直线平行的直线只有一条.∥因为a∥b ,c∥b ,所以a∥c .∥经过直线外一点有且只有一条直线与已知直线平行.A .1个B .2个C .3个D .4个 8.下列计算中 , 正确的是 ( )A .()2236a a =B .()4312a a =C .2510a a x =D .632a a a ÷= 9.下列说法正确的是( )A .“一个不透明的袋中装有5个红球,从中摸出一个球是红球”是随机事件B .“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件C .在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖D .“抛掷一枚硬币,硬币落地时正面朝上”是确定事件10.若23a =,25b =,215c =,则( )A .a b c +=B .1a b c ++=C .2a b c +=D .22a b c += 11.如图,AC BC ⊥,直线EF 经过点C ,若134∠=︒,则2∠的大小为( )A .56°B .66°C .54°D .46° 12.能把一个任意三角形分成面积相等的两部分是( )A .角平分线B .中线C .高D .A 、B 、C 都可以13.计算:⋅2a a 的结果是( )A .3aB .2aC .aD .22a 14.计算a 3•a 2的结果是( )A .a 5B .a 6C .a 3+a 2D .3a 215.一次数学活动中,检验两条纸带∥、∥的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带∥沿AB折叠,量得∥1=∥2=50°;小丽对纸带∥沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带∥的边线平行,纸带∥的边线不平行B.纸带∥、∥的边线都平行C.纸带∥的边线不平行,纸带∥的边线平行D.纸带∥、∥的边线都不平行16.下列运算正确的是()A.a4+a2=a6B.(﹣2a2)3=﹣6a8C.6a﹣a=5D.a2•a3=a517.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x则余下阴影部分的面积是A.2ab ax bx x--+B.2ab ax bx x---C.22ab ax bx x--+D.22ab ax bx x---18.新型冠状病毒的直径约为1mm8000,将18000用科学记数法表示为10na⨯的形式,下列说法正确的是()A.a,n都是负数B.a是正数,n是负数C.a,n都是正数D.a是负数,n是正数19.如图,AD是∥ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:∥∥ABD和∥ACD面积相等;∥∥BAD=∥CAD;∥∥BDF∥∥CDE;∥BF∥CE;∥CE=AE.其中正确的有()A .1个B .2个C .3个D .4个 20.如图,DC EF AB ∥∥,EH DB ∥,则图中与∥AHE 相等的角有( )A .3个B .4个C .5个D .6个 21.下列计算正确的是( )A .9a 3·2a 2=18a 5B .2x 5·3x 4=5x 9C .3 x 3·4x 3=12x 3D .3y 3·5y 3=15y 9 22.下列运算中,计算结果正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .a 2y 3÷y =a 2y 2D .(a 2b )2=a 2b 223.若1,2a b ab -==-,则()()22a b +-的值为( )A .8B .8-C .4D .4- 24.如图,已知CD =CA ,∥D =∥A ,添加下列条件中的( )仍不能证明∥ABC ∥∥DEC .A .∥DEC =∥B B .∥ACD =∥BCEC .CE =CBD .DE =AB 25.下列计算正确的是( )A .448a a a +=B .428a a a ⋅=C .()325a a =D .()2326ab a b = 26.下列运算正确的是( ).A .6a ÷2a =3aB .22532a a a -=C .235()a a a -⋅=D .527a b ab +=27.如图,E ,F 是四边形ABCD 的对角线BD 上的两点,AE ∥CF ,AB ∥CD ,BE =DF ,则下列结论:∥AE =CF ,∥AD =BC ,∥AD ∥BC ,∥∥BCF =∥DAE ,其中正确的个数为( )A .1个B .2个C .3个D .4个 28.1001010.254-⨯计算结果正确的是( ).A .1-B .1C .4D .4- 29.下列运算中,正确的是( )A .6530a a a =B .1836a a a ÷=C .22(2)4a a =D .336+a a a = 30.如图,在∥ABC 和∥DEF 中,给出以下六个条件中,以其中三个作为已知条件,不能判断∥ABC 和∥DEF 全等的是( ) ∥AB=DE ;∥BC=EF ;∥AC=DF ;∥∥A=∥D ;∥∥B=∥E ;∥∥C=∥F ;A .∥∥∥B .∥∥∥C .∥∥∥D .∥∥∥二、多选题31.下列说法正确的是( )A .过任意一点可作已知直线的一条平行线B .同一平面内两条不相交的直线是平行线C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直D .平行于同一直线的两直线平行32.如图,1=2∠∠,=BC EF ,要添加一个条件使ABC DEF ≌△△.添加的条件可以是( )A .B E ∠=∠ B .A D ∠=∠C .AB ED = D .AB ED ∥ 33.以下列数字为长度的各组线段中,能构成三角形的有( )A .1,2,3B .2,3,4C .3,4,5D .4,5,6 34.下列说法中,不正确的是( )A .相等的两个角是直角B .一个角的补角一定是钝角C .若∥1+∥2+∥3=180°,则它们互补D .一个角的余角一定是锐角35.如图,下列结论中正确的是( ).A .∥1与∥2是同旁内角B .∥5与∥6是同旁内角C .∥1与∥4是内错角D .∥3与∥5是同位角36.在自习课上,小红为了检测同学们的学习效果,提出如下四种说法,其中错误的说法是( )A .三角形有且只有一条中线B .三角形的高一定在三角形内部C .三角形的两边之差大于第三边D .三角形按边分类可分为等腰三角形和不等边三角形37.下列运算错误的是( )A .()222436xy x y =B .22124x x -= C .725()()x x x -÷-=- D .()223632xy xy xy ÷=38.(多选)已知22(1)36x k x +-+是一个完全平方式,则k 的值为( ) A .7- B .5- C .5D .739.下列生活中的做法与其背后的数学原理对应正确的是( )A .砌墙时,在两端钉钉子,沿中间的拉线砌墙(两点确定一条直线)B .在景区两景点之间设计“曲桥”(垂线段最短)C .工人师傅砌门时,常用一根木条固定长方形门框(三角形具有稳定性)D .车轱辘设计为圆形(圆上的点到圆心的距离相等)40.下列说法中正确的是( )A .两个三角形关于某直线对称,那么这两个三角形全等B .两个图形关于某直线对称,且对应线段相交,则交点必在对称轴上C .两个图形关于某直线对称,对应点的连线不一定垂直对称轴D .若直线l 同时垂直平分','AA BB ,那么线段''AB A B =41.下列计算正确的是( )A .21211()24xy xy xy -⎛⎫⋅= ⎪⎝⎭B .22(23)(23)23a b a b a b +⋅-=-C .422()a a a --÷=-D .32ab ab ab -=42.已知α∠和∠β互余,给出下列表示∠β的补角的式子,其中正确的有( ) A .180β︒-∠ B .90α︒+∠ C .2αβ∠+∠ D .2βα∠+∠ 43.下列每组中的两个图形,不是全等图形的是 ( )A .B .C .D .44.如图,已知CD AB ⊥于点D ,现有四个条件:∥AD ED =;∥A BED ∠=∠;∥C B ∠=∠;∥CD BD =.那么能得出ADC EDB ≌的条件是( )A.∥∥B.∥∥C.∥∥D.∥∥45.代数式2(1)1--+能配成完全平方式,则k的值不可能是()x k xA.2或1B.2-或1-C.3或1-D.1-或3-46.如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD∥∥ACE,添加一个条件可行的是()A.AD=AE B.BD=CE C.BE=CD D.∥BAD=∥CAE 47.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论,其中正确的有()A.AB∥CD;B.AB=BC;C.AB∥BC;D.AO=OC 48.在△ABC和△AˊB′C′中,已知∥A=∥A′,AB=A′B′,下面判断中正确的是()A.若添加条件AC=A′C′,则△ABC∥∥A′B′C′B.若添加条件BC=B′C′,则△ABC∥∥A′B′C′C.若添加条件∥B=∥B′,则△ABC∥∥A′B′C′D.若添加条件∥C=∥C′,则△ABC∥∥A′B′C′49.如图,AD 是ABC 的中线,E 、F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF 、CE ,下列说法正确的有( )A .BAD CAD ∠=∠B .ABD △和ACD 的面积相等C .BDF CDE ∆∆≌D .BF CE三、填空题50.已知三角形的三边长分别为3,8,x ,若x 为偶数,则x=_____________________.51.计算:x 6÷x 3=_________.52.如图,AB∥CD ,∥B+∥2=160°,则∥1= _______53.口袋里有大小相同的8个红球、4个白球和4个黄球,从中任意摸出1个球,摸出红球的可能性是____.54.如果直线a//b ,且直线c a ⊥,则直线c 与b 的位置关系_______ (“平行”或“垂直”) 55.两条直线互相垂直时,所得的四个角中有__________个直角.56.已知:如图,C 为BD 上一点,AB AD =.只需添加一个条件则可证明ABC ADC △≌△.这个条件可以是_____.(写出一个即可).57.已知6732α'∠=︒,则α∠的的补角等于__________.58.如图,直线AB ,CD 交于点O ,OE 平分BOC ∠,123∠=︒,则AOD ∠=_________︒.59.已知一张纸的厚度大约为0.0089cm ,这个数用科学记数法表示为______cm . 60.已知ab 2=﹣1,则(﹣ab )(a 2b 5﹣ab 3﹣b )的值为 ___.61.已知3m a =,9n a =,则2m n a +的值为______.62.如图,35A ∠=︒,65C '∠=︒,ABC 与A B C '''关于直线l 对称,则∥B=______.63.若三角形两条边的长分别是3、7,第三条边的长是整数,则第三条边长的最大值是________.64.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛A 在它北偏东62°的方向上,观测到小岛B 在它南偏东38°的方向上,则∥AOB 的余角的度数是_____.65.若7a b -=,12ab =-,则22a b += ______ .66.202020198(0.125)⨯-=______67.某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是_____.68.如图,AD ,BE ,CF 是△ABC 的三条中线,则AB=2__________,BD=__________,AE= 12__________.69.如图所示,直线PQ∥MN ,C 是MN 上一点,CE 交PQ 于A ,CF 交PQ 于B ,且∥ECF =90°,如果∥FBQ =50°,则∥ECM 的度数为__________;70.如图为6个边长相等的正方形的组合图形,则123-+=∠∠∠__.71.边长为3,x ,5的三条线段首尾顺次相接组成三角形,则x 的取值范围是 _______;若x 为整数,则组成三角形的周长的最大值是 ____________.72.将 0.000103 用科学记数法表示为___________.73.如图,在△ABC 中,AC =6,BC =8,若AC ,BC 边上的中线BE ,AD 垂直相交于O 点,则AB =_____.74.因式分解:281n -=__________________.75.计算:2(615)3x xy x -÷=_________.76.已知多项式(mx+5)(1﹣2x )展开后不含x 的一次项,则m 的值是________ . 77.若16=p a ,38a =,则3-p a 的值为______.78.如图,AD 是∥ABC 的中线,AB =8 cm ,∥ABD 与∥ACD 的周长差为2 cm ,则AC =________cm.79.已知//AB CD ,点M 、N 分别为AB 、CD 上的点,点E 、F 、G 为AB 、CD 内部的点,连接FM 、FN 、EM 、EN 、CM 、GN ,ME NE ⊥于E ,35BMF BME ∠=∠,35DNF DNE ∠=∠,MG 平分AMF ∠,NG 平分CNF ∠,则MGN ∠(小于平角)的度数为______.四、解答题80.如图,∥1=∥2,∥3=100°,求∥4的度数.81.先化简再求值:2(1)(1)(1)x x x +---,其中x =1.82.阅读材料并解答问题:七年级第一学期课本中有这样一个思考题:“你能根据图1中的图形来说明完全平方公式吗?”说明如下:图1中的面积可以表示为2()a b +;图1中的面积又可以表示为222a ab b ++;所以这个图形说明了完全平方公式222()2a b a ab b +=++除了完全平方公式可以用图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示.(1)请写出图2所表示的代数恒等式:__________________________________; (2)请画一个图形,使它的面积能表示22(3)()34a b a b a ab b ++=++.83.先化简,再求值:22(2)()(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中x =﹣3,y =﹣1.84.如图,某英语单词由四个字母组成,且四个字母都关于直线l 对称,请把这个单词填完整,并说出这个英语单词的汉语意思.85.下面是小明同学设计的“作一个角等于已知角”的尺规作图过程:已知:C ∠.求作:一个角,使它等于C ∠.作法:如图:∥在C ∠的两边上分别任取一点A 、B ;∥以点A 为圆心,AC 为半径画弧;以点B 为圆心,BC 为半径画弧;两弧交于点D ; ∥连结AD 、BD .所以D ∠即为所求作的角.请根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下列证明.证明:连结AB ,∥DA=AC ,DB=_____,AB =_______,∥∥DAB ∥∥CAB ( )(填推理依据).∥∥C =∥D .86.计算:m 2m 4+(m 3)2﹣m 8÷m 2.87.如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,OF 平分BOD ∠,15BOF =︒∠.求COE ∠的度数.88.如图,已知线段a ,求作以a 为底、以12a 为高的等腰三角形,这个等腰三角形有什么特征?89.计算:23244a a a a -+-+-()()()()90.计算(1) ()()2212324-⎛⎫-+⨯-- ⎪⎝⎭ (2)化简,再求值()()()2222x x x -+--+,其中3x =.91.将幂的运算逆向思维可以得到m n m n a a a +=⋅,m n m n a a a -=÷,()mn m n a a =,()m m m a b ab =,在解题过程中,根据算式的结构特征,逆向运用幂的运算法则,常可化繁为简,化难为易,使问题巧妙获解. (1)2021202115()5⨯= ______ ; (2)若1139273m m ⨯⨯=,求m 的值;92.先化简,再求值:()()()2122x x x +++-,其中=1x -.93.如图,点B 、点D 在线段AE 上,且AD BE =,CD 平分ACB ∠.(1)尺规作图:在线段DE 的上方作DEF ,使得DEF BAC ∠=∠,EF AC =;(2)在(1)的条件下,若60A ∠=︒,40FDE ∠=︒,求BCD ∠的度数.94.今年疫情期间,为防止疫情扩散,人们见面的机会少了,但是随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷,为此,孙老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种)进行调查.将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次参与调查的共有 人;在扇形统计图中,表示“微信”的扇形圆心角的度数为 ;其它沟通方式所占的百分比为 .(2)将条形统计图补充完整;(3)如果我国有13亿人在使用手机.∥请估计最喜欢用“微信”进行沟通的人数;∥在全国使用手机的人中随机抽取一人,用频率估计概率,求抽取的恰好使用“QQ”的概率是多少?95.(1)计算: 2015021π--+.(2)543()()()a b b a b a -÷-÷-96.如图,正方形ABCD 的对角线AC 的长度为3,E 为与点D 不重合的动点,以DE 为一边作正方形DEFG .设1DE d =,点F G 、与点C 的距离分别为23d d 、.(1)求证:ADE CDG ≌△△(2)求123d d d ++的最小值.97.已知:如图,C 是线段AB 上一点,分别以AC .BC 为边作等边∥DAC 和等边∥ECB ,AE 与BD .CD 相交于点F 、G ,CE 与BD 相交于点H .(1)求证:∥ACE∥∥DCB;(2)求∥AFB的度数.98.先化简下面代数式,再求值:(x+2)(x-2)+x(3-x),其中+1.99.如图:在平面直角坐标系中,∥ABC的三个顶点都在格点上.(1)画出∥ABC关于y轴对称的图形∥A1B1C1;(2)直接写出A1,B1,C1三点的坐标;(3)求∥ABC的面积.参考答案:1.C【分析】由于拐弯前、后的两条路平行,用平行线的性质求解即可.【详解】解:∥拐弯前、后的两条路平行,∥140B C ∠=∠=︒(两直线平行,内错角相等).故选:C .【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.2.D【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,针对每一个选项进行计算,可选出答案.【详解】解:A 、∥3+4<8,∥不能组成三角形,故本选项不符合题意;B 、∥5+6=11,∥不能组成三角形,故本选项不符合题意;C 、∥4+5=9,∥不能组成三角形,故本选项不符合题意;D 、∥3+7>9,∥能组成三角形,故本选项符合题意.故选:D .【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.D【分析】轴对称图形:如果一个图形沿着一条直线对折后两端完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.中心对称图形:把一个图形绕某一个点旋转180︒,如果旋转后的图形能够和原来的图形互相重合.那么这个图形叫做中心对称图形.【详解】A 、是轴对称图形,不是中心对称图形;B 、是轴对称图形,也是中心对称图形;C 、是轴对称图形,不是中心对称图形;D 、不是轴对称图形,是中心对称图形.故选D.【点睛】此题考查的是轴对称图形和中心对称图形的判定,利用它们的定义判断一个图形是轴对称图形还是中心对称图形是解决此题的关键.4.B【分析】由DE ∥BC ,可得:45,DAB B ∠=∠=︒再利用平角的含义可得答案. 【详解】解: DE ∥BC ,∥B =45°,∥1=65°,45,DAB B ∴∠=∠=︒2=180170,DAB ∴∠︒-∠-∠=︒故选:.B【点睛】本题考查的是平角的定义,平行线的性质,掌握两直线平行,内错角相等是解题的关键.5.C【分析】根据幂的运算性质即可完成.【详解】A 、(a 2)3=a 6,故选项错误;B 、a 2a 3=a 5,故选项错误;C 、a 6÷a 3=a 3,故选项正确;D 、a 2与a 3不是同类项,不能合并,故选项错误;故选:C .【点睛】本题考查了幂的运算性质,关键是熟练掌握幂的运算性质.6.B【分析】如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,就称此图形是轴对称图形,这条直线称为对称轴;根据轴对称图形的概念逐项判断即可.【详解】A 、是轴对称图形,不符合题意;B 、不是轴对称图形,故符合题意;C 、是轴对称图形,不符合题意;D 、是轴对称图形,不符合题意;故选:B【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的概念是关键.7.B【详解】试题分析:∥一条直线的平行线只有一条是错误的;∥经过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的. ∥因为a∥b ,a∥c ,所以b∥c ,正确.∥满足平行公理的推论,正确.故选B .考点:1.平行线;2.垂线.8.B【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,积的乘方逐项分析判断即可求解.【详解】A.()2239a a =故该选项不正确,不符合题意;B.()4312a a =故该选项正确,符合题意;C.257a a a ⋅=故该选项不正确,不符合题意;D.633a a a ÷=故该选项不正确,不符合题意;故选: B .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,积的乘方,掌握以上运算法则是解题的关键.9.B【详解】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件. 解:A 、“一个不透明的袋中装有5个红球,从中摸出一个球是红球”是必然事件,故A 错误;B 、“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件,故B 正确;C 、在一次抽奖活动中,“中奖的概率是”表示抽奖100次可能中奖,故C 错误;D 、“抛掷一枚硬币,硬币落地时正面朝上”是不确定事件,故D 错误;故选B .考点:随机事件;概率的意义.10.A【分析】根据同底数幂乘法的逆运算进行计算即可【详解】解:∥23a =,25b =,215c =,∥21535222+==⨯=⨯=a b c a b∥a b c +=故选:A【点睛】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键11.A【分析】根据,∥1,∥2,和∥ACB 为180°,且∥ACB 为90°,所以∥1和∥2互余,由∥1度数可求出∥2度数.【详解】解:∥AC BC ⊥,∥90ACB ∠=︒,∥由图可知12180ACB ∠+∠+∠=︒,且90ACB ∠=︒,∥1290∠+∠=︒,∥2901903456∠=︒-∠=︒-︒=︒,故选:A .【点睛】本题考查,补角与余角的概念,能够根据图形中的角的位置关系求出角的度数关系式解决本题的关键.12.B【分析】根据等底同高的三角形的面积相等解答.【详解】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等, 所以,能把一个任意三角形分成面积相等的两部分是中线.故选:B .【点睛】本题考查了三角形的面积,熟记等底同高的三角形的面积相等是解题的关键. 13.A【分析】利用同底幂乘法的运算法则计算可得.【详解】+==2213a a a a ⋅故选:A【点睛】本题考查同底幂的乘法,同底幂的乘法法则和乘方的运算法则容易混淆,需要注意.14.A【详解】根据同底数幂的乘法法则可得,原式= a 5,故选A.15.C【分析】直接利用翻折变换的性质结合平行线的判定方法得出答案.【详解】如图∥所示:∥∥1=∥2=50°,∥∥3=∥2=50°,∥∥4=∥5=180°-50°-50°=80°,∥∥2≠∥4,∥纸带∥的边线不平行;如图∥所示:∥GD与GC重合,HF与HE重合,∥∥CGH=∥DGH=90°,∥EHG=∥FHG=90°,∥∥CGH+∥EHG=180°,∥纸带∥的边线平行.故选C.【点睛】此题主要考查了平行线的判定以及翻折变换的性质,正确掌握翻折变换的性质是解题关键.16.D【分析】根据合并同类项法则、积的乘方、合并同类项法则、同底数幂的乘法法则运算即可求解.【详解】解:A.a4与a2不是同类项,所以不能合并,故本选项不合题意;B.(﹣2a2)3=﹣8a6,故本选项不合题意;C.6a﹣a=5a,故本选项不合题意;D.a2•a3=a5,故本选项符合题意.故选:D.【点睛】本题考查了合并同类项法则、积的乘方、同底数幂的乘法法则,正确记忆运算法则是解题关键.17.A【分析】由图可知,阴影部分的长是a-x,宽是b-x,然后根据长方形的面积公式求解即可.【详解】由题意得(a -x )(b -x )=2ab ax bx x --+.故选A .【点睛】本题考查了多项式与多项式的乘法的应用,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.18.B【分析】用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为整数,据此判断即可. 【详解】解:41.251800010-=⨯ 0,0a n ∴><故选B【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a 与n 的值是解题的关键.19.C【详解】解:∥∥AD 是∥ABC 的中线,∥BD =CD ,∥∥ABD 和∥ACD 面积相等;故∥正确;∥若在∥ABC 中,当AB ≠AC 时,AD 不是∥BAC 的平分线,即∥BAD ≠∥CAD .即∥不一定正确;∥∥AD 是∥ABC 的中线,∥BD =CD ,在∥BDF 和∥CDE 中,∥BD =CD ,∥BDF =∥CDE ,DF =DE ,∥∥BDF ∥∥CDE (SAS ).故∥正确;∥∥∥BDF ∥∥CDE ,∥∥CED =∥BFD ,∥BF ∥CE ;故∥正确;∥∥∥BDF ∥∥CDE ,∥CE =BF ,∥只有当AE=BF时,CE=AE.故∥不一定正确.综上所述,正确的结论是:∥∥∥,共有3个.故选C.20.C【分析】根据平行线的性质进行推导解答即可.【详解】解:如图,∥EG BD∥,∥∥1=∥DBA,∥∥,∥AB EF DC∥∥1=∥GEF,∥DBA=∥2,∥DBA=∥3,∥DBA=∥BDC,∥∥1=∥GEF=∥DBA=∥2=∥3=∥BDC,∥图中和∥1相等的角共有5个.故选C.【点睛】本题考查的是平行线的性质,熟悉平行线的性质:“两直线平行,同位角相等”和“两直线平行,内错角相等”,是能够正确解答本题的关键.21.A【分析】根据单项式的乘法法则计算求解即可得出答案.【详解】解:A.325⋅=,故A正确,符合题意;a a a9218B.549x x x⋅=,故B错误,不符合题意;236C.336x x x⋅=,故C错误,不符合题意;3412D.336⋅=,故D错误,不符合题意.3515y y y故选A.【点睛】本题主要考查了单项式与单项式相乘,熟练掌握单项式与单项式相乘的法则是解题的关键.22.C【分析】分别计算选项中的每一项a2•a3=a5,(a2)3=a6,(a2b)2=a4b2,即可求解.【详解】a2•a3=a5,故A不正确;(a2)3=a6,故B不正确;(a2b)2=a4b2,故D不正确;故选:C.【点睛】考核知识点:幂的运算.理解幂的乘方公式是关键.23.B【分析】先利用多项式乘以多项式展开所求的式子,再将已知条件作为整体直接代入求解即可.【详解】解:(a+2)(b−2)=ab−2a+2b−4=ab−2(a−b) −4将a−b=1,ab=−2代入得,ab−2(a−b) −4=−2−2×1 −4=−8.故选:B.【点睛】本题考查了多项式的乘法、多项式化简求值,掌握多项式的乘法法则是解题关键.需注意的是,这类题的考点是将已知条件作为一个整体代入求值,而不是求出a和b 的值.24.C【分析】结合题意,根据全等三角形的性质,对各个选项逐个分析,即可得到答案.【详解】增加∥DEC=∥B,得:DEC BD ACD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∥∥DEC∥∥ABC,即选项A可以证明;∥∥ACD=∥BCE∥ACD ACE BCE ACE∠+∠=∠+∠,即DCE ACB∠=∠∥D ACD CADCE ACB∠=∠⎧⎪=⎨⎪∠=∠⎩∥∥DEC∥∥ABC,即选项B可以证明;增加∥DEC=∥B,得:D A CD CA CE CB ∠=∠⎧⎪=⎨⎪⎩=∥不能证明∥DEC∥∥ABC,即选项C不可以证明;增加DE=AB,得:DE ABD A CD CA=⎧⎪∠=∠⎨⎪=⎩∥∥DEC∥∥ABC,即选项D可以证明;故选:C.【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的判定性质,从而完成求解.25.D【分析】直接利用合并同类项法则以及同底数幂的乘法运算法则、积的乘方运算法则分别计算得出答案.【详解】A、a4+a4=2a4,故此选项错误;B、a4•a2=a6,故此选项错误;C、(a2)3=a6,故此选项错误;D、(ab3)2=a2b6,正确.故选D.【点睛】此题主要考查了合并同类项以及同底数幂的乘法运算、积的乘方运算,正确掌握相关运算法则是解题关键.26.C【详解】试题分析:根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2•a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.27.D【分析】根据全等三角形的判定得出∥ABE与∥CDF全等,进而利用全等三角形的性质判断即可.【详解】解:∥AE∥CF,AB∥CD,∥∥AEF=∥CFE,∥ABE=∥CDF,∥∥AEB=∥CFD,在∥ABE与∥CDF中ABE CDFBE DFAEB CFD∠=∠⎧⎪=⎨⎪∠=∠⎩,∥∥ABE∥∥CDF(ASA),∥AE=CF,∥BE=DF,∥BE+EF=DF+EF,即BF=DE,在∥ADE与∥CBF中AE CFAED CFB DE BF=⎧⎪∠=∠⎨⎪=⎩,∥∥ADE∥∥CBF(SAS),∥AD=BC,∥ADE=∥CBF,∥BCF=∥DAE∥AD∥BC,故选:D.【点睛】此题主要考查了全等三角形的判定,利用两边且夹角对应相等得出三角形全等是解题关键.28.D【分析】根据积的乘方运算法则计算即可.【详解】−0.25100×4101=−0.25100×4100×4=−(0.25×4)100×4=−1100×4=−1×4=−4.故选D .【点睛】本题主要考查了积的乘方,积的乘方,等于每个因式乘方的积.29.C【分析】分别根据合并同类项的法则、同底数幂的乘法、积的乘方和幂的乘方运算法则逐项判断即得答案.【详解】A 、6511a a a ⋅=故本选项运算错误,不符合题意;B 、18318315a a a a -÷==,故本选项运算错误,不符合题意;C 、22(2)4a a =,故本选项运算正确,符合题意;D 、333+2a a a =,故本选项运算错误,不符合题意.故选:C .【点睛】本题考查了合并同类项的法则和幂的运算性质,属于基础题型,熟练掌握幂的运算性质是解题的关键.30.D【详解】根据全等三角形的判定方法对组合进行判断即可.解:在∥ABC 和∥DEF 中,AB=DE ,∥B=∥C ,BC=EF ,∥∥ABC ∥∥DEF (SAS );∥A 不符合题意;在∥ABC 和∥DEF 中,AB=DE , BC=EF ,AC=DF ,∥∥ABC ∥∥DEF (SSS );∥B 不符合题意; 在∥ABC 和∥DEF 中,∥A=∥D ,∥C=∥F ,AB=DE ,∥∥ABC ∥∥DEF (AAS ),∥C 不符合题意; 在∥ABC 和∥DEF 中,D②③④不能判断∥ABC 和∥DEF 全等,故选D .“点睛”本题考查了全等三角形的判定方法对各选项分析判断利用排除法求解.31.BCD【分析】根据平行线的定义及平行公理进行判断.【详解】A. 若点在直线上,则不可以作出已知直线的平行线,因此 “过任意一点可作已知直线的一条平行线”说法错误;B. “同一平面内两条不相交的直线是平行线”说法正确;C. “在同一平面内,过直线外一点只能画一条直线与已知直线垂直”说法正确;D. “平行于同一直线的两直线平行”说法正确;故选BCD.【点睛】本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题的关键.32.ABD【分析】已知一边和一角对应相等,再添加任意对对应角相等,或已知角的另一边相等就可以由AAS 、ASA 或SAS 判定两个三角形全等.【详解】解:选项A 中B ∠与E ∠是对应角,能与已知构成ASA 的判定,可以判定三角形全等,故选项A 符合题意;选项B 中A D ∠=∠是对应角,结合已知可以由AAS 判定ABC DEF ≌△△,故选项B 符合题意;选项C 中AB ED =是对应边,但不是两边及其夹角相等,无法判定ABC DEF ≌△△,故选项C 不合题意;选项D 中由已知//AB ED 可得B E ∠=∠,是对应角,结合已知可以由ASA 判定ABC DEF ≌△△,故选项D 符合题意;故选:ABD .【点睛】本此题考查了三角形全等的判定方法,解题的关键是熟练掌握三角形全等的判定方法.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL (直角三角形). 33.BCD【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项判断即可.【详解】解:A .123+=不能组成三角形,该项不符合题意;B .234+>,该项符合题意;C .345+>,该项符合题意;D .456+>,该项符合题意;故选:BCD .【点睛】本题考查三角形的成立条件,掌握三角形的三边关系是解题的关键. 34.ABC【分析】根据余角及补角的定义可逐项判断求解.【详解】解:A 、相等的两个角不一定是直角,故错误,符合题意;B 、一个钝角的补角是锐角,原说法错误,符合题意;C 、补角是指两个角,原说法错误,符合题意;D 、一个角的余角一定是锐角,说法正确,不符合题意;故选:ABC .【点睛】本题考查了余角和补角,熟知定义是解题的关键,属于基础题.35.AD【分析】根据“三线八角”的概念,结合图形找出他们之间的关系即可.【详解】解:A 、根据图形可知,1∠与2∠是同旁内角,该选项符合题意;B 、根据图形可知,5∠与6∠是内错角,该选项不符合题意;C 、根据图形可知,1∠与4∠不是内错角关系,该选项不符合题意;D 、根据图形可知,∥3与∥5是同位角,该选项符合题意;故选:AD .【点睛】本题考查“三线八角”的概念,能读图识图,从图形中结合“三线八角”的概念准确找到内错角、同位角和同旁内角是解决问题的关键.36.ABC【分析】三角形有三条中线对∥进行判断;钝角三角形三条高,有两条在三角形外部,对∥进行判断;根据三角形三边的关系对∥进行判断;根据三角形的分类对∥进行判断.【详解】解:A .三角形有3条中线,选项A 的说法是错误的;B .三角形的高不一定在三角形内部,选项B 的说法是错误的;C .三角形的两边之差小于第三边,选项C 的说法是错误的;D .三角形按边分类可分为等腰三角形和不等边三角形是正确的.故答案为:ABC .【点睛】本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别,掌握三角形有三条中线;钝角三角形三条高,有两条在三角形外部,三角形三边的关系;三角形的分类是解题关键.37.ABD【分析】由积的乘方判断,A 由负整数指数幂的含义判断,B 由同底数幂的除法判断,C 由积的乘方与单项式除以单项式判断,D 从而可得答案.【详解】解:()222439xy x y =,故A 符合题意; 2221222=,x x x -=⨯故B 符合题意;。
初中七下数学知识和能力综合训练题6套(有参考解答)

七年级下学期数学知识和能力训练题1一、选择题: 1、已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m ﹣n 的值是( ) A 、4 B 、2 C 、﹣2 D 、﹣42、当x =3时,代数式3x 2﹣5ax +10的值为7,则a 等于( ) A 、2 B 、﹣2 C 、1 D 、﹣13、已知△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 等于( ) A 、40° B 、60° C 、80° D 、 90° 二、填空题1、小玉买书用48元钱,付款时恰好用了1元和5元的纸币共12张.那么1元的纸币用了 张;2、已知不等式组 的解集为﹣1<x <2,则(m +n )2019= ;3、已知△ABC 中,∠A=21∠B=31∠C ,则△ABC 为 三角形。
三、解答题1、是否存在负整数k 使得关于x 的方程5x ﹣3k =9的解是非负数?若存在请求出k 的值,若不存在请说明理由.2.已知当x =﹣1时,代数式ax 3+bx +1的值为﹣2009,则当x =1时,代数式ax 3+bx +1的值为多少?3.试确定实数a 的取值范围,使不等式组 恰有两个整数解. x +2>m+nx -1< m -1 ⎩⎨⎧312++x x >0⎩⎨⎧> 345++a x ax ++)1(34七年级下学期数学知识和能力训练题1解答参考一、选择题:1、已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m ﹣n 的值是( ) A 、4 B 、2 C 、﹣2 D 、﹣4【主要考查学生对二元一次方程组的解的认识及用消元思想解二元一次方程组的熟练程度,难度较低.】选A. 解:将⎩⎨⎧==12y x 代入方程组,得⎩⎨⎧=-=+1282m n n m ,解得⎩⎨⎧==23n m ,故2m ﹣n =2×3﹣2=4. 2、当x =3时,代数式3x 2﹣5ax +10的值为7,则a 等于( ) A 、2 B 、﹣2 C 、1 D 、﹣1【主要考查学生对方程的解的认识及简单的解一元一次方程,难度低.】选A. 解:由题意,得3×32﹣5a ×3+10=7,解得a =2.3、已知△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 等于( ) A 、40° B 、60° C 、80° D 、 90°【主要考查学生将方程思想应用到图形问题中,及对三角形内角和定理的理解,难度不大.】选A.解:由已知,得∠B=∠A ×2,∠C=∠A+20°,又∵△ABC 中,∠A+∠B+∠C=180°,∴∠A+2∠A+∠A+20°=180°,解得∠A=40°.二、填空题:1、小玉买书用48元钱,付款时恰好用了1元和5元的纸币共12张.那么1元的纸币用了 张;【主要考查学生对方程思想在实际生活中的应用,难度不大.但可以练练“一题多解”】 解:(法一)设1元纸币有x 张,则5元纸币有(12﹣x )张.由题意,列方程x +5(12﹣x )=48,解得x =3. 故1元的纸币用了3张.(法二)设1元纸币有x 张,5元纸币有y 张.由题意,列方程组⎩⎨⎧=+=+48512y x y x ,解得⎩⎨⎧==93y x ,故1元的纸币用了3张.(法三)假设12张纸币都是5元的,则应为60元,实际少了60-48=12元,少的钱就是1元和5元之间的差距造成的,所以1元纸币有12÷(5﹣1)=3张.2、已知不等式组 的解集为﹣1<x <2,则(m +n )2019= ;【主要考查学生对一元一次不等式组及其解集的理解,有一定的综合性】解:由不等式组变形,得 ,∵该不等式组的解集为﹣1<x <2,∴⎩⎨⎧-=-+=122n m m ,解得⎩⎨⎧-==12n m∴(m +n )2019=(2﹣1)2019=12019=1.x +2>m+nx -1< m -1 ⎩⎨⎧x < mx >m+n -2⎩⎨⎧3、已知△ABC 中,∠A=21∠B=31∠C ,则△ABC 为 三角形。
人教版2020—2021学年七年级数学下册全册综合复习测试题(含答案)

人教版七年级数学下册全册综合测试题一、选择题(本大题共6小题,每小题3分,共18分) 1.下列调查中,最适合用全面调查的是( ) A .检测100只灯泡的质量情况B .了解在如皋务工人员月收入的大致情况C .了解某班学生喜爱体育运动的情况D .了解全市学生观看“开学第一课”的情况 2.在平面直角坐标系中,点(-7,0)在( ) A .x 轴正半轴上B .x 轴负半轴上 C .y 轴正半轴上D .y 轴负半轴上3.不等式组⎩⎪⎨⎪⎧x -1<3,x +3≥1的解集在数轴上表示正确的是()图14.如果5x 3m -2n -2y n -m +11=0是二元一次方程,那么( ) A .m =3,n =4 B .m =1,n =2 C .m =-1,n =2 D .m =2,n =1 5.如图2,直线a∥b ,一块含60°角的三角尺ABC (∠A =60°)按图所示放置.若∠1=43°,则∠2的度数为( )图2A .101°B .103°C .105°D .107°6.如图3,一个点在第一象限及x 轴,y 轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,且每秒移动一个单位长度,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,那么第2021秒时,点所在位置的坐标是( )图3A .(3,44)B .(37,44)C .(44,37)D .(44,3)二、填空题(本大题共6小题,每小题3分,共18分) 7.4的算术平方根为________.8.在平面直角坐标系中,已知点A (1,3),点B (1,5),那么AB =________.9.去年某市空气质量良好(二级以上)的天数与全年天数(365天)之比达到60%,如果今年(365天)这样的比值要超过80%,那么今年空气质量良好的天数比去年至少要增加________天.10.为了解某市13565名七年级学生每天做家庭作业所用的时间,从中随机抽取了150名学生进行调查,则本次调查的样本容量是________.11.已知⎩⎪⎨⎪⎧x =m ,y =n 是方程组⎩⎪⎨⎪⎧2x +y =6,x +2y =-3的解,则m +n 的值是________. 12.在平面直角坐标系中,三角形ABC 的面积为3,三个顶点的坐标分别为A (-1,-1),B (-3,-3),C (a ,b ),且a ,b 均为负整数,点C 在如图4所示的网格中,则点C 的坐标是____________________.图4三、解答题(本大题共5小题,每小题6分,共30分) 13.(1)计算:|-3|-(-1)+3-27-4;(2)如图5所示,EF ∥BC ,AC 平分∠BAF ,∠B =80°,求∠C 的度数.图514.解方程组:⎩⎪⎨⎪⎧3x -2(y +1)=6,3x +2y =10.15.解不等式组:⎩⎪⎨⎪⎧4x -7<5(x -1),x -13≥12x -1.16.已知2a -1的算术平方根是7,a -4b 的立方根是-4. (1)求a 和b 的值; (2)求2a +b 的平方根.17.某校进行“垃圾分一分,环境美十分”的主题宣传活动,随机调查了部分学生对垃圾分类知识的了解情况.调查选项分为“A.非常了解,B.比较了解,C.基本了解,D.不了解”四种,并将调查结果绘制成如图6所示的两幅不完整的统计图.图6请根据图中提供的信息,解答下列问题: (1)把两幅统计图补充完整; (2)本次调查了________名学生;(3)根据上述调查数据,请你提出一条合理化建议.四、解答题(本大题共3小题,每小题8分,共24分)18.如图7,已知∠A=∠ADE.(1)若∠EDC=4∠C,求∠C的度数;(2)若∠C=∠E,求证:BE∥CD.图719.如图8,已知在平面直角坐标系内,点A(-3,2),B(2,-4),把点A 向下平移4个单位长度得到点C.(1)在平面直角坐标系内画出点A,B;(2)写出点C的坐标;(3)画出三角形ABC,并求三角形ABC的面积.图820.我们定义:若整式M与N满足M+N=k(k为整数),则称M与N为关于k的平衡整式.例如,若2x+3y=4,我们称2x与3y为关于4的平衡整式.(1)若2a-5与4a+9为关于1的平衡整式,求a的值;(2)若3x-10与y为关于2的平衡整式,2x与5y+10为关于5的平衡整式,求x +y的值.五、解答题(本大题共2小题,每小题9分,共18分)21.红瓜子和萝卜干是信丰的土特产.小华去市场购买了6千克红瓜子和3千克萝卜干共用了108元;小平以同样的单价购买了5千克红瓜子和2千克萝卜干共用了88元.(1)求红瓜子和萝卜干的单价分别是多少;(2)已知小红想要购买红瓜子和萝卜干共20千克,如果她想购买红瓜子的千克数超过萝卜干的千克数的4倍,且她身上只有296元,请问她有哪几种购买方案.(红瓜子和萝卜干的千克数都取整数)22.如图9,在平面直角坐标系xOy中,长方形ABCD的四个顶点A,B,C ,D的坐标分别为(1,1),(1,2),(-2,2),(-2,1).对该长方形及其内部的每一个点都进行如下操作:把每个点的横坐标都乘同一个实数a,纵坐标都乘3,再将得到的点向右平移m(m>0)个单位长度,向下平移2个单位长度,得到长方形A′B′C′D′及其内部的点,其中点A,B,C,D的对应点分别为A′,B′,C′,D′.(1)点A′的横坐标为________(用含a,m的式子表示).(2)若点A′的坐标为(3,1),点C′的坐标为(-3,4).①求a,m的值;②若对长方形ABCD内部(不包括边界)的点E(0,y)进行上述操作后,试判断得到的对应点E′是否仍然在原来的长方形ABCD内部(不包括边界).图9六、解答题(本大题共12分)23.一个数学小组将一个直角三角形ABC(∠ACB=90°)放进平面直角坐标系中,进行探究活动.点C在第三象限,且AC过坐标原点O,AB交x轴于点G,作直线DM平行于x轴,DM交y轴于点D,交BC于点E,交AB于点F.(1)如图10①,若∠AOG=50°,求∠CEF的度数;(2)如图②,在AC上取一点N,使∠NEC+∠CEF=180°.求证:∠NEF=2∠AOG.图10参考答案1.C 2.B 3.C 4.A 5.B 6.D7. 2 8.2 9.74 10.150 11.112.(-4,-1)或(-1,-4)或(-5,-2)13.解:(1)原式=3+1-3-2=-1.(2)∵EF∥BC,∴∠B+∠BAF=180°,∠C=∠CAF.∵∠B=80°,∴∠BAF =180°-∠B =100°.∵AC 平分∠BAF ,∴∠CAF =12∠BAF =50°, ∴∠C =50°.14.解:方程组整理,得⎩⎪⎨⎪⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.把x =3代入①,得9-2y =8,解得y =12. ∴原方程组的解为⎩⎪⎨⎪⎧x =3,y =12.15.解:⎩⎪⎨⎪⎧4x -7<5(x -1),①x -13≥12x -1.②解不等式①,得x >-2. 解不等式②,得x≤4.∴不等式组的解集为-2<x≤4.16.解:(1)∵2a -1的算术平方根是7, ∴2a -1=(7)2=7,解得a =4. ∵a -4b 的立方根是-4,∴a -4b =(-4)3=-64,即4-4b =-64,解得b =17.(2)∵2a +b =2×4+17=25,∴2a +b 的平方根为±5.17.解:(1)调查的总人数为5÷10%=50(人).B 选项所占的百分比为25÷50×100%=50%.C 选项的人数为50×26%=13(人).D 选项的人数为50-5-25-13=7(人).D 选项所占的百分比为7÷50×100%=14%.补全的统计图如图所示.(2)50(3)答案不唯一,如根据对垃圾分类知识的了解情况,对于垃圾分类知识“非常了解”占的比例比较小,需要进一步加强宣传的力度.18.解:(1)∵∠A =∠ADE ,∴DE ∥AC , ∴∠EDC +∠C =180°.∵∠EDC =4∠C ,∴4∠C +∠C =180°, 解得∠C =36°.(2)证明:∵∠A =∠ADE , ∴DE ∥AC , ∴∠E =∠ABE. 又∵∠C =∠E , ∴∠C =∠ABE , ∴BE ∥CD.19.解:(1)如图所示,点A ,B 即为所求.(2)C(-3,-2).(3)画三角形ABC 如图.如图,过点B 作BD ⊥AC ,交AC 的延长线于点D ,则易得BD =5,∴S 三角形ABC =12AC·BD =12×4×5=10.20.解:(1)由题意,得2a -5+4a +9=1,解得a =-12.(2)由题意,得⎩⎪⎨⎪⎧3x -10+y =2,2x +5y +10=5,解得⎩⎪⎨⎪⎧x =5,y =-3,则x +y =2.21.解:(1)设红瓜子的单价为x 元/千克,萝卜干的单价为y 元/千克.依题意,得⎩⎪⎨⎪⎧6x +3y =108,5x +2y =88,解得⎩⎪⎨⎪⎧x =16,y =4. 答:红瓜子的单价为16元/千克,萝卜干的单价为4元/千克.(2)设购买红瓜子a 千克,则购买萝卜干(20-a)千克.依题意,得⎩⎪⎨⎪⎧16a +4(20-a )≤296,a >4(20-a ), 解得16<a≤18,所以a 可以取17,18.则有两种购买方案:方案一:购买红瓜子17千克,购买萝卜干3千克;方案二:购买红瓜子18千克,购买萝卜干2千克.22.解:(1)a +m(2)①由A(1,1),A ′(3,1),可得a +m =3.①由C(-2,2),C′(-3,4),可得-2a +m =-3.②联立①②,得⎩⎪⎨⎪⎧a +m =3, -2a +m =-3,解得⎩⎪⎨⎪⎧a =2,m =1, ∴a 的值为2,m 的值为1.②根据题意,得E′(1,3y -2).可知无论y 取何值,点E′一定落在直线AB 上,所以得到的对应点E′不在原来的长方形ABCD 内部.23.解:(1)如图,过点C 作CH ∥x 轴,则∠ACH =∠AOG =50°.∵∠ACB =90°,∴∠ECH =40°.∵DM ∥x 轴,∴CH ∥DM ,∴∠ECH +∠CEF =180°,∴∠CEF=180°-∠ECH=140°.(2)证明:由(1)及题意得∠AOG=∠ACH=90°-∠ECH,∠ECH+∠CEF=∠ECH+∠NEC+∠NEF=180°.∵∠NEC+∠CEF=180°,∴∠NEC=∠ECH,∴2∠ECH+∠NEF=180°,则∠NEF=180°-2∠ECH=2(90°-∠ECH)=2∠AOG.。
2022—2023年人教版七年级数学(下册)期末综合检测卷及答案

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.方程()()()()32521841x x x x +--+-=的解是_________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、A7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、150°3、<4、3x=.5、±46、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、0.3、(1) C(5,﹣4);(2)90°;(3)略4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。
七年级数学下册综合算式专项练习题使用分配律的乘法运算(含有负数)

七年级数学下册综合算式专项练习题使用分配律的乘法运算(含有负数)在数学中,乘法是一项基本运算。
而分配律则是乘法运算中的重要性质之一。
在本篇文章中,我们将介绍一些综合算式专项练习题,这些题目将帮助我们更好地理解和应用分配律的乘法运算。
同时,这些练习题也包含了负数的运算,帮助我们更深入地理解数学中的负数概念。
让我们开始吧!1. 计算下列表达式:(-3) × (4 + 5)解答:首先,根据分配律,我们可以将这个算式分解为两个部分,即(-3) ×4和(-3) × 5。
然后,我们分别计算这两个部分:(-3) × 4 = -12(-3) × 5 = -15最后,将这两个部分的结果相加:-12 + (-15) = -27因此,(-3) × (4 + 5) = -27。
2. 计算下列表达式:(-2) × (-7 + 3)解答:× (-7)和(-2) × 3。
然后,我们分别计算这两个部分:(-2) × (-7) = 14(-2) × 3 = -6最后,将这两个部分的结果相加:14 + (-6) = 8因此,(-2) × (-7 + 3) = 8。
3. 计算下列表达式:(-5) × (10 - 2)解答:按照分配律,我们将这个算式分解为两个部分,即(-5) × 10和(-5) ×(-2)。
然后,我们分别计算这两个部分:(-5) × 10 = -50(-5) × (-2) = 10最后,将这两个部分的结果相加:-50 + 10 = -40因此,(-5) × (10 - 2) = -40。
4. 计算下列表达式:2 × (-6 + 3)解答:× (-6)和2 × 3。
然后,我们分别计算这两个部分:2 × (-6) = -122 ×3 = 6最后,将这两个部分的结果相加:-12 + 6 = -6因此,2 × (-6 + 3) = -6。
初一下学期数学综合卷及答案

七 年 级 数 学 试 题一、选择题(共10个小题。
每小题2分,共20分)1.下列计算正确的是( ).A 、3332x x x ⋅=B .235()x x =C .358x x x +=D .444()xy x y =2.下列命题中正确的有( ).①相等的角是对顶角; ②若a//b ,b//c ,则a ∥c ;③同位角相等; ④邻补角的平分线互相垂直.A 、0个B .1个C .2个D .3个3.已知a<b ,则下列不等式一定成立的是( ).A 、55a b +>+B .22a b -<-C .3322a b > D 、770a b -<4.如图,由AD ∥BC 可以得到的结论是( ).A 、∠1=∠2B .∠1=∠4C 、∠2=∠3D .∠3=∠45.利用数轴确定不等式组102x x +≥⎧⎨<⎩的解集,正确的是( ).6.已知点A(1,0), B(0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为( )A 、(-4,0)B 、(6,0)C 、(-4,0)或(6,0)D 、无法确定7.一个多边形的每一个外角都等于40。
,那么这个多边形的内角和为( ).A 、1260°B .900°C 、1620°D .360°8.已知(2)(1)x kx --化简后的结果中不含有x 的一次项,则k 的值为( ).A 、一1B .—12 C 、12 D .19.若关于x ,y 的二元一次方程组42x y k x y k -=⎧⎨+=⎩的解也是二元一次方程210x y -=的解,则k 的值为( ). A 、2 B .一2 C 、0.5 D .一0.510.已知正整数a 、b 、c 中,c 的最大值为6,且a <b <c ,则以a 、b 、c 为三边的三角形共有( ).A 、4个B .5个C .6个D .7个二、填空题(共6个小题,每小题3分.共18分)11.如图,AB ∥CD ,∠A=32°,∠C=70°,则∠F=___________。
七年级数学下册综合算式专项练习题带有括号乘方开方和绝对值的代数式求值

七年级数学下册综合算式专项练习题带有括号乘方开方和绝对值的代数式求值在七年级数学下册的学习中,综合算式是一个重要的内容,特别是包含括号、乘方、开方和绝对值的代数式求值。
在这篇文章中,将通过一系列的专项练习题来帮助同学们更好地理解和掌握这部分知识。
1. 题目一:求值计算计算并求出下列各题的值:a) 7 + (3 - 1)b) |4 - 7|c) 3^2 + 4^3d) √9 + 5 - 2^22. 题目二:带有乘方的求值计算并求出下列各题的值:a) (2 + 3)^2b) (4 - 2)^3c) (5 + 1)^0d) (2^3 - 5)^23. 题目三:带有开方的求值计算并求出下列各题的值:a) √25 + √16b) √(100 - 64)c) √(12^2 + 5^2)d) √48 - √274. 题目四:带有绝对值的求值计算并求出下列各题的值:a) |2 - 5| + |4 - 1|b) 2 - |3 - 6|c) 5 + |6 - 8|d) |2^3 - 5| - |6 - 9|通过以上的练习题,我们可以逐步学习和掌握带有括号、乘方、开方和绝对值的代数式的求值方法。
首先,要注意括号的运算优先级高于其他的运算符号,所以在计算时需要先处理括号内的内容。
其次,乘方运算表示将一个数自乘若干次,要注意计算次序。
开方运算表示某个数的正平方根,要注意对于负数的情况,结果为非实数。
最后,绝对值表示一个数的大小,与其正负无关,要注意取绝对值后的结果。
在计算过程中,同学们需要按照题目给出的具体要求进行计算,并将答案写在相应的题目后面。
综合算式的求值是数学学习中的重要内容之一,它可以帮助我们提高对代数式的理解和运算能力。
同学们在做题过程中要注意分清运算符号的优先级,进行正确的计算。
此外,对于括号、乘方、开方和绝对值这些特殊情况,要注意它们对于整个表达式的影响,并灵活运用相应的运算规则。
通过反复的练习和探索,相信同学们可以逐渐掌握带有括号、乘方、开方和绝对值的代数式求值方法,为进一步的数学学习打下坚实的基础。
2023-2024学年人教版数学七年级下册暑假综合练习题五(含解析)

五、2021-2022学年人教版数学七年级下册暑假综合练习题1.在平面直角坐标系中,将点()3,1P 向下平移2个单位长度,得到的点'P 的坐标为( )A.()3,1−B.(3,3)C.(1,1)D.(5,1)2.在平面直角坐标系中,点2(2,3)P x +−所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限 3.如图,直线a b ,170350∠=︒∠=︒,,则2∠=( )A.80°B.70°C.60°D.50°4.比较三个数-3,-π,( )A.π3−>−>B.π3>−>−C.3π>−>−D.3π−>−>5.如果方程组216x y x y +=⎧⎨+=⎩★,的解为6x y =⎧⎨=⎩,■,那么被“★”“■”遮住的两个数分别是( ) A.10,4 B.4,10 C.3,10 D.10,36.下列说法,其中错误的有( )9±;3的平方根;③8−的立方根为2−;2=±.A.1个B.2个C.3个D.4个7.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是( )A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务8.不等式组542(1)2532132x x x x +−⎧⎪+−⎨−>⎪⎩,…的解集是( ) A.2x ≤ B.2x ≥− C. 22x −<… D. 22x −<…9.若x a y b=⎧⎨=⎩是方程2340x y −+=的解,则695a b −+=___________. 10.一个数值转换器的运算程序如图所示:若输入有效的x 值后,始终无法输出y 值,则满足要求的x 的值为______.11.为了支援边远山区贫困学校的同学读书,某校开展捐书活动,七(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5 4.5~组别所占的百分比是30%,那么捐书数量在4.5~5.5组別的人数是__________.12.将不足40只鸡放入若干个笼中.若每个笼里放4只,则有1只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只,则有__________只鸡.13.如图,已知EF AC ⊥,垂足为F ,DM AC ⊥,垂足为M ,DM 的延长线交AB 于点B ,且1C ∠=∠,点N 在AD 上,且23∠=∠,试说明//AB MN .答案以及解析1.答案:A解析:将点()3,1P 向下平移2个单位长度,得到的点'P 的坐标为()3,12−,即()3,1−.2.答案:D解析:220x +>,30−<,∴点2(2,3)P x +−所在的象限是第四象限.故选D.3.答案:C解析:如图,过点A 作AB a ,则24∠=∠.∵,a b a AB ∴AB b ,∴5170∠=∠=︒,∴2418035()180507060()∠=∠=︒−∠+∠=︒−︒+︒=︒.4.答案:D解析:2π9.87≈,3π∴<,3π∴−>−> D.5.答案:A解析:把6x y =⎧⎨=⎩,■代入216x y +=,得2616⨯+=■,解得4=■.把64x y =⎧⎨=⎩,代入xy =★,得6410=+=★.故选A.6.答案:B9,9的平方根是3±,故①错误3的平方根,故②正确;8−的立方根为2−,故③正确2=,故④错误.其中错误的有①④两个.7.答案:A解析:本题考查了条形统计图的相关知识.2019年末,农村贫困人口比上年末减少166********−=(万人),所以选项A 是错误的,其他三个选项都是正确的.故选A.8.答案:D 解析:542(1)25321,32x x x x +−⎧⎪⎨+−−>⎪⎩①②…解不等式①,得2x ≥−,解不等式②,得2x <,所以不等式组的解集是22x −≤<.故选D.9.答案:7−解析:把x a y b =⎧⎨=⎩代入方程2340x y −+=,可得2340a b −+=,234a b ∴−=−,6953(23)57a b a b ∴−+=−+=−10.答案:0,1 解析:0和1的算术平方根是它们本身,且0和1是有理数,∴当0x =或1时,始终无法输出y 值.11.答案:16 解析:捐书数量在3.5~4.5组别的频数是12,所占的百分比是30%, ∴捐书的总人数为1230%40÷=,∴捐书数量在4.5~5.5组别的人数是()40412816−++=.12.答案:37解析:设有x 个笼.根据题意,得415(2),415(2)3x x x x +>−⎧⎨+<−+⎩解得811x <<.当9x =时,49137⨯+=.当10x =时,410141⨯+=(舍去).故有9个笼,37只鸡 .13.答案:因为,EF AC DM AC ⊥⊥,所以90CFE CMD ∠=∠=︒(垂直的定义),所以//EF DM (同位角相等,两直线平行),所以3CDM ∠=∠(两直线平行,同位角相等).因为23∠=∠(已知),所以2CDM ∠=∠(等量代换),所以//MN CD (内错角相等,两直线平行),所以AMN C ∠=∠(两直线平行,同位角相等).因为1C ∠=∠(已知),所以1AMN ∠=∠(等量代换), 所以//AB MN (内错角相等,两直线平行).结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学综合训练
一.选择题:(下面每小题都给出编号为A,B,C,D的四个答案,其中有且只有一个是符合题意的,请选择符合题意的答案的编号,填在题后的括号内,本题共20分,每小题2分,选错,多选,不选都给零分)
1.以下列各组线段长为边,能组成三角形的是()
A .1cm,2cm,4cm B.2cm,3cm,6cm
C.4cm,6cm, 8cm
D. 5cm,6cm ,12cm
2.下列运算正确的是()
A.a5·a6=a30 B.(a5)6=a30 C. a5+a6=a11 D. a5÷a6=
5
6
4.下列事件中,是不可能事件的是()
A.晚上19:00打开电视,在播放新闻,
B.水往高处流
C.丁丁买彩票中了特等奖 ,
D.在0O C度
5.如图,某同学把一块三角形的玻璃打碎成三片,现在他
要到玻璃店去配一块完全一样形状的玻璃.那么最省
事的办法是带( )去配.
A.①
B.②
C.③
D.①和②
6.化简
x2-y2
(x-y)2
的结果是()
A.
x+y
x-y
B.1 C.
x-y
x+y D.x-y
7.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,那么她所旋转的牌从左数起是()
A.第一张
B.第二张
C.第三张
D.第四张
3.把一个正方形三次对折后沿虚线剪下,
如图所示:
则所得的图形是( )
①③
②
第5题图
8.计算[(-x )3]2÷(-x 2)3所得的结果是(x ≠0)( )
A.-1
B.-x 10
C.0
D.-x 12 9.甲,乙两人进行百米跑比赛,当甲离终点还有1米时,乙离终点还有2米,那么,当甲到达终点时,乙离终点还有( )米 (假设甲乙的速度保持不变)
A.9899
B. 10099
C. 1
D. 9998
10.如图,宽为50 cm 的矩形图案由
10个全等的小长方形拼成,其中一个小长方形的面积为( )
A. 400 cm 2
B. 500 cm 2
C. 600 cm 2
D. 4000 cm 2
二.填空题:(把正确答案填在空格内,本题共30分,每小题3分) 11.七年级(1)班共有48名少先队员要求参加志愿者活动,根据实际需要,少先队大队部从中随机选择12名少先队员参加这次活动,该班少先队员小明能参加这次活动的概率是_________.
12.若代数式x 2―4
x ―2
的值为0,则x =____________;
当b= 时,分式1
4+b
无意义。
13.如图,平面镜A 与B 之间夹角为110°,光
线经平面镜A 反射到平面镜B 上,再反射出
去,若21∠=∠,则1∠的度数为 . 14.若非零实数a ,b 满足a 2 =ab - 14 b 2,则b
a
=___________.
15.小华要从长度分别为5cm 、6cm 、11cm 、16cm 的四根小木棒中选出三
根摆成一个三角形,
那么他选的三根木棒的长度分别是:_ , , (单位:cm). 16.方程组325
28x y x y +=⎧⎨
-=⎩
的解为
17.观察下列图形:
其中既是轴对称图形又是中心对称图形的为 (填序号)
21
110°A
B (第13题图) 第10题图
① ②④ ⑤ ⑥
18.分式方程:1x+1 =2
5-x
的解为
19.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/
时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意可列出方
程为
20. 如图,G 是△AFE 两外角平分线的交点,
P 是△ABC 的两外角平分线的交点, F,C 在AN 上,又B,E 在AM 上; 如果∠FGE =66O ,那么∠P = 三.解答题:(下面每小题必须有解题过程,本题共50分) 21.计算:(每小题3分,共12分) ⑴a -5a ⑵1-x -y x+y ⑶1x +1 1-x ⑷9-x 21+x ÷ x+3―x ―1
22.因式分解(每小题3分,共12分) ⑴a 2b -b 3 ⑵1-n +m -mn
⑶x 2―2x +1―y 2
⑷(x -y)2+(x +y)(x -y) 23.(每小题3分,共6分)
⑴分析图6①,②,④中阴影部分的分布规律,按此规律在图6③中画出其中的阴影部分.
⑵由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图)。
请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形。
A
B E F G C
M
N P
24.(本题6分)请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50 mm,OQ上截取OB=70 mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC 的长 . (结果精确到1 mm,不要求写作法).
25.(本题6分)西部山区某县响应国家“退耕还林”号召,将该县一部分耕地改还为林地。
改还后,林地面积和耕地面积共有180km2, 耕地面积是林地面积的25%。
试分别求出改还后耕地与林地面积?
26.(本题6分)七年级(1)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其它两位同学进行交流的情景:
根据他们的对话,试请你分别求出A、B两个超市今年“五一节”期间的销售额?
答案
1.C
2.B
3.C
4.B
5.C
6.A
7.A
8.A
9.B 10.A 11.1
4 12.-2 ,-4 13.35O 14.2 15. 6,11,16 16.x=3,y=-2 17. ③⑥ 18.x=1 19.312x -1= 312
x+26
20.66O
21.⑴a 2-5a ⑵2y x+y ⑶1
x -x 2
⑷x -3
22.⑴b(a -b)(a+b) ⑵(1+m)(1-n)⑶(x ―1―y)(x -1+y) ⑷2x(x -y) 23.⑴
⑵略
24.略25.改还后耕地面积为36平方公里,林地面积为144平方公里 26.A, B 两超市今年五一节的销售额分别为115万元,55万元.。