七年级数学下册第九章不等式与不等式组练习题A2

合集下载

人教版七年级数学下册第九章不等式和不等式组练习(含答案)

人教版七年级数学下册第九章不等式和不等式组练习(含答案)

第九章不等式与不等式组一、单项选择题1.假如莱州市2019 年 6 月 1 日最高气温是33o C ,最低气温是24o C ,则当日莱州市气温t o C的变化范围是()A .t33B.t33C.24t 33D.24t33 2.以下说法正确的选项是()A . 5 是不等式x 5 0 的解B. 6 是不等式x 5 10 的解集C.x 3 是不等式x 30 的解集D.x 5 是不等式 x 510 的解集3).若 a b ,则以下不等式不建立的是(A .ac2bc2B. a 4 b 4C. 1 a 1 b D.1 2a1 2b2 24 |a| x 的一元一次不等式,则 a 的值是().若 ( a 1)x 3 0 是对于A .1 B.C.1 D. 05.在数轴上表示不等式1 1 的解集,正确的选项是()1- x≥2 2A .B.C.D.6.某种商品的进价为900元,销售的标价为1650元,后出处于该商品积压,商品准备打折销售,但要保证收益率不低于10% ,则最多可打()A.6折B.7折C.8折D.9折x87.若不等式组有解,那么n 的取值范围是()x nA . n 8B . n 8C . n 8D . n 88.若对于 x 、 y3x y 1 a 的解知足xy 505 ,则 a的二元一次方程组3y 1的取值范围x 是( ).A . a 2018B . a 2018C . a 505D . a 5059.运转程序以下图, 从 “输入实数 x ”到 “结果能否 18 ”为一次程序操作, 若输入后 x 程序操作进行了两次就停止,则x 的取值范围是 ()14 B .14 C .14 x 6D . x 6A . xx 8333a ba b 1 3 10.阅读理解: 我们把d 称作二阶队列式, 规定它的运算法例为=ad ﹣ bc ,比如2 4cc d=1×4﹣ 2× 3=﹣ 22 3 x ,假如1 > 0,则 x 的解集是( )xA . x >1B . x <﹣ 1C .x > 3D . x <﹣ 3二、填空题11.若不等式 (a - 2)x > a - 2 能够变形为 x < 1,则 a 的取值范围为 _____.12.已知不等式 3x - a0 的正整数解正是 1,2,3,4,那么 a 的取值范围是 _________________.x 2⋯1 的解集为 _____.13.不等式组2x 3x9 1614.迪士尼乐园开门前已经有400 名旅客在排队检票.检票开始后,均匀每分钟又有120 名旅客前来排队.已知一个检票口每分钟能检票15 人,若要使排队现象在开始检票10分钟内消逝,则起码开放___个检票口.三、解答题15.阅读以下资料:数学识题:已知x y 2 ,且x1,y0 ,试确立x y 的取值范围.问题解法: Q x y 2 ,x y 2.又 Q x 1 ,y 2 1 , y 1 .又Q y 0 ,1 y 0 .①同理得 1 x 2 .①由①①得 1 1 y x 0 2 ,x y 的取值范围是0 x y 2 .达成任务:(1)在数学识题中的条件下,写出2x 3 y 的取值范围是_____.(2)已知x y 3,且x 2 ,y0,试确立x y 的取值范围;(3)已知 y 1 ,x1,若x y a 建立,试确立x y 的取值范围(结果用含 a 的式子表示).16.解不等式(组)(1)3 x 1 1 x 2x1( 2)22x 12( x 1) 1 x2x y m 3 0, 求 m 的取值范围.17.已知对于 x, y 的方程组y2m 的解 xy x18.跟着 “一带一路 ”国际合作顶峰论坛在北京举行, 中国同 30 多个国家签订经贸合作协议,某厂准备生产甲、 乙两种商品共 8 万件销往 “一带一路 ”沿线国家和地域. 已知甲种商品的销售单价为 900 元,乙种商品的销售单价为600 元.( 1)已知乙种商品的销售量不可以低于甲种商品销售量的三分之一,则最多能销售甲种商品多少万件?(2)在( 1)的条件下,要使甲、乙两种商品的销售总收入不低于5700 万元,恳求甲种商品销售量的范围.19.益马高速通车后, 将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一田户需要将 A ,B 两种农产品按期运往益阳某加工厂,每次运输A ,B 产品的件数不变,本来每运一次的运费是 1200 元,此刻每运一次的运费比本来减少了300 元, A ,B 两种产品本来的运费和此刻的运费(单位:元∕件)以下表所示:品种A B本来的运费45 25此刻的运费30 20( 1)求每次运输的农产品中 A ,B 产品各有多少件;( 2)因为该田户诚实守信,产质量量好,加工厂决定提升该田户的供货量,每次运送的总件数增添 8 件,但总件数中 B 产品的件数不得超出A 产品件数的 2 倍,问产品件数增添后,每次运费最少需要多少元答案1. D 2. C 3. A 4. A 5. B 6. A 7. A8. B9. B10. A11. a<212.12a1513. 3≤x<514. 1115.( 1) 1 2x 3 y 4 ;(2)x y 的取值范围是 1 x y 3;(3)x y 的取值范围是 2 a x y a 2 .16.( 1)x 2;(2) 3 x 117. 1 m 16 万件18.( 1)最多销售甲种商品 6 万件;( 2)范围为3万件到19.( 1)每次运输的农产品中 A 产品有10 件,每次运输的农产品中 B 产品有30 件,( 2)产品件数增添后,每次运费最少需要1120 元。

河南省许昌高中七年级数学下册第九章【不等式与不等式组】经典练习卷(含答案解析)

河南省许昌高中七年级数学下册第九章【不等式与不等式组】经典练习卷(含答案解析)

一、选择题1.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ).A .10 cm 3以上,20 cm 3以下B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下3.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( )A .3a >B .3a ≤C .3a <D .3a ≥4.不等式-3<a≤1的解集在数轴上表示正确的是( )A .B .C .D .5.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( ) A .4个 B .5个 C .6个 D .无数个6.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤27.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( )A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <28.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-9.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤10.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-15327-,π-,22中,有3个有理数,2个无理数 C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7 11.下列是一元一次不等式的是( )A .21x >B .22x y -<-C .23<D .29x <二、填空题12.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个). 13.随着中秋节的逐渐临近,红梅超市计划购进甜味型、咸味型、麻辣味型三种共50盒月饼,其中咸味型月饼数量不超过甜味型月饼数量,且咸味型月饼数量不少于麻辣味型月饼数量的一半.已知甜味型月饼每盒60元,咸味型月饼每盒80元,麻辣味型月饼每盒100元.在价格不变的条件下,小王实际购进甜味型月饼是计划的56倍,麻辣味型月饼购进了12盒,结果小王实际购进三种月饼共35盒,且比原计划少支付1240元,则小王原计划购进甜味型月饼_____盒.14.若关于x 的不等式组25011222x x m +>⎧⎪⎨+⎪⎩,有四个整数解,则m 的取值范围是____________. 15.a b ≥,1a -+_____1b -+16.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.17.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.18.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分. 19.己知不等式组1x x a ≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______. 20.若不等式(2﹣a )x >2的解集是x <22a -,则a 的取值范围是_____. 21.若关于x 的不等式组2()102153x m x 的解集为76x -<<-,则m 的值是______.三、解答题22.已知点()39,210A m m --,分别根据下列条件解决问题:(1)点A 在x 轴上,求m 的值;(2)点A 在第四象限,且m 为整数,求点A 的坐标.23.筹建中的迪荡中学需720套单人课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组.每组每天可生产12张:生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.24.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-.(1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值.25.解不等式,并把不等式的解集在数轴上表示出来.(1)6327x x ->-;(2)21123x x -+-≤.一、选择题1.已知关于x 的不等式组3x 05m x +⎧⎨-⎩<>的所有整数解的和为-9,则m 的取值范围( ) A .3≤m <6B .4≤m <8C .3≤m <6或-6≤m <-3D .3≤m <6或-8≤m <-42.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( )A .3a >B .3a ≤C .3a <D .3a ≥ 3.若关于x 的不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,则a 的取值范围是( ) A .21a -≤<- B .21a -≤≤-C .21a -<<-D .21a -<≤- 4.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤5.不等式()31x -≤5x -的正整数解有( )A .1个B .2个C .3个D .4个 6.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A . B . C . D .7.若a b <,则下列不等式中不正确的是( )A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 8.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-9.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤210.若m n <,则下列各式中正确的是( )A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > 11.若关于x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( ) A .a 4<- B .a 4=-C .a 4?≥-D . a 4>- 二、填空题12.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.13.若关于x 的不等式组25011222x x m +>⎧⎪⎨+⎪⎩,有四个整数解,则m 的取值范围是____________. 14.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.15.由ac bc >得到a b <的条件是:c ______0(填“>”“<”或“=”).16.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________. 17.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____18.不等式组210360x x ->⎧⎨-<⎩的解集为_______. 19.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.20.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.21.如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______.三、解答题22.某家庭投资3.5万元资金建造屋顶光伏发电结,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电600度.信息链接:根据国家相关规定,凡是屋顶光伏发电站生产的电,家庭用电后剩余部分可以0.45元/度卖给电力公可,同时可获得政府补贴0.52元/度.(1)求这个月晴天的天数;(2)已知该家庭每月平均用电150度,若按每月发电600度计算,问至少需要几年才能收回成本?(不计其他费用,结果取整数)23.解方程组和不等式(组):(1)解方程组45 3212x yx y-=⎧⎨+=⎩(2)解不等式组:() ()()263 52141x xx x ⎧->+⎪⎨--≤+⎪⎩24.学校计划利用一片空地建造一个矩形的学生自行车棚(不考虑门),其中一面靠墙,这堵墙的长度为7.9米,计划建造车棚的面积为12平方米.现有可造车棚的建造材料总长为11米.(1)给出一种设计方案;(2)若矩形车棚的长、宽都要求为整数(单位:米),一共有几种方案?(3)若要使所有建造材料恰好用完,应怎么设计?25.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?一、选择题1.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤2.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ).A .10 cm 3以上,20 cm 3以下B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下3.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .104.不等式32x x -≤的解集在数轴上表示正确的是( )A .B .C .D .5.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( ) x … -2 -1 0 1 2 3 …A .x <1B .x >1C .x <0D .x >06.下列变形中,不正确的是( )A .若a>b ,则a+3>b+3B .若a>b ,则13a>13bC .若a<b ,则-a<-bD .若a<b ,则-2a>-2b. 7.不等式组64325x x x -<⎧⎨≥+⎩的解集是( ) A .x ≥5 B .x ≤5 C .x >3 D .无解8.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab >9.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b 10.若不等式组11x x m ->⎧⎨<⎩无解,那么m 的取值范围是( ) A .2m > B .2m < C .2m ≥ D .2m ≤11.若关于x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( ) A .a 4<- B .a 4=-C .a 4?≥-D . a 4>- 二、填空题12.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.13.a b ≥,1a -+_____1b -+14.不等式组63024x x x -⎧⎨<+⎩的解集是__. 15.若关于x 、y 的二元一次方程组23242x y a x y a +=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.16.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.17.若不等式a x cx c b+>⎧⎨≥-⎩的解为x≥-b+c,则a,b的大小关系一定满足:a___b.18.不等式2x+9>3(x+4)的最大整数解是_____.19.不等式组20210xx+>⎧⎨-≤⎩的所有整数解的和是_____________20.在实数范围内规定一种新的运算“☆”,其规则是:a☆b=3a+b,已知关于x的不等式:x☆m>1的解集在数轴上表示出来如图所示.则m的值是________ .21.已知x﹣y=3,且x>2,y<1,则x+y的取值范围是_____.三、解答题22.某家庭投资3.5万元资金建造屋顶光伏发电结,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电600度.信息链接:根据国家相关规定,凡是屋顶光伏发电站生产的电,家庭用电后剩余部分可以0.45元/度卖给电力公可,同时可获得政府补贴0.52元/度.(1)求这个月晴天的天数;(2)已知该家庭每月平均用电150度,若按每月发电600度计算,问至少需要几年才能收回成本?(不计其他费用,结果取整数)23.2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?哪种进货方案的费用最低?最低费用为多少元?24.已知,关于x的不等式(2a-b)x+a-5b>0的解集为x<107.(1)求ba的值.(2)求关于x 的不等式ax >b 的解集.25.阅读:我们知道,00a a a a a ≥⎧=⎨-<⎩于是要解不等式|3|4x -≤,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法: 解:(1)当30x -≥,即3x ≥时:34x -≤解这个不等式,得:7x ≤由条件3x ≥,有:37x ≤≤(2)当30x -<,即3x <时,(3)4x --≤解这个不等式,得:1x ≥-由条件3x <,有:13x -≤<∴如图,综合(1)、(2)原不等式的解为17x -≤≤根据以上思想,请探究完成下列2个小题:(1)|1|2x +≤;(2)|2|1x -≥.。

七年级数学下册第九章不等式与不等式组练习题A2

七年级数学下册第九章不等式与不等式组练习题A2

一、选择题1.若,a a -则a 必为( )A 、负整数 B、 正整数 C、负数 D、正数2.不等式组⎩⎨⎧+-0201 x x 的解集是( )A、12 x - B、1 x C、x 2- D、无解3.下列说法,错误的是( )A、33- x 的解集是1- x B、-10是102- x 的解C、2 x 的整数解有无数多个 D、2 x 的负整数解只有有限多个4.不等式组2130x x ≤⎧⎨+≥⎩的解在数轴上可以表示为( ) AC5.不等式组⎩⎨⎧--≥-31201 x x 的整数解是( ) A、-1,0 B、-1,1 C、0,1 D、无解6.若a <b <0,则下列答案中,正确的是( )A、a <b B B 、a >b C、2a <2b D 、a 3>b 27.关于x 的方程a x 4125=+的解都是负数,则a 的取值范围( )A、a >3 B、a <3- C、a <3 D、a >-3二、填空9.当x 时,代数式52+x 的值不大于零11.不等式x 27->1,的正整数解是12. 不等式x ->10-a 的解集为x <3,则a13.若a >b >c ,则不等式组⎪⎩⎪⎨⎧c x b x a x 的解集是 14.若不等式组⎩⎨⎧--3212 b x a x 的解集是-1<x <1,则)1)(1(++b a 的值为 17.若不等式组⎩⎨⎧3x a x 的解集为x >3,则a 的取值范围是 三、解答题四、19.解不等式组①⎪⎩⎪⎨⎧--≤--x x x x 14214)23( ②⎪⎩⎪⎨⎧-≥--+356634)1(513x x x x附加题(10)22.某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?1. 填空题2. 不等式组⎪⎩⎪⎨⎧≤4212x x 的整数解是3. 当m 时,b m a m 22 的b a4. 若不等式组⎩⎨⎧-+121a x a x 无解,则a 的取值范围是5. 当a 时,2)2( x a -的解为21-x 6. 若关于x 的不等式⎪⎩⎪⎨⎧+++01234 k x x x 的解集为 x 2,则k 的取值范围是 二、选择题(10.m 为任意实数,下列不等式中一定成立的是( )A、3m m B、 2-m 2+m C、m m - D、a a 35 11.不等式027≥-x 的正整数解有( ) A、1个 B、2个 C、3个 D、无数个12.已知 b a 1,0-0,则a,ab,ab 2之间的大小关系是( )A 、2ab ab a B、a ab ab 2C、 ab 2ab a D、2ab a ab 13.若x x -=-44,则x 的取值范围是( )A、4 x B、4≤x C、4 x D、4≥x14.b a ,表示的数如图所示,则11---b a 的的值是( )A、b a - B、2-+b a C、b a --2 D、b a +-15.不等式⎩⎨⎧--≤-4325 x x 的解集表示在数轴上为图中的()16.不等式组⎩⎨⎧+-5321 x a x a 的解集是23+a x ,则a 的取值范围是()A、1 a B、3≤a C、1 a 或3 a D、31≤a17.若方程组⎩⎨⎧-=+=-323a y x y x 的解是负数,则a 的取值范围是( )A、63 a - B、6 a C、3- a D、无解18.若不等式组⎩⎨⎧≤kx x 21有解,则k 的取值范围是( )A、2 k B、2≥k C、1 k D、21 k ≤解答题20.15.02.02.04.0--+xx21.解不等式组⎪⎪⎩⎪⎪⎨⎧--≥+++225315632x x x xb -1(D)(C)(B)321023.若不等式组⎩⎨⎧-+nm x n m x 的解是53 x -,求不等式0 n mx -的解集。

人教版七年级下册数学第九章不等式与不等式组精选计算题100道

人教版七年级下册数学第九章不等式与不等式组精选计算题100道

不等式与不等式组(100道)用不等式表示:1、a 与1的和是正数;2、x 的21与y 的31的差是非负数;3、x 的2倍与1的和大于3;4、a 的一半与4的差的绝对值不小于a .5、x 的2倍减去1不小于x 与3的和;6、a 与b 的平方和是非负数;7、y 的2倍加上3的和大于-2且小于4; 8、a 减去5的差的绝对值不大于解不等式(组),并在数轴上表示它们的解集9、213-x (x-1)≥1;10、234-≥--x11、⎩⎨⎧>+>-821213x x x12、⎩⎨⎧<-<-x x x 332312 13、)7(4)54(3)13(2-->+--x x x x ; 14、42713752--≥+-x x x ; 15、⎩⎨⎧<+>-81312x x16、⎩⎨⎧-≥++<-7255223x x x x17、 ⎩⎨⎧->++>+x x x x 421132218、8223-<+x x19、x x 4923+≥-20、)1(5)32(2+<+x x 21、0)7(319≤+-x22、31222+≥+x x 23、223125+<-+x x 24、5223-<+x x 25、234->-x 26、)1(281)2(3--≥-+y y 27、1213<--m m 28、)2(3)]2(2[3-->--x x x x29、215329323+≤---x x x 30、41328)1(3--<++x x 31、 )1(52)]1(21[21-≤+-x x x 32、22416->--x x33、x x x 212416-≤-- 34、7)1(68)2(5+-<+-x x 35、46)3(25->--x x36、1215312≤+--x x 37、31222-≥+x x 38、8223-<+x x 39、x x 4923+≥-40、)1(5)32(2+<+x x41、0)7(319≤+-x 42、31222+≥+x x 43、 223125+<-+x x 44、7)1(68)2(5+-<+-x x45、)2(3)]2(2[3-->--x x x x46、1215312≤+--x x 47、 215329323+≤---x x x 48、11(1)223x x -<- 49、)1(52)]1(21[21-≤+-x x x 50、41328)1(3--<++x x 51、⋅->+-+2503.0.02.003.05.09.04.0x x x 52、⎩⎨⎧≥-≥-.04,012x x53、⎩⎨⎧>+≤-.074,03x x54、⎪⎩⎪⎨⎧+>-<-.3342,121x x x x55、-5<6-2x <3.56、⎪⎩⎪⎨⎧⋅>-<-322,352x x x x57、⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx58、⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x59、.234512x x x -≤-≤- 60、532(1)314(2)2x x x -≥⎧⎪⎨-<⎪⎩61、⎪⎩⎪⎨⎧≥--+.052,1372x x x φ62、⎪⎩⎪⎨⎧-<-->+.43)1(4,1321x x x x63、14321<--<-x64、-(x+1)<6+2(x-1)65、()31x 2221x ->- 66、1132x x +-<67、3-x-14≥2+3(x+1)868、361633->---x x 69、9-411x>x +3270、x -3x-24 ≥2(1+x)3-171、⎩⎨⎧-++-148112x <x >x x72、⎪⎩⎪⎨⎧--+≤+x <x x 21352113273、-7≤2(13)7x +≤9 74、4100,54,11213.x x x x x -<⎧⎪+>⎨⎪-≥+⎩75、⎩⎨⎧-≤-+-x x x >x 31421325)(76、⎩⎨⎧-≤-+-xx x >x 31421325)(77、5(x+2)≥1-2(x-1) 78、2731205y y y +>-⎧⎪-⎨≥⎪⎩79、42x --3<522x +80、32242539x x x x x +>⎧⎪->-⎨⎪->-⎩81、x 取什么值时,代数式251x-的值不小于代数式4323+-x的值 82、K 取何值时,方程k x 332-=5(x-k)+1的解是非负数83、k 为何值时,等式|-24+3a|+0232=⎪⎭⎫⎝⎛--b k a 中的b 是负数? 3a-18是多少? 84、若方程组212x y x y m +=⎧⎨-=⎩的解x 、y 的值都不大于1,求m 的取值范围85、若a 同时满足不等式042<-a 和213>-a ,化简 21---a a .86、已知方程组⎩⎨⎧+=---=+a y x ay x 317的解,x 为非正数,y 为负数(1)求a 的取值范围(2)化简|a-3|+|a+2|(3)在a 的取值范围中,当a 为何整数时,不等式2ax+x >2a+1的解为x <1 87、求不等式组⎩⎨⎧-≥--<-15764653x x xx 的自然数解。

初中七年级数学下册第九章《不等式与不等式组》测试卷3套含答案

初中七年级数学下册第九章《不等式与不等式组》测试卷3套含答案

A
B
C
D
3.若 a b>0 ,且 b<0 ,则 a , b , a , b 的大小关系为( )
A. a< b<b<a
B. -a<b< b<a
C. -a<b<a<-b
D. b< a< b<a
4.如图,数轴上表示的关于 x 的一元一次不等式的解集为( )
A. x≤1
B. x≥1
C. x<1
D. x>1
(2)设小亮答对了
y
道题,依题意,得
C. 3
7.一元一次不等式组
2x>x 1
1 2
x≤1
的解集是(

A. x> 1
B. x≤2
C. 1<x≤2
2x a>3
8.若不等式组
x
2b<1
的解集是
2<x<3
,则
3ab
等于(

A. 3
B.3
C. 6
D D.无解 D.4 个 D. 4
D. x> 1 或 x≤2 D.6
9.对于不等式组
1 2
21.【答案】解:
2x
1 2
(
x
3≥ 3 2a) 1
2
① x<0
,解不等式①,得 x≤3 , ②
解不等式②,的 x<a .∵ a 是不等于 3 的常数, ∴当 a>3 时,不等式组的解集为 x≤3 . 当 a<3 时,不等式组的解集为 x<a . 22.【答案】解:(1)设小明答对了 x 道题,依题意,得 5x 3(20 x) 68 ,解得 x 16 . 答:小明答对了 16 道题.
23.郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买 A , B 两种奖品以鼓励抢 答者.如果购买 A 种 20 件, B 种 15 件,共需 380 元;如果购买 A 种 15 件, B 种 10 件,共需 280 元. (1) A , B 两种奖品每件各多少元?

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级下册数学《第9章不等式与不等式组》单元测试一、选择题1.已知a<b,则下列选项错误的是()A.a+2<b+2B.a﹣1<b﹣1C.<D.﹣3a<﹣3b2.不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<0B.a>﹣1C.a<﹣1D.a≤13.下列说法中,错误的是()A.不等式x<5有无数多个整数解B.不等式x>﹣5的负整数解有4个C.不等式﹣2x<8的解集是x<﹣4D.﹣10是不等式2x<﹣8的一个解4.满足不等式,﹣2x+3≤7的整数解有()A.6个B.4个C.5个D.无数个5.已知关于x的一元一次不等式组有2个整数解,若a为整数,则a的值为()A.5B.6C.6或7D.7或86.若不等式组无解,则实数a的取值范围是()A.a≥﹣1B.a<﹣1C.a≤1D.a≤﹣17.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120D.10x﹣5(20﹣x)<120二、填空题8.若2a+6是非负数,则a的取值范围是.9.若x>y,则8﹣5x8﹣5y.(填“>”或“=”或“<”)10.不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是11.已知关于x的不等式组,解不等式①得;解不等式②得;若不等式组的整数解共4个,则m的取值范围是.12.若|﹣a|>﹣a,则a0.(请用“>,<,≥,≤或=”号填空)13.若方程组的解满足条件0<x+y<2,则k的取值范围是.14.已知a,b为实数,若不等式组的解集为﹣1<x<1,那么(a﹣1)(b﹣1)的值等于.15.关于x的不等式1+>+与关于x的不等式x+1>的解集相同,整数m 是,不等式的解集是.16.若关于x,y的方程组的解是一对负数,则|2m+1|﹣|﹣6m+2|=.三、解答题17.解不等式(组)(Ⅰ)解不等式5x﹣2≥3(x+1),并把它的解集在数轴上表示出来.(Ⅱ)解不等式组请结合题意填空,完成本题的解答.解不等式①,得;解不等式②,得;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为.18.若不等式2(x+1)﹣5<3(x﹣1)+4的最小整数解是方程的解,求代数式a2﹣2a﹣11的值.19.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣5|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.20.某小区为了绿化环境,计划分两次购进A、B两种树苗,第一次分别购进A、B两种树苗30棵和15棵,共花费675元;第二次分别购进A、B两种树苗12棵和5棵,共花费265元.两次购进的A、B两种树苗价格均分别相同.(1)A、B两种树苗每棵的价格分别是多少元?解:设A种树苗每棵x元,B种树苗每棵y元根据题意列方程组,得:解这个方程组,得:答:.(2)若购买A、B两种树苗共31棵,且购买树苗的总费用不超过320元,则最多可以购买A种树苗多少棵?21.接种新冠病毒疫苗,建立全民免疫屏障,是战胜病毒的重要手段.北京科兴中维需运输一批疫苗到我市疾控中心,据调查得知,2辆A型冷链运输车与3辆B型冷链运输车一次可以运输600盒;5辆A型冷链运输车与6辆B型冷链运输车一次可以运输1350盒.(1)求每辆A型车和每辆B型车一次可以分别运输多少盒疫苗.(2)计划用两种冷链运输车共12辆运输这批疫苗,A型车一次需费用5000元,B型车一次需费用3000元.若运输物资不少于1500盒,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?参考答案一、选择题1.D2.C3.C4.C5.D6.D7.C 二、填空题8.a≥﹣3.9.<.10.4≤m<6.11.x<m;x≥3;6<m≤7.12.>.13.﹣4<k<614.6.15.m=7x>1.16.8m﹣1.三、解答题17.解:(Ⅰ)去括号,得:5x﹣2≥3x+3,移项,得:5x﹣3x≥3+2,合并同类项,得:2x≥5,系数化为1,得:x≥,将不等式解集表示在数轴上如下:(Ⅱ)解不等式①,得x<3;解不等式②,得x≥﹣;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为﹣≤x<3.故答案为:x<3、x≥﹣、﹣≤x<3.18.解:解不等式2(x+1)﹣5<3(x﹣1)+4,得x>﹣4,∵大于﹣4的最小整数是﹣3,∴x=﹣3是方程的解.把x=﹣3代入中,得:,解得a=2.当a=2时,a2﹣2a﹣11=22﹣2×2﹣11=﹣11.∴代数式a2﹣2a﹣11的值为﹣11.19.解:(1)解方程组得:,∵x为非正数,y为负数,∴,解得﹣2<m≤3;(2)∵﹣2<m≤3,∴m﹣5<0,m+2>0,则原式=5﹣m﹣m﹣2=3﹣2m(3)由不等式2mx+x<2m+1的解为x>1,知2m+1<0;所以,又因为﹣2<m<3,所以,因为m为整数,所以m=﹣1.20.解:(1)设A种树苗每棵x元,B种树苗每棵y元,根据题意列方程组,得:,解这个方程组,得:.答:A种树苗每棵20元,B种树苗每棵5元.故答案为:;;A种树苗每棵20元,B种树苗每棵5元.(2)设购买A种树苗m棵,则购买B种树苗(31﹣m)棵,依题意,得:20m+5(31﹣m)≤320,解得:m≤11.答:最多可以购买A种树苗11棵.21.解:(1)设每辆A型车和每辆B型车一次可以分别运输x盒疫苗、y盒疫苗,由题意可得,,解得,答:每辆A型车和每辆B型车一次可以分别运输150盒疫苗、100盒疫苗;(2)设A型车a辆,则B型车(12﹣a)辆,由题意可得,,解得6≤a<9,∵a为正整数,∴a=6,7,8,∴共有三种运输方案,方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A型车8辆,B型车4辆,∵A型车一次需费用5000元,B型车一次需费用3000元,计划用两种冷链运输车共12辆运输这批疫苗,∴A型车辆数越少,费用越低,∴方案一所需费用最少,此时的费用为5000×6+3000×6=48000(元),答:方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A 型车8辆,B型车4辆,其中方案一所需费用最少,最少费用是48000元.。

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。

人教版七年级下《第九章不等式与不等式组》单元测试题含答案

人教版七年级下《第九章不等式与不等式组》单元测试题含答案

第九章 不等式与不等式组 一、选择题(本大题共 6 小题,每小题 4 分,共 24 分) 1.已知实数 a,b,若 a>b,则下列结论正确的是( A.a-5<b-5 B.2+a<2+b C. < 3 3)a bD.3a>3b2.不等式 3(x-1)≤5-x 的非负整数解有( ) A.1 个 B.2 个 C.3 个 D.4 个 3.关于 x 的一元一次不等式 A.14m-2x3≤-2 的解集为 x≥4,则 m 的值为()B.7 C.-2 D.2 2x+1 3x+2   - >1, 2 4.不等式组 3 的解集在数轴上表示正确的是( 3-x≥2)图 9-Z-1 5.如果关于 x 的不等式组 3x-1>4(x-1), x<m 的解集为 x<3,那么 m 的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥3 6.某种毛巾原零售价为每条 6 元,凡一次性购买两条以上,商家推出两种优惠销售办法,第一种: “两条 按原价,其余按七折付款” ;第二种: “全部按原价的八折付款” .若想在购买相同数量的情况下,要使第一种 办法比第二种办法得到的优惠多,最少要购买毛巾( ) A.4 条 B.5 条 C.6 条 D.7 条 二、填空题(本大题共 5 小题,每小题 4 分,共 20 分) x≤3x+2, 7.不等式组 的解集为________. 3x-2(x-1)<4 3x+4≥0,   8.不等式组1 的所有整数解的积为________. x-24≤1  2  9.定义新运算:对于任意实数 a,b,都有 a⊕b=a(a-b)+1,其中等式右边是通常的加法、减法及乘法 运算,如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式 3⊕x<13 的解集为________. 10.若不等式组x+a≥0, 1-2x>x-2 有解,则 a 的取值范围是________. 2x-b≥0, 11.若不等式组 的解集为 3≤x≤4,则不等式 ax+b<0 的解集为________. x+a≤0 三、解答题(本大题共 7 小题,共 56 分) 4x-1 12.(6 分)解不等式 -x>1,并把它的解集在数轴上表示出来. 3x-3(x-2)≥4,   13.(8 分)解不等式组2x-1 x+1 并将它的解集在数轴上表示出来. < ,  2  5-x-1≥-2x+1,   14.(8 分)已知关于 x 的不等式组1 其中实数 a 是不等于 2 的常数, 请依据 a 的取值情 1 (x-2a)+ x<0,  2 2 况求出不等式组的解集.15.(8 分)已知关于 x,y 的方程组 x+y=3a+9,  x-y=5a+1的解都为正数,求 a 的取值范围.16.(8 分)旅游者参观某河流风景区,先乘坐摩托艇顺流而下,然后逆流返回.已知水流的速度是每小时 3 千米, 摩托艇在静水中的速度是每小时 18 千米. 为了使参观时间不超过 4 小时, 旅游者最远可走多少千米?17.(8 分)某校计划购买一批篮球和足球,已知购买 2 个篮球和 1 个足球共需 320 元,购买 3 个篮球和 2 个足球共需 540 元. (1)求每个篮球和每个足球的售价; (2)如果学校计划购买这两种球共 50 个,总费用不超过 5500 元,那么最多可购买多少个足球?18.(10 分)现有一个种植总面积为 540 m 的长方形塑料温棚,分垄间隔套种草莓和西红柿共 24 垄,种植 的草莓或西红柿单种农作物的总垄数不低于 10 垄,又不超过 14 垄(垄数为正整数),它们的占地面积、产量、 利润分别如下: 占地面积 2 (m /垄) 西红柿 草莓 30 15 产量(千 克/垄) 160 50 利润(元/ 千克) 1.1 1.62(1)若设草莓共种植了 x 垄,请说明共有几种种植方案,分别是哪几种; (2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?详解详析 1.[答案] D 2.[解析] C 去括号,得 3x-3≤5-x. 移项、合并同类项,得 4x≤8. 系数化为 1,得 x≤2. ∴不等式的非负整数解有 0,1,2,共 3 个. 故选 C. 1 3.[解析] D 去分母,得 m-2x≤-6,移项,得-2x≤-m-6,系数化为 1,得 x≥ m+3. 2 ∵关于 x 的一元一次不等式 故选 D. 2x+1 3x+2 4.[解析] B 解不等式 - >1,得 x<-2,解不等式 3-x≥2,得 x≤1,∴不等式组的解集 3 2 为 x<-2,故选 B. 5.[解析] D 由 3x-1>4(x-1),得 x<3,而不等式组的解集也为 x<3,∴m≥3.故选 D. 6.[解析] D 设购买毛巾 x 条.由题意得 6×2+6×0.7(x-2)<6×0.8x, 解得 x>6. ∵x 为整数,∴x 最小为 7. 故选 D. 7.[答案] -1≤x<2 x≤3x+2,① [解析]  3x-2(x-1)<4.② m-2x31 ≤-2 的解集为 x≥4,∴ m+3=4,解得 m=2. 2由①,得 x≥-1.由②,得 x<2,所以-1≤x<2. 8.[答案] 0 9.[答案] x>-1 [解析] 由题意得 3(3-x)+1<13, 解得 x>-1. 10.[答案] a>-1 3 11.[答案] x> 2 2x-b≥0,① [解析]  x+a≤0.② 解不等式①,得 x≥ . 2 解不等式②,得 x≤-a. ∴不等式组的解集为 ≤x≤-a. 2 2x-b≥0, ∵不等式组 的解集为 3≤x≤4, x+a≤0 bb∴ =3,-a=4,∴b=6,a=-4, 2b∴不等式 ax+b<0 可化为-4x+6<0, 3 解得 x> . 2 12.解:去分母,得 4x-1-3x>3. 移项、合并同类项,得 x>4. 在数轴上表示不等式的解集如图所示:x-3(x-2)≥4,①   13.解:2x-1 x+1 < .②  2  5由①得-2x≥-2,即 x≤1. 由②得 4x-2<5x+5,即 x>-7. 所以原不等式组的解集为-7<x≤1. 在数轴上表示不等式组的解集为:-x-1≥-2x+1,①   14.解:1 1 (x-2a)+ x<0.②  2 2 解不等式①,得 x≥2. 解不等式②,得 x<a. 故当 a>2 时,不等式组的解集为 2≤x<a;当 a<2 时,不等式组无解. 15.解:解方程组,得 ∵解都为正数,4a+5>0,  ∴  -a+4>0.  x=4a+5, y=-a+4. 5 解得- <a<4. 4 16.解:设旅游者可走 x 千米.根据题意,得 + ≤4,解得 x≤35. 18+3 18-3 答:旅游者最远可走 35 千米. 17.解:(1)设每个篮球和每个足球的售价分别为 x 元、y 元,2x+y=320, x=100,   根据题意,得 解得   3x+2y=540, y=120.xx答:每个篮球和每个足球的售价分别为 100 元、120 元. (2)设购买足球 a 个,则购买篮球(50-a)个, 根据题意,得 120a+100(50-a)≤5500, 解得 a≤25. 答:最多可购买 25 个足球.18.解:(1)根据题意可知西红柿种了(24-x)垄,则 15x+30(24-x)≤540,解得 x≥12. 又因为 x≤14,且 x 是正整数, 所以 x 的值为 12,13,14. 故共有三种种植方案: 方案一:种植草莓 12 垄,种植西红柿 12 垄; 方案二:种植草莓 13 垄,种植西红柿 11 垄; 方案三:种植草莓 14 垄,种植西红柿 10 垄. (2)方案一获得的利润为 12×50×1.6+12×160×1.1=3072(元); 方案二获得的利润为 13×50×1.6+11×160×1.1=2976(元); 方案三获得的利润为 14×50×1.6+10×160×1.1=2880(元). 由计算可知,方案一即种植西红柿和草莓各 12 垄,获得的利润最大,最大利润是 3072 元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册第九章不等式与不等式组练习题A2
基础知识点点通
班级__初一十二_____姓名__赵博______成绩
________
一、选择题(4′×8=32′)
1.若,a a -则a 必为( b )
A 、负整数 B、 正整数 C、负数 D、正数
2.不等式组⎩
⎨⎧+-0201 x x 的解集是( ) A、12 x - B、1 x C、x 2- D、无解
3.下列说法,错误的是(d )
A、33- x 的解集是1- x B、-10是102- x 的解
C、2 x 的整数解有无数多个 D、2 x 的负整数解只有有限多个
4.不等式组2130x x ≤⎧⎨+≥⎩
的解在数轴上可以表示为( ) A
C
5.不等式组⎩
⎨⎧--≥-31201 x x 的整数解是( ) A、-1,0 B、-1,1 C、0,1
D、无解
6.若a <b <0,则下列答案中,正确的是( )
A、a <b B B 、a >b C、2
a <2
b D 、a 3>b 2
7.关于x 的方程a x 4125=+的解都是负数,则a 的取值范围( )
A、a >3 B、a <3- C、a <3 D、a >-3
8.设“○”“△”“□”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“○” )
二、填空(3×10=30)
9.当x 时,代数式52+x 的值不大于零
10.若x <1,则22+-x 0(用“>”“=”或“”号填空)
11.不等式x 27->1,的正整数解是
12. 不等式x ->10-a 的解集为x <3,则a
13.若a >b >c ,则不等式组⎪⎩
⎪⎨⎧c x b
x a x 的解集是 14.若不等式组⎩⎨⎧--3
212 b x a x 的解集是-1<x <1,则)1)(1(++b a 的值为 15.有解集2<x <3的不等式组是 (写出一个即可)
16.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 ”其中蛋白质
的含量为 _____ g
17.若不等式组⎩⎨⎧3
x a x 的解集为x >3,则a 的取值范围是 三、解答题(5′×2+6′×2+8′+8′=38′)
18.解不等式①1)1(22 ---x x ; ②3
41221x x +≤-- 并分别把它们的解集在数轴上表示出来
(1)x-2-2x+2<2
x-2x<2-2+2
-x<2
x>-2
(2)6-3(x-2)<2(1+4x)
6-3x+6<2+8x
6-6-2<8x+3x
-2<11x
x>-2\11
19.解不等式组 ①⎪⎩⎪⎨⎧--≤--x x x x 14
214)23(
②⎪⎩⎪⎨⎧-≥--+35663
4)1(513x x x x
20.关于y x ,的方程组⎩⎨⎧-=-+=+1
31m y x m y x 的解满足x >y
求m 的最小整数值
21.一本英语书共98页,张力读了一周(7天),而李永不到一周就已读完,李永平均每
天比张力多读3页,张力平均每天读多少页?(答案取整数)
附加题(10)
22.某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为
600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?
七年级数学下册第九章不等式与不等式组练习题B2
能力训练级级高
班级________ 姓名_______ 成绩_______
一、填空题(3′×9=27′)
1. 当x 时,x 32-为正数
2. 不等式组⎪⎩⎪⎨⎧≤4
212x x 的整数解是
3. 当m 时,b m a m 2
2 的b a 4. 若不等式组⎩
⎨⎧-+121a x a x 无解,则a 的取值范围是 5. 已知不等式03≤-a x 的正整数解恰是1,2,3,4,那么a 的取值范围是
6. 关于x 的方程113)1(5-+=-m x x 若其解是非正数,则m 的取值范围是
7. 当a 时,2)2( x a -的解为2
1- x 8. 一种药品的说明书上写着“每日用量60~120mg ,分3~4次服用“则一次服用这
种剂量x 应该满足
9. 若关于x 的不等式⎪⎩⎪⎨⎧+++0
1234 k x x x 的解集为 x 2,则k 的取值范围是 二、选择题(3′×9=27′)
10.m 为任意实数,下列不等式中一定成立的是( )
A、 3m
m B、 2-m 2+m C、m m - D、a a 35
11.不等式027≥-x 的正整数解有( )
A、1个 B、2个 C、3个 D、无数个
12.已知 b a 1,0-0,则a,ab,ab 2之间的大小关系是( )
A 、2ab ab a B、a ab ab 2
C、 ab 2ab a D、2ab a ab
13.若x x -=-44,则x 的取值范围是( )
A、4 x B、4≤x C、4 x D、4≥x
14.b a ,表示的数如图所示,则11---b a 的的值是( )
A、b a - B、2-+b a C、b a --2 D、b a +-
15.不等式⎩
⎨⎧--≤-432
5 x x 的解集表示在数轴上为图中的()
16.不等式组⎩⎨⎧+-5321 x a x a 的解集是2
3+a x ,则a 的取值范围是(
) A、1 a B、3≤a C、1 a 或3 a D、31≤a
17.若方程组⎩⎨⎧-=+=-323
a y x y x 的解是负数,则a 的取值范围是( )
(D)
(C)(B)
A、63 a - B、6 a C、3- a D、无解
18.若不等式组⎩⎨⎧≤k
x x 21有解,则k 的取值范围是( ) A、2 k B、2≥k C、1 k D、21 k ≤
三、解答题(19~22每题7分,23题8分,24题10分)
19.解不等式--412x 16
25-≤+x 解:3(2x —1)—-2(5x+2)<-12
6x-3-10x-4<-12
6x-10x <-12+4
-4x <-8
x <2
20.
15
.02.02.04.0--+x x
21.解不等式组⎪⎪⎩⎪⎪⎨⎧--≥+++2253
15632x x x x
22.解不等式⎪⎪⎩⎪⎪⎨⎧++≤--+1
3125
32)4(2)1(3 x x x x x
23.若不等式组⎩⎨
⎧-+n
m x n m x 的解是53 x -,求不等式0 n mx -的解集。

24.在车站开始检票时,有)0( a a 各旅客在候车室排队等候检票进站,检票开始后,仍
有旅客继续前来排队等候检票进站。

设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min 才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min 便可将排队等候检票的旅客全部检票完毕;现在要求在5min 内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?
全出港,则甲队至少应工作几小时,才能交给乙队接着卸?。

相关文档
最新文档