高考物理数学物理法模拟试题
模拟高考各科试题及答案

模拟高考各科试题及答案一、语文试题及答案1. 阅读下面一段文言文,完成(1)-(3)题。
(1)下列词语解释不正确的一项是:A. 觥筹交错(酒杯和酒筹相互错杂)B. 箪食瓢饮(用瓢盛水喝)C. 夙兴夜寐(早起晚睡)D. 箪食壶浆(用壶盛酒)答案:D(2)下列句子中,加点词的意义和用法相同的一项是:A. 吾谁与归B. 吾从子游C. 吾与点也D. 吾谁欺答案:A(3)翻译文中划线的句子。
句子:不以物喜,不以己悲。
翻译:不因为物质的得失而感到高兴或悲伤。
2. 现代文阅读,回答问题。
(1)文章中“他”为什么坚持要回家?答案:因为他思念家乡和亲人。
(2)文章中“她”对“他”的态度是怎样的?答案:她对“他”既关心又有些无奈。
(3)文章的主题是什么?答案:文章的主题是思乡之情。
二、数学试题及答案1. 已知函数f(x)=2x^2-3x+1,求f(2)的值。
答案:f(2)=2*(2^2)-3*2+1=52. 解方程:x^2-5x+6=0。
答案:x=2或x=33. 计算定积分:∫(0到1) (2x+3)dx。
答案:(2/2)x^2+3x | 0到1 = 2+3-0 = 5三、英语试题及答案1. 根据句意,选择填空。
I don't think it is necessary to ________ the matter.A. look intoB. look upC. look outD. look over答案:A2. 翻译句子。
句子:他决定去旅行,放松一下。
翻译:He decided to go on a trip to relax.3. 阅读理解,回答问题。
(1)文章中提到了哪些旅游目的地?答案:文章提到了巴黎、伦敦和纽约。
(2)作者对旅游的态度是什么?答案:作者认为旅游是一种放松和学习的方式。
四、物理试题及答案1. 已知一个物体的质量为2kg,受到的重力为19.6N,求物体的加速度。
答案:a=F/m=19.6N/2kg=9.8m/s^22. 一个电容器的电容为4μF,通过它的电流为2A,求电容器的电压。
高考数学模拟复习试卷试题模拟卷2024

高考模拟复习试卷试题模拟卷【高频考点解读】1.了解函数y =Asin(ωx +φ)的物理意义;能画出y =Asin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【热点题型】题型一 函数y =Asin(ωx +φ)的图象及变换【例1】 设函数f(x)=sin ωx +3cos ωx(ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到.【提分秘籍】作函数y =Asin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =Asin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =Asin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【举一反三】设函数f(x)=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.题型二利用三角函数图象求其解析式例2、(1)已知函数f(x)=Acos(ωx +φ)的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f(0)=( )A .-23B .-12 C.23 D.12(2)函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.【提分秘籍】已知f(x)=Asin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【举一反三】(1)已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f(1)的值为( )A .-32B .-62 C.3 D .- 3(2)函数f(x)=Asin(ω+φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝⎛⎭⎫π3的值为______.题型三函数y =Asin(ωx +φ)的性质应用【例3】已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图象,若y =g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.【提分秘籍】解决三角函数图象与性质综合问题的方法:先将y =f(x)化为y =asin x +bcos x 的形式,然后用辅助角公式化为y =Asin(ωx +φ)+b 的形式,再借助y =Asin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【举一反三】已知函数f(x)=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值; (2)求函数y =f(x)+f⎝⎛⎭⎫x +π4的最大值及对应的x 的值. 【高考风向标】【高考山东,文4】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象()(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【高考湖北,文18】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ35π6sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点最近的对称中心.5A =,32ππωϕ+=,5362ππωϕ+=,1.(·天津卷) 已知函数f(x)=3sin ωx +cos ωx(ω>0),x ∈R.在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π2.(·安徽卷) 若将函数f(x)=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π43.(·重庆卷) 将函数f(x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.4.(·北京卷) 函数f(x)=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f(x)的最小正周期及图中x0,y0的值; (2)求f(x)在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值..5.(·福建卷) 已知函数f(x)=2cos x(s in x +cos x).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间.6.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定7.(·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.8.(·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 9.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 10.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③11.(·山东卷) 函数y =32sin 2x +cos2x 的最小正周期为________. sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .12.(·陕西卷) 函数f(x)=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π134.(·浙江卷) 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( ) A .向右平移π12个单位 B .向右平移π4个单位 C .向左平移π12个单位 D .向左平移π4个单位14.(·四川卷) 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度15.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值. 【高考押题】1.函数f(x)=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B .πC .2πD .4π2.将函数y =cos 2x +1的图象向右平移π4个单位,再向下平移1个单位后得到的函数图象对应的表达式为( )A .y =sin 2xB .y =sin 2x +2C .y =cos 2xD .y =cos ⎝⎛⎭⎫2x -π43.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象 ( ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.函数f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6 C .4,-π6D .4,π3解析 由图象知f(x)的周期T =2⎝⎛⎭⎫11π12-5π12=π,又T =2πω,ω>0,∴ω=2.由于f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的一个最高点为⎝⎛⎭⎫5π12,2,故有2×5π12+φ=2kπ+π2(k ∈Z),即φ=2kπ-π3,又-π2<φ<π2,∴φ=-π3,选A.答案 A5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f(x)的图象,则下列说法正确的是( ) A .y =f(x)是奇函数 B .y =f(x)的周期为πC .y =f(x)的图象关于直线x =π2对称 D .y =f(x)的图象关于点⎝⎛⎭⎫-π2,0对称 6.将函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=______.7.已知函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f(x)=________.8.设函数f(x)=Asin(ωx +φ)(A ,ω,φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________.9.已知函数f(x)=4cos x·sin ⎝⎛⎭⎫x +π6+a 的最大值为2.(1)求a 的值及f(x)的最小正周期; (2)在坐标系上作出f(x)在[0,π]上的图象.10.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会从实际情境中抽象出一元二次不等式模型;2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 【热点题型】题型一 一元二次不等式的解法 例1、求下列不等式的解集: (1)-x2+8x -3>0; (2)ax2-(a +1)x +1<0.解 (1)因为Δ=82-4×(-1)×(-3)=52>0,所以方程-x2+8x -3=0有两个不相等的实根x1=4-13,x2=4+13. 又二次函数y =-x2+8x -3的图象开口向下, 所以原不等式的解集为{x|4-13<x<4+13}.当a =0时,解集为{x|x>1};当0<a<1时,解集为{x|1<x<1a };当a =1时,解集为∅;当a>1时,解集为{x|1a <x<1}.【提分秘籍】含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)对方程的根进行讨论,比较大小,以便写出解集. 【举一反三】(1)若不等式ax2+bx +2>0的解为-12<x<13,则不等式2x2+bx +a<0的解集是________. (2)不等式x -12x +1≤0的解集是________.答案 (1)(-2,3) (2)(-12,1]题型二 一元二次不等式的恒成立问题 例2、设函数f(x)=mx2-mx -1.(1)若对于一切实数x ,f(x)<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f(x)<-m +5恒成立,求m 的取值范围. 解 (1)要使mx2-mx -1<0恒成立, 若m =0,显然-1<0;若m≠0,则⎩⎪⎨⎪⎧m<0,Δ=m2+4m<0⇒-4<m<0.所以-4<m≤0.(2)要使f(x)<-m +5在x ∈[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:方法二 因为x2-x +1=⎝⎛⎭⎫x -122+34>0,又因为m(x2-x +1)-6<0,所以m<6x2-x +1.因为函数y =6x2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m<67即可.所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m|m<67.【提分秘籍】(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【举一反三】(1)若不等式x2-2x +5≥a2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞) C .(-∞,-1]∪[4,+∞) D .[-2,5](2)已知a ∈[-1,1]时不等式x2+(a -4)x +4-2a>0恒成立,则x 的取值范围为( ) A .(-∞,2)∪(3,+∞) B .(-∞,1)∪(2,+∞) C .(-∞,1)∪(3,+∞) D .(1,3)答案 (1)A (2)C解析 (1)x2-2x +5=(x -1)2+4的最小值为4, 所以x2-2x +5≥a2-3a 对任意实数x 恒成立, 只需a2-3a≤4,解得-1≤a≤4.(2)把不等式的左端看成关于a 的一次函数,记f(a)=(x -2)a +(x2-4x +4), 则由f(a)>0对于任意的a ∈[-1,1]恒成立, 易知只需f(-1)=x2-5x +6>0, 且f(1)=x2-3x +2>0即可, 联立方程解得x<1或x>3.题型三 题型三 一元二次不等式的应用例3、某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f(x),并写出定义域; (2)若再要求该商品一天营业额至少为10260元,求x 的取值范围.【提分秘籍】求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型. (3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果. 【举一反三】某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.答案 20 解析 由题意得,3860+500+[500(1+x%)+500(1+x%)2]×2≥7000, 化简得(x%)2+3·x%-0.64≥0,解得x%≥0.2,或x%≤-3.2(舍去).∴x≥20,即x 的最小值为20. 【高考风向标】1.【高考广东,文11】不等式2340x x --+>的解集为.(用区间表示) 【答案】()4,1-【解析】由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-.2.(·全国卷)设集合M ={x|x2-3x -4<0},N ={x|0≤x≤5},则M∩N =() A .(0,4] B .[0,4) C .[-1,0) D .(-1,0] 【答案】B【解析】因为M ={x|x2-3x -4<0}={x|-1<x<4},N ={x|0≤x≤5},所以M∩N ={x|-1<x<4}∩{0≤x≤5}={x|0≤x<4}.3.(·新课标全国卷Ⅱ] 设函数f(x)=3sin πx m ,若存在f(x)的极值点x0满足x20+[f(x0)]2<m2,则m 的取值范围是()A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 【答案】C【解析】函数f(x)的极值点满足πx m =π2+kπ,即x =m ⎝⎛⎭⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k0使之满足不等式m2⎝⎛⎭⎫k0+122+3<m2.因为⎝⎛⎭⎫k +122的最小值为14,所以只要14m2+3<m2成立即可,即m2>4,解得m>2或m<-2,故m 的取值范围是(-∞,-2)∪(2,+∞).4.(·安徽卷)已知一元二次不等式f(x)<0的解集为x<-1或x>12,则f(10x)>0的解集为() A .{x|x<-1或x>-lg 2} B .{x|-1<x<-lg 2} C .{x|x>-lg 2} D .{x|x<-lg 2} 【答案】D【解析】根据已知可得不等式f(x)>0的解是-1<x<12,故-1<10x<12,解得x<-lg 2. 5.(·广东卷)不等式x2+x -2<0的解集为________. 【答案】{x|-2<x<1}【解析】x2+x -2=(x +2)(x -1)<0,解得-2<x<1.故不等式的解集是{x|-2<x<1}.6.(·四川卷)已知f(x)是定义域为R 的偶函数,当x≥0时,f(x)=x2-4x ,那么,不等式f(x +2)<5的解集是________.【答案】(-7,3)7.(高考全国新课标卷Ⅰ)已知函数f(x)=⎩⎪⎨⎪⎧-x2+2x ,x≤0,ln x +1,x>0.若|f(x)|≥ax ,则a 的取值范围是()A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]解析:当x≤0时,f(x)=-x2+2x =-(x -1)2+1≤0,所以|f(x)|≥ax 化简为x2-2x≥ax ,即x2≥(a +2)x ,因为x≤0,所以a +2≥x 恒成立,所以a≥-2;当x>0时,f(x)=ln(x +1)>0,所以|f(x)|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a≤0,综上,当-2≤a≤0时,不等式|f(x)|≥ax 恒成立,选择D.【答案】D 【高考押题】1.函数f(x)=1-xx +2的定义域为( ) A .[-2,1]B .(-2,1]C .[-2,1)D .(-∞,-2]∪[1,+∞) 答案 B 解析1-x x +2≥0⇔x -1x +2≤0 ⇔⎩⎪⎨⎪⎧x -1x +2≤0,x +2≠0⇔⎩⎪⎨⎪⎧-2≤x≤1,x≠-2⇔-2<x≤1. 2.设函数f(x)=⎩⎪⎨⎪⎧x2-4x +6,x≥0,x +6,x<0,则不等式f(x)>f(1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3) 答案 A解析 由题意得⎩⎪⎨⎪⎧ x≥0,x2-4x +6>3或⎩⎪⎨⎪⎧x<0,x +6>3,解得-3<x<1或x>3.3.设a>0,不等式-c<ax +b<c 的解集是{x|-2<x<1},则a ∶b ∶c 等于( ) A .1∶2∶3B .2∶1∶3 C .3∶1∶2D .3∶2∶1 答案 B解析 ∵-c<ax +b<c ,又a>0, ∴-b +c a <x<c -ba .∵不等式的解集为{x|-2<x<1}, ∴⎩⎪⎨⎪⎧ -b +c a =-2,c -b a =1,∴⎩⎨⎧b =a2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a2=2∶1∶3.4.若不等式mx2+2mx -4<2x2+4x 对任意x 都成立,则实数m 的取值范围是( )A .(-2,2]B .(-2,2)C .(-∞,-2)∪[2,+∞)D .(-∞,2] 答案 A5.若集合A ={x|ax2-ax +1<0}=∅,则实数a 的值的集合是( ) A .{a|0<a<4}B .{a|0≤a<4} C .{a|0<a≤4}D .{a|0≤a≤4} 答案 D解析 由题意知a =0时,满足条件.a≠0时,由⎩⎪⎨⎪⎧a>0,Δ=a2-4a≤0得0<a≤4,所以0≤a≤4.6.已知一元二次不等式f(x)<0的解集为⎩⎨⎧⎭⎬⎫x|x<-1或x>12,则f(10x)>0的解集为________.答案 {x|x<-lg2}解析 由已知条件0<10x<12,解得x<lg 12=-lg2.7.若0<a<1,则不等式(a -x)(x -1a )>0的解集是________________. 答案 {x|a<x<1a }解析 原不等式即(x -a)(x -1a )<0, 由0<a<1得a<1a ,∴a<x<1a .8.已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x2-4x ,则不等式f(x)>x 的解集用区间表示为________________.答案 (-5,0)∪(5,+∞)解析 由已知得f(0)=0,当x<0时,f(x)=-f(-x)=-x2-4x ,因此f(x)=⎩⎪⎨⎪⎧x2-4x ,x≥0,-x2-4x ,x<0.不等式f(x)>x 等价于⎩⎪⎨⎪⎧ x≥0,x2-4x>x ,或⎩⎪⎨⎪⎧x<0,-x2-4x>x.解得:x>5,或-5<x<0.9.已知f(x)=-3x2+a(6-a)x +6. (1)解关于a 的不等式f(1)>0;(2)若不等式f(x)>b 的解集为(-1,3),求实数a 、b 的值.10.某农贸公司按每担200元收购某农产品,并每100元纳税10元(又称征锐率为10个百分点),计划可收购a 万担,政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x(x≠0)个百分点,预测收购量可增加2x 个百分点.(1)写出降税后税收y(万元)与x 的函数关系式;(2)要使此项税收在税率调节后不少于原计划税收的83.2%,试确定x 的取值范围. 解 (1)降低税率后的税率为(10-x)%, 农产品的收购量为a(1+2x%)万担, 收购总金额为200a(1+2x%)万元. 依题意得y =200a(1+2x%)(10-x)% =150a(100+2x)(10-x)(0<x<10). (2)原计划税收为200a·10%=20a(万元). 依题意得150a(100+2x)(10-x)≥20a×83.2%, 化简得x2+40x -84≤0,解得-42≤x≤2.又∵0<x<10,∴0<x≤2.即x的取值范围为(0,2].高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
2024届广东省新高考普通高中高三下学期联合质量测评冲刺模拟物理核心考点试题(基础必刷)

2024届广东省新高考普通高中高三下学期联合质量测评冲刺模拟物理核心考点试题(基础必刷)学校:_______ 班级:__________姓名:_______ 考号:__________(满分:100分时间:75分钟)总分栏题号一二三四五六七总分得分评卷人得分一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,圆柱形的容器内有若干个长度不同、粗糙程度相同的直轨道,它们的下端均固定于容器底部圆心O,上端固定在容器侧壁上。
若相同的小球以同样的速率,从点O沿各轨道同时向上运动。
对它们向上运动的过程中,下列说法正确的是( )A.各小球动能相等的位置在同一水平面上B.各小球重力势能相等的位置不在同一水平面上C.各小球机械能相等时处于同一球面上D.当摩擦产生的热量相等时,各小球处于同一圆柱面上第(2)题质量为m的物体从某一高度由静止释放,除重力之外还受到水平方向大小、方向都不变的力F的作用。
下列说法正确的是()A.若在物体落地前的某一位置撤去力F,则物体从开始运动到落地的时间不变B.物体落地时速度方向竖直向下C.物体下落时加速度方向不断变化D.物体的运动轨迹是抛物线第(3)题如图,足够长的间距的平行光滑金属导轨、固定在水平面内,导轨间存在一个宽度的匀强磁场区域,磁感应强度大小为,方向如图所示。
一根质量,阻值的金属棒a以初速度从左端开始沿导轨滑动,穿过磁场区域后,与另一根质量,阻值的静止放置在导轨上的金属棒b发生弹性碰撞,两金属棒始终与导轨垂直且接触良好,导轨电阻不计,则下列选项中不正确的是( )A.金属棒a第一次穿过磁场的过程中,做加速度减小的减速直线运动B.金属棒a第一次穿过磁场的过程中,回路中有顺时针方向的感应电流C.金属棒a第一次穿过磁场的过程中,金属棒b上产生的焦耳热为0.34375JD.金属棒a最终停在距磁场左边界0.8m处第(4)题如图所示,轻杆AC和轻杆BC的一端用光滑铰链连接在C点,另一端分别用光滑铰链固定在竖直墙壁上,将一物块通过细线连接在C点并保持静止状态,若对C端施加一水平向左的作用力F,则下列说法正确的是( )A.轻杆AC中的弹力一定变大B.轻杆AC中的弹力一定减小C.轻杆BC中的弹力一定变大D.轻杆BC中的弹力可能减小第(5)题海王星是仅有的利用数学预测发现的行星,是牛顿经典力学的辉煌标志之一、在未发现海王星之前,天文学家发现天王星实际运动的轨道与万有引力理论计算的值总存在一些偏离,且周期性地每隔时间t发生一次最大的偏离。
2021年高考物理考点模拟题(必修一)专题1.14 自由落体运动(基础篇)(解析版)

2021年高考物理100考点最新模拟题千题精练第一部分直线运动专题1.14.自由落体运动(基础篇)一.选择题1. (2020河北湖北联考)将一小球从空中某处自由下落至地面,若其最后1 s的位移是第1 s的n倍,则物体下落时间为(忽略空气阻力)A. (n+1)sB. (n−1)sC. sD. s【参考答案】C【名师解析】设物体下落时间为t,根据自由落体运动规律h=12gt2,第1s的位移为h1=12g,最后1 s的位移是h-h n-1=12gt2-12g(t-1)2,最后1 s的位移是第1 s的n倍,h-h n-1=n h1,联立解得t=s,选项C正确。
2. 伽利略对“自由落体运动”和“运动和力的关系”的研究,开创了科学实验和逻辑推理相结合的重要科学研究方法。
图(a)、(b)分别表示这两项研究中实验和逻辑推理的过程,对这两项研究,下列说法正确的是A. 图(a)中先在倾角较小的斜面上进行实验,其目的是使时间测量更容易B. 图(a)通过对自由落体运动的研究,合理外推得出小球在斜面上做匀变速直线运动C. 图(b)中完全没有摩擦阻力的斜面是实际存在的,实验可实际完成D. 图(b)的实验为“理想实验”,通过逻辑推理得出物体的运动不需要力来维持【参考答案】AD【名师解析】伽利略设想物体下落的速度与时间成正比,因为当时无法测量物体的瞬时速度,所以伽利略通过数学推导证明如果速度与时间成正比,那么位移与时间的平方成正比;由于当时用滴水法计算,无法记录自由落体的较短时间,伽利略设计了让铜球沿阻力很小的斜面滚下,来“冲淡”重力得作用效果,而小球在斜面上运动的加速度要比它竖直下落的加速度小得多,所用时间长的多,所以容易测量。
伽利略做了上百次实验,并通过抽象思维在实验结果上做了合理外推。
故A正确,B错误;实际中没有摩擦力的斜面并不存在,故该实验无法实际完成,故C错误;伽利略用抽象思维、数学推导和科学实验相结合的方法得到物体的运动不需要力来维持,故D正确。
南通市2024届高考物理一模试卷含解析

2024年高考物理模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、如图,a、b两个物块用一根足够长的轻绳连接,跨放在光滑轻质定滑轮两侧,b的质量大于a的质量,用手竖直向上托住b使系统处于静止状态。
轻质弹簧下端固定,竖直立在b物块的正下方,弹簧上端与b相隔一段距离,由静止释放b,在b向下运动直至弹簧被压缩到最短的过程中(弹簧始终在弹性限度内)。
下列说法中正确的是()A.在b接触弹簧之前,b的机械能一直增加B.b接触弹簧后,a、b均做减速运动C.b接触弹簧后,绳子的张力为零D.a、b和绳子组成的系统机械能先不变,后减少2、2017年诺贝尔物理学奖授予了三位美国科学家,以表彰他们为发现引力波所作的贡献。
引力波被认为是时空弯曲的一种效应,物体加速运动时会给宇宙时空带来扰动,这种扰动会以光速向外传播能量。
如图为科学家们探测引力波的装置示意图,发射器发出的激光S 经半透光分束镜分为相互垂直的两束S1和S2,然后经过4km长的两臂,在两臂端点处经反射镜反射回来,S'1和S'2相遇形成干涉,被探测器接收。
精确调节两臂,使探测器在无引力波作用时,接收到的信号强度为0。
当有引力波作用时,两臂长度将因此而发生改变,则接收到的信号强度不为0。
下列说法正确的是A.引力波可以超光速传播B.引力波不能传播能量C.探测器接收到的两束波的频率相同D.无引力波作用时两束激光到探测器的路程差为03、如图所示,在竖直向下的匀强磁场中有两根水平放置的平行粗糙金属导轨CD、EF,导轨上放有一金属棒MN.现从t=0时刻起,给金属棒通以图示方向的电流且电流I的大小与时间t成正比,即I=kt,其中k为常量,不考虑电流对匀强磁场的影响,金属棒与导轨始终垂直且接触良好.下列关于金属棒的加速度a、速度v随时间t变化的关系图象,可能正确的是A.B.C.D.4、汽车A、B在同一水平路面上同一地点开始做匀加速直线运动,A、B两车分别在t0和2t0时刻关闭发动机,二者速度一时间关系图象如图所示。
高考物理数学物理法题20套(带答案)及解析

高考物理数学物理法题20套(带答案)及解析一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。
两极板间电势差U AB 随时间变化规律如右图所示。
现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。
求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R ',则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2.一透明柱体的横截面如图所示,圆弧AED 的半径为R 、圆心为O ,BD ⊥AB ,半径OE ⊥AB 。
2025届山东省六地市部分学校高考仿真模拟数学试卷含解析

2025届山东省六地市部分学校高考仿真模拟数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在棱长为a 的正方体1111ABCD A B C D -中,E 、F 、M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 、11A D 上,且11(0)A P AQ m m a ==<<,设平面MEF 平面MPQ l =,则下列结论中不成立的是( )A .//l 平面11BDDB B .l MC ⊥C .当2am =时,平面MPQ MEF ⊥ D .当m 变化时,直线l 的位置不变2.已知()f x 为定义在R 上的奇函数,若当0x ≥时,()2xf x x m =++(m 为实数),则关于x 的不等式()212f x -<-<的解集是( )A .()0,2B .()2,2-C .()1,1-D .()1,33.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42B .21C .7D .34.若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( ) A .1log log b a b aa b a b >>> B .1log log a bb ab a b a >>> C .1log log b a b aa ab b >>> D .1log log a b b aa b a b >>> 5.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +>6.已知ABC △的面积是12,1AB =,2BC =,则AC =( )A .5B .5或1C .5或1D .57.设实数满足条件则的最大值为( ) A .1B .2C .3D .48.将函数()sin(2)3f x x π=-()x R ∈的图象分别向右平移3π个单位长度与向左平移n (n >0)个单位长度,若所得到的两个图象重合,则n 的最小值为( )A .3π B .23π C .2π D .π 9.某工厂只生产口罩、抽纸和棉签,如图是该工厂2017年至2019年各产量的百分比堆积图(例如:2017年该工厂口罩、抽纸、棉签产量分别占40%、27%、33%),根据该图,以下结论一定正确的是( )A .2019年该工厂的棉签产量最少B .这三年中每年抽纸的产量相差不明显C .三年累计下来产量最多的是口罩D .口罩的产量逐年增加 10.已知复数41iz i=+,则z 对应的点在复平面内位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限11.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )为( )A .163B .6C .203D .22312.已知复数z 满足()11z i i +=-(i 为虚数单位),则z 的虚部为( ) A .i -B .iC .1D .1-二、填空题:本题共4小题,每小题5分,共20分。
2024年安徽省合肥市高考数学模拟试卷+答案解析

2024年安徽省合肥市高考数学模拟试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则()A.B.C.D.2.已知复数z 满足,则()A.5B. C.13D.3.已知在某竞赛中,天涯队、谛听队、洪荒队单独完成某项任务的概率分别为,,,且这3个队是否完成该任务相互独立,则恰有2个队完成该任务的概率为()A.B.C.D.4.已知抛物线C :的焦点为F ,A 为x 轴上一点,若,且抛物线C 经过线段AF的中点,则()A.8B.C.4D.5.已知向量,,,若,,则在上的投影向量为()A.B.C.D.6.在长方体中,,过作平面,使得平面,若平面,则直线l 与所成角的余弦值为()A.B. C.D.7.已知函数,若,则直线与的图象的交点个数为()A.3 B.4C.5D.68.已知椭圆的左顶点为A ,左焦点为F ,P 为该椭圆上一点且在第一象限,若射线AF 上存在一点Q ,使得,线段PQ 的垂直平分线与射线AF 交于点H ,则()A.1B.2C.aD.2a二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.某校高一年级的某次月考中,甲、乙两个班前10名学生的物理成绩单位:分,满分100分如表所示,则甲班67727683858788888990乙班70777777818384899394A.甲班前10名学生物理成绩的众数是88B.乙班前10名学生物理成绩的极差是24C.甲班前10名学生物理成绩的平均数比乙班前10名学生物理成绩的平均数低D.乙班前10名学生物理成绩的第三四分位数是8410.已知函数其中,的部分图象如图所示,则()A.B.C.D.11.下列不等式中正确的是()A. B.C. D.三、填空题:本题共3小题,每小题5分,共15分。
12.写出一个同时具有下列性质①②③的函数______.①定义在R上的函数不是常值函数;②;③对任意的,均存在,使得成立.13.已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,若,则的取值范围是______.14.已知半径为的球O的球心到正四面体ABCD的四个面的距离都相等,若正四面体ABCD的棱与球O 的球面有公共点,则正四面体ABCD的棱长的取值范围为______.四、解答题:本题共5小题,共77分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理数学物理法模拟试题一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos157712gLS rt Tπ︒==︒【点睛】考察粒子在复合场中的运动。
2.一透明柱体的横截面如图所示,圆弧AED的半径为R、圆心为O,BD⊥AB,半径OE⊥AB。
两细束平行的相同色光1、2与AB面成θ=37°角分别从F、O点斜射向AB面,光线1经AB面折射的光线恰好通过E点。
已知OF=34R,OB=38R,取sin370.6︒=,cos 370.8︒=。
求:(1)透明柱体对该色光的折射率n;(2)光线2从射入柱体到第一次射出柱体的过程中传播的路程x。
【答案】(1)43;(2)54R【解析】【分析】【详解】(1)光路图如图:根据折射定律sin(90)sin n θα︒-=根据几何关系3tan 4OF OE α== 解得37α︒= 43n =(2)该色光在柱体中发生全反射时的临界角为C ,则13sin 4C n == 由于sin sin(90)sin 530.8sin a C β︒︒=-==>光线2射到BD 面时发生全反射,根据几何关系3tan 82REH OE OH R R β=-=-=可见光线2射到BD 面时发生全反射后恰好从E 点射出柱体,有sin OBOGα= 根据对称性有2x OG =解得54x R =3.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
现一带正电的粒子从x 轴上坐标为(-2l ,0)的A 点以速度v 0沿x 轴正方向进入电场,从y 轴上坐标为(0,l )的B 点进入磁场,带电粒子在x >0的区域内运动一段圆弧后,从y 轴上的C 点(未画出)离开磁场。
已知磁场的磁感应强度大小为,不计带电粒子的重力。
求: (1)带电粒子的比荷; (2)C 点的坐标。
【答案】(1)202v qm lE=;(2)(0,-3t )【解析】 【详解】(1)带电粒子在电场中做类平抛运动,x 轴方向02l v t =y 轴方向212qE l t m=联立解得202v qm lE=(2)设带电粒子经过B 点时的速度方向与水平方向成θ角00tan 1yqE t v m v v θ=== 解得45θ=︒则带电粒子经过B 点时的速度02v v =由洛伦兹力提供向心力得2mv qvB r= 解得2mvr l qB== 带电粒子在磁场中的运动轨迹如图所示根据几何知识可知弦BC 的长度24L r l ==43l l l -=故C 点的坐标为(0,-3t )。
4.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='= 【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F 的表达式,讨论F 取最小值的条件.5.如图所示,在xoy 平面内y 轴右侧有一范围足够大的匀强磁场,磁感应强度大小为B ,磁场方向垂直纸面向外;分成I 和II 两个区域,I 区域的宽度为d ,右侧磁场II 区域还存在平行于xoy 平面的匀强电场,场强大小为E =22B qdm,电场方向沿y 轴正方向。
坐标原点O有一粒子源,在xoy 平面向各个方向发射质量为m ,电量为q 的正电荷,粒子的速率均为v =qBdm。
进入II 区域时,只有速度方向平行于x 轴的粒子才能进入,其余被界面吸收。
不计粒子重力和粒子间的相互作用,求: (1)某粒子从O 运动到O '的时间; (2)在I 区域内有粒子经过区域的面积;(3)粒子在II 区域运动,当第一次速度为零时所处的y 轴坐标。
【答案】(1)π3m qB ;(2)221π2d d +;(3)0 【解析】 【详解】(1)根据洛伦兹力提供向心力可得2v Bqv m R=则轨迹半径为mvR d qB== 粒子从O 运动到O '的运动的示意图如图所示:粒子在磁场中运动的轨迹对应的圆心角为60θ︒=周期为22R mT v Bq ππ== 所以运动时间为63T m t qBπ== (2)根据旋转圆的方法得到粒子在I 区经过的范围如图所示,沿有粒子通过磁场的区域为图中斜线部分面积的大小:根据图中几何关系可得面积为2212S d d π=+(3)粒子垂直于边界进入II 区后,受到的洛伦兹力为22q B d qvB m=在II 区受到的电场力为222q B d qE m=由于电场力小于洛伦兹力,粒子将向下偏转,当速度为零时,沿y -方向的位移为y ,由动能定理得2102qEy mv -=-解得212mv y d qE=⋅= 所以第一次速度为零时所处的y 轴坐标为0。
6.如图所示,MN 是两种介质的分界面,下方是折射率2n =空,P 、B 、P '三点在同一直线上,其中6PB h =,在Q 点放置一个点光源,AB 2h =,QA h =,QA 、PP '均与分界面MN 垂直。
(1)若从Q 点发出的一束光线经过MN 面上的O 点反射后到达P 点,求O 点到A 点的距离;(2)若从Q 点发出的另一束光线经过MN 面上A 、B 间的中点O '点(图中未标出)进入下方透明介质,然后经过P '点,求这束光线从Q →O '→P '所用时间(真空中的光速为c )。
【答案】(1)262x h -=;(2)32ht c=【解析】 【详解】(1)如图甲所示,Q 点通过MN 的像点为Q ',连接PQ '交MN 于O 点。
由反射定律得i i ='则AOQ BOP 'V V ∽设OA x =有6x h h= 解得262x h -=(2)光路如图乙所示AO h '=有tan 1h hα== 所以45α=o根据折射定律得sin 2sin αγ=,1sin 2γ= 所以30γ=o则2QO h '=,2O P h ''=所以光线从Q →O '→P '所用时间为QO O P t c v'''=+ 根据cv n=解得32ht c=7.如图所示,一根一端封闭的玻璃管,内有一段长h =0.25m 的水银柱。
当温度为t 1=27C ︒,开口端竖直向上时,封闭空气柱h 2=0.60m 。
已知外界大气压相当于L 0=0.75m 高的水银柱产生的压强,热力学温度T =273+t 。
(i)若玻璃管足够长,缓慢地将管转过90︒,求此时封闭气柱的长度;(ii)若玻璃管长为L =1.00m ,温度至少升到多高时,水银柱才能从管中全部溢出。
【答案】(i)0.80m ;(ii)382.8K 【解析】 【分析】 【详解】(i)设玻璃管内部横截面积为S ,对水银柱分析可知,气体初状态的压强p 1=1.00mHg ,初状态的体积V 1=0.60S ,转过90︒后,气体的压强p 2=0.75mHg ,体积V 2=hS ,气体做等温变化,由玻意尔定律1122pV p V =,解得1220.80m p h h p ==(ii)由气态方程pVC T=可知,pV乘积越大,对应的温度T越高,假设管中还有长为x的水银柱尚未溢出时,pV值最大,即(L0+x)(L-x)S值最大,因为00)L x L x L L++-=()(十与x的大小无关,所以由数学知识可知∶两正数之和为一常数,则当这两数相等时其乘积最大,有∶L x L x+=-解得x=0.125m即管内水银柱由0.25m溢出到还剩下0.125m的过程中,pV的乘积越来越大,这一过程必须是升温的。