2015全国大学生电子设计大赛F题一等奖--数字频率计
2015全国大学生电子设计大赛-仪器仪表类赛题分析 名校解读

因此,需要通过论证及必要实验来确定:在20Hz~1MHz范 围内,测量误差小于2%时所允许的输入信号电压幅度范围
Hale Waihona Puke 还需要通过实验验证。 通过实验和实际测量的结果表明:当输入信号的频率不大于1MHz时,输入信 号的电压有效值在0.7V~7V范围内能保证测量误差≤±2%。
按以上步骤进行设计有助于大学生工程设计能力的培养。 但以上设计过程是设计时的一个基本思路,实际设计时,可以 根据实际情况作适当的调整。
1.几点认识
⑸ 从学习的角度,应侧重掌握以下4类仪器
基于电压测量的仪器 时间频率测量仪器 数字示波器 信号发生器
电子仪器种类繁多,但只要透彻掌握这4类仪器原理,其 他类型电子仪器的设计便不会存在大的障碍。
大学生电子设计竞赛是学科竞赛,不是纯粹意义上的产品 设计竞赛。命题时将会刻意加强与电子电路密切相关的内容, 淡化一些专业性较强的内容。
因此,电子仪器类赛题的训练一定要在基本电子电路设计 充分训练的基础上进行。否则,不仅得不到好的效果,也违背 大学生电子设计竞赛的精神。
1.几点认识
⑶ 准确理解电子仪器各项指标是做好设计的关键
则仪器的总误差将小于2.6% (<3% )
难点:真有效值转换器的电压测量误差应小于 2%
步骤2:技术指标分析、技术指标分配、核心器件的选择
指标②、测量误差:±(3%读数+2个字); 技术指标分析: 技术指标(误差)分配: 核心器件的选择:
根据平时积累,拟选用AD637作为真有效值转换器的核心器件; 由AD637的设计资料可知,其带宽与输入信号电压幅度有关,当幅值太大 或较小时,AD637的带宽都将变窄。例如, 8MHz at 2V RMS Input;
设计并制作闸门时间为1s的数字频率计

摘要频率计用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常情况下计算每秒内待测信号的脉冲个数,此时我们称闸门时间为1s。
本设计以ARM核心处理器,设计并制作了闸门时间为1s的数字频率计,能够测量频率。
该频率计硬件部分高速比较器74HC14整形电路组成。
利用32定时器的ETR功能可准确测出低高频信号,实现了对正弦波的频率测量。
经测试该频率计性能良好,正弦信号频率测量范围可从1Hz到25MHz。
关键词:STM32;高速比较;;测频一、系统方案论述1.整形电路的比较与选择方案一:由施密特触发器对74HC14信号进行调理,可以直接输出TTL电平,。
方案二:由比较器整形后的信号再由施密特整形,输出TTL电平。
从性能上讲此方案较好,但是由于时间问题,找不到合适的高速比较器和施密特触发器组合。
综上选择方案一。
2.微处理器的比较与选择方案一:采用STM32对调理后的信号测频。
输入信号的测量能达到频率达到100MHz,测频精度高,速度快。
方案二:采用430测频,但是最多测量到16M而且引脚速度不够导致无法完成指标内的频率测量为了更好地实现题目要求,我们选择方案一。
3.测频方法的选择与比较方案一:输入捕获测频法是累积单位时间里的周波数,在频率较低时采用。
频率较高时精度低,但不适合高频的测量。
方案二:周期法是测一个周期的时间,通过周期转换成频率,在频率较低时采用。
频率较低时精度高但不适合高频。
方案三:利用ETR外部信号触发将外部的信号(测量信号)作为计数信号,不用经历中断产生时间延时,ETR可以直接作为时钟输入也可以通过触发输入(TRGI)来作为时钟输入即在时钟模式1中触发源选择为ETR,两个效果上是一样的。
可准确测出低高频,在低频段使用不分频ETR触发,高频时使用4分频测量提高测量范围。
由于输入信号的要求为1Hz~25MHz,所以选择方案三。
4.系统总体方案通过高速比较器74HC14对信号源的波形进行整形,输出标准的方波。
2015全国大学生电子设计竞赛重庆赛区(编号190)

2015年全国大学生电子设计竞赛数字频率计(F题)【本科组】时间:2015年8月15日摘要本作品以FPGA和STM32F103ZET6设计了一台闸门时间为1s的数字频率计,作品主要由主控模块、放大器模块、FPGA模块、电源模块及TFT显示模块构成。
为了满足测频对小信号的要求,系统采用电压反馈放大器OPA847搭建二级放大电路对小信号进行放大处理;通过FPGA模块对高频信号进行计数,达到了测频率、测周期等功能。
由STM32F103ZET6接受FPGA传来的信号,再进行数据处理,控制TFT模块显示相关测量数据。
最后,通过对作品进行实测,得到的实验数据表明,本设计达到了预期在功能和精度方面的要求。
关键字:FPGA,STM32,小信号放大,频率计。
AbstractIn this work, a digital frequency meter is designed by FPGA and STM32F103ZET6, which is composed of main control module, amplifier module, FPGA module, power module and TFT display module. And gate time is 1s. In order to meet the requirements of small signal frequency measurement, the system uses the voltage feedback amplifier OPA847 to set up the two stage amplifier circuit to amplify the small signal. Through the FPGA module, the high frequency signal is counted, and the function of the frequency and cycle is reached. The signal that is received by FPGA is processed by STM32F103ZET6, and the data processing is controlled by TFT module. Finally, the experimental results show that the design can meet the requirements of the function and precision.Keywords: FPGA, STM32, small signal amplification, frequency meter.一、方案选择与论证1、主控模块方案选择方案一:利用STM32单片机作为主控芯片直接进行数据采集和处理,其优点是硬件电路比较简单。
历届全国大学生电子设计竞赛题目及分析

简易逻辑分析仪:单片机或者可 编程逻辑器件,存储器,数字显示等。
放大器类题目分析 涉及到的基础知识包含有:
实用低频功率放大器:电源整流和 稳压,方波信号发生ቤተ መጻሕፍቲ ባይዱ,低频功率放 大器等。
自动往返电动小汽车光电检测电 路,电机控制电路,单片机或者可编
程逻辑器件,数字显示等。 简易智能电动车:光电、金属、
超声波检测电路,电机控制电路,单 片机或者可编程逻辑器件,数字显示 等。 液体点滴速度监控装置:光电检测电 路,步进电机控制电路,单片机或者 可编程逻辑器件,数字显示等。
附录:历届全国大学生电子设计竞赛题目
测量放大器:电源整流和稳压,信 号变换放大器,测量放大器等
高效率音频功率放大器:电源整流 和稳压,音频功率放大器等。
宽带放大器:电源整流和稳压,AGC, 宽带放大器等。 仪器仪表类题目分析
数据采集与处理类题目分析 涉及到的基础知识包含有:
多路数据采集系统: A/D 变换, 单片机或者可编程逻辑器件,存储器, 数字显示等。
电源类题目分析 涉及到的基础知识与制作能力包含:
交流电源降压和整流,直流电压稳 压和调节,单片机,数字显示与控制 等。
交流电源降压和整流,直流电压稳 压和调节,恒流电流源,DC-DC 变换器, 单片机,数字显示与控制等。
信号源类题目分析 涉及到的基础知识与制作能力包含:
实用信号源的设计和制作: RC 振荡 器,脉冲振荡器,数字可调电位器, 单片机,数字显示与控制等
简易数字频率计:信号变换与检 测,单片机或者可编程逻辑器件,数 字显示等。
频率特性测试仪:信号变换与检 测,单片机或者可编程逻辑器件,数 字显示等。
电赛论文-数字频率计

“瑞萨杯”全国大学生电子设计大赛题目:数字频率计(F题)参赛学校:参赛队员:摘要本设计是基于FPGA的数字频率计,利用Verilog硬件描述语言设计实现了频率计内部功能模块,采用了等精度测量的方法,相比直接测频法和测周法有精度更高的特点。
被测信号由DDS产生,经衰减器后得到。
被测信号输入调理采用高速运放OPA657和OPA820对其进行放大,由FPGA进行采样测量,算得频率值后传给单片机,由单片机显示数值及单位。
对于时间间隔的测量,被测信号同样分两路通过OPA657放大电路进行放大,再分别输入FPGA,由FPGA进行时间间隔测量,单片机显示。
发挥部分脉冲信号占空比测量设计同前。
关键词:等精度测量FPGA 单片机高速运放1.系统方案1.1整体系统的论证和选择本系统主要由信源模块、前级运算放大电路模块、控制计数模块、显示模块组成,难点在于高速运算放大器的选择,及控制技术模块的选择。
下面分别论证这两个个模块的选择。
1.2前级电路的论证与选择方案一:采用高速运算放大电路与比较电路,由于比较电路电压翻转较慢,容易产生抖动,导致测量精度不够,实现起来较难。
方案二:采用两级级联高速运算放大电路。
本方案通过使用集成运算放大芯片OPA657搭建两级运算放大电路,使增益达到100倍,当增益达到一定程度后,波形失真,成为正弦波,省去了整形过程,且满足了增益带宽100M 的需求。
综合以上两种方案,选择方案二。
1.3控制计数模块的论证和选择方案一:用硬件电路实现。
使用芯片搭建计数、控制电路模块,实现起来较困难,且效率跟不上,精度不够,不适宜。
方案二:用单片机实现。
用单片机完成整个测量电路的测试控制、数据处理和显示输出]。
该方案实现起来比较简单,但是由于单片机的处理频率一般不是很高,易受外部条件的干扰,功耗也高,不适宜。
方案三:利用FPGA实现。
在EDA工具软件平台上以硬件描述语言VHDL 为系统逻辑描述手段完成的设计文件,自动地完成逻辑编译、逻辑化简、逻辑分割、逻辑综合、结构综合经及逻辑优化与仿真,直到实现既定的电子线路系统功能。
2015年全国大学生电子设计竞赛-F题(数字频率计)-全国一等奖-电子科技大学

| N s | 。题目中极限情况下要 Ns
-3-
求在 5MHz 、10%占空比时 达到 0.01。因此,由
| N s | 0.01 ,可求得 Ns
Ns 100 。为在 20ns 时间内计数值大于 100,时基脉冲频率需大于 5GHz。可通
图 1 系统框图
单片 机
人机 界面
二、理论分析与计算
2.1 宽带通道放大器设计 按题目的要求, 被测正弦波信号有效值范围需要为 10mVrms 至 1Vrms,频率范 围为 1Hz 到 100MHz。一般考虑用放大器进行放大,再使用门电路整形。假设门 电路输入电压超过 2V 就被识别逻辑 1 电平,则对于小信号,要使放大后能够触 发逻辑门或者缓冲器进行缓冲整形,所需放大器增益为:
dt 100% 。
| D0 D | 100% 。 D0
4.2.4 数据刷新时间测量 在本系统中单片机提供预设的闸门时间为 1.2s,实际的闸门时间约为 1.4s, 数据在单片机中处理并送去显示所需要的时间约为几 ms,总刷新时间不会超过
-6-
1.5s。 理论上 1Hz 的信号所需要的刷新时间是最多的,故在 1Hz 频率的情况下,通 过秒表测量信号的刷新时间。 4.3 测试结果及分析 4.3.1 频率和周期测量 测量数据如下表 2 所示:
图 6 系统流程图
图 7 FPGA 和单片机连接框图
-5-
四、测试方案与测试结果
4.1 测试仪器 根据题目要求,所需要的测试仪器如下表 1:
表 1 测量仪器表
序号 1 4.2 测试方案
仪器名称 双通道函数信号发生器
型号 DG4162
指标 0~160MHz
2015年全国大学生电子设计大赛F题技术报告

1.2 频率/周期测量模块的论证与选择
方案一:时间门限测量法,包括直接频率测量和直接周期测量。测频法即在一定的 时间门限 T 内,若测得输入信号的脉冲数为 N,则待测信号的频率
f
x
N / T ,通过改
变 T 即可改变所测频率范围,但此法在频率较低时误差较大;而测周法恰与测频相反, 即被测信号用来控制闸门电路的开关,标准时基信号作为计数脉冲。若时基信号的周期 为 T 0 ,则被测信号周期
fpga频率计等精度测量verilogiii目录目录11信号放大整形模块的论证与选择12频率周期测量模块的论证与选择13单片机控制及显示模块的论证与选择21前置放大整形电路的分析22各被测参数测量方法的分析221信号频率周期测量的分析222同频率方波时间间隔测量的分析223矩形波占空比的分析23提高仪器灵敏度措施的分析31电路的设计311系统总体框图312信号整形子系统框图313信号参数测量子系统框图314单片机控制及显示子系统框图315电源32程序的设计321程序功能描述与设计思路322程序流程图1041测试方案1042测试条件与仪器1143测试结果及分析11431测试结果数据11432测试分析与结论13附录1
III
数字频率计(F 题) 【本科组】 1 系统方案
本系统主要由如下三部分组成:信号整形、信号参数测量、单片机控制及显示。其中, 信号参数测量又可细分为频率/周期测量,时间间隔测量,占空比测量等模块,下面分别 论证这几个子系统的选择。
1.1 信号放大整形模块的论证与选择
方案一:采用分立元件实现前置放大整形功能,用两只三极管对信号放大后送入反 相器整形。设计电路详见附录图 6.1.1,通过仿真发现当被测信号幅度较小,频率较高 时所得到的波形品质较差,而频率超过 50MHz 时输出信号完全无法满足要求。另外,此 方案需要大量采用分立元件,系统设计复杂,调试困难,尤其是增益的定量调节很难, 而且,稳定性差,容易自激震荡也是该电路另外一个缺点。 方案二: AD811 同比例放大电路放大小信号, 大信号直接输入比较器, 由于 AD811 带 宽积太小放大高频信号的时候衰减严重。 方案三:AD8099 同相比例放大电路,迟滞比较器,输入输出阻抗匹配;这种电路放 大电路的输出信号杂波较多,放大器的输出信号波形较粗,适当调节迟滞比较器的门限 电压可以有效抑制杂波对后级比较器的影响, 这样输入信号为方波时信号的频率以及有 效值的范围都比题目要求宽,输入为正弦波时也能满足题目要求。 综合以上三种方案,选择方案三。
2015年全国大学生电子设计大赛F题-数字频率设计报告

2015年全国大学生电子设计大赛F题-数字频率设计报告2015年全国大学生电子设计竞赛数字频率计(F 题)【本科组】2015年8月15日摘要频率计是数字电路中的一个典型应用,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,频率测量在科技研究和实际应用中的作用日益重要。
该系统由信号输入电路、数据处理电路和显示电路构成,可实现数字频率计的测频率、周期、占空比、脉宽等各项功能。
以FPGA为核心处理数据最更大程度地提高了精度。
经过综合测评,发现该系统具有高分辨率、输入频率量程宽、测量精度高和输出稳定等特点。
关键词:FPGA 频率计高精度等精度高带宽AbstractFrequency meter is a typical application of digital circuit, computer, communications equipment, audio, video, and other areas of the scientific research production indispensable measuring instrument, the role of frequency measurement in science and technology research and practical application is increasingly important.The system consists of signal input circuit, data processing circuit and display circuit, which can realize the digital frequency meter measuring frequency, cycle, pulse rate, pulse width and so on various functions.The FPGA as the core processing improves the accuracy of data is the greater.Through the comprehensive evaluation, found that the system has high resolution, wide input frequency range, high measurement accuracy and stable output.Keywords: FPGA、Frequency meter、High precision、equal precision、High bandwidth目录目录 (2)第一章设计任务与要求 (4)1.1 设计任务 (4)1.2 设计要求 (4)1.2.1 基本要求 (4)1.2.2 发挥部分 (4)第二章方案讨论与选择 (5)2.1方案设计 (5)2.1.1方案一 (5)2.1.2方案二 (5)2.2方案选择 (6)第三章理论分析与计算 (6)3.1 总体分析 (6)3.2各项被测参数 (7)3.2.1 等精度测量的原理: (7)3.2.2 等精度测量的实现 (7)3.2.3 等精度数字频率计误差分析 (8)3.3 宽带通道放大器分析 (8)3.4 提高仪器灵敏度的措施 (8)第四章硬件电路与程序设计 (9)4.1 硬件电路 (9)4.1.1前置信号输入电路 (9)4.1.2 主控FPGA (10)4.1.3显示模块 (10)4.1.4电源模块 (10)4.2 程序设计 (11)4.2.1 FPGA处理数据程序框图 (11)第五章测试方案与结果 (11)5.1 测试方案与测试结果 (11)5.1.1 测试方案 (11)5.1.2 测试结果 (11)5.2测试结果分析 (17)参考文献 (17)附录 (18)1、核心器件 (18)2、输入电路图 (18)3、FPGA顶层设计图 (19)4、实物图展示 (22)第一章设计任务与要求1.1 设计任务设计并制作一台闸门时间为1s的数字频率计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.
2.1.
本设计的宽带通道放大器如图2所示,是一个自动增益控制模块。 压控放大器VCA810依靠反馈得到的控制电压控制放大倍数;高速比较器
AD8561比较的是VCA810输出信号和预设电压,使用二极管和RC对比较器的 输出信号进行检波;TL082将检波得到的电压转换至VCA810的控制电压范围内,使得VCA810能够正常工作;OPA690起着二级放大与级联缓冲的作用。具 体电路连接如图3所示。
0.03
726
29.97
34
0.088
667
49.98
902
0.02
196
70.00
331
0.004
731
89.9
987
0.001
444
5MH
z
10.00
41
0.04
1
30.02
6
0.086
667
50.08
29
0.16
58
70.23
478
0.335
404
90.0
235
0.026
111
4.3.
1、频率测量时,在1Hz-100MHz时,最低测量有效值Vrms可降低为5mV;
(2)测量结果
表4占空比测量数据表
设
定 占 空 比
10%
30%
50%
70%
90%
频 率
测量 值
/%
误差
/%
测量 值
/%
误差
/%
测量 值
/%
误差
/%
测量 值
/%
误差
/%
测量 值
/%
误差
/%
1Hz
10.00
41
0.04
1
29.99
877
0.004
1
50
0
69.99
95
0.000
714
89.9
987
0.001
1.003
0.003
100.002
2E-05
1000
0.0999
0.001
1.000
0
100.002
2E-05
表5方波Vpp=1V时间间隔测量数据表
时间间隔
0.1us
1ms
100ms
频率
测量
误差
测量
误差
测量
误差
100
0.0999
0.001
0.9998
2E-04
99.9998
2E-06
200
0.1
0
1.0001
频率
测量
误差
测量
误差
测量
误差
100
0.0978
0.022
0.998
0.002
99.9988
1E-05
200
0.1002
0.002
1.0001
1E-04
100.001
1
1E-05
500
0.0998
0.002
1.032
0.032
100.002
1
2E-05
1000
0.0996
0.004
1.0001
1E-04
方案二:在FPGA内部利用逻辑单元搭建片内单片机Avalon,在片内将单 片机和测量参数的数字电路系统连接,不连接外部接线。
在硬件电路上,用FPGA片内单片机,除了输入和输出显示等少数电路外, 其它大部分电路都可以集成在一片FPGA芯片中,大大降低了电路的复杂程度、减小了体积、电路工作也更加可靠和稳定,速度也大为提高。且在数据传输上方便、简单,因此主控电路的选择采用方案二。
2、方波测量占空比和时间间隔时,最低测量的Vpp可达到10mV;
3、频率、时间间隔测量时分辨率超过发挥部分要求;
4、除使用键盘进行人机交互外,增加了蓝牙通讯功能,可实现无线控制功能, 切换仪器测量模式。
4.4.测试结论
实测表明,本设计在频率测量、相位测量、占空比测量等多个参数上全都可以达到赛题基本部分和发挥部分的要求,并在部分指标上远超发挥部分要求。
参考文献
[1]张永瑞.电子测量技术基础[M].西安:西安电子科技大学出版社, 2009. [2]夏宇闻.Verilog数字系统设计教程[M].北京:北京航空航天大学出版社, 2013. [3]刘凯,顾新.VHDL硬件描述语言与数字逻辑电路设[M]西安:西安电子科技大
学出版社,2009.
[4]冈村迪夫. OP放大电路设计:从重视再现性设计的基础到实际应用[M].北京:科学出版社, 2004.
方案二:采用集成比较器运放。常用的电压比较器运放LM339的响应时间 为1300ns,远远无法达到发挥部分100MHz的频率要求。因此,采用响应时间为4.5ns的高速比较器运放TLV3501。
1.1.3.
方案一:采用诸如MSP430、STM32等传统单片机作为主控芯片。单片机在现实中与FPGA连接,建立并口通信,完成命令与数据的传输。
100
1.75E-
05
100.0003
2.65E-06
100.00036
3.60E-
06
1k
1000
0.00E+00
1000.003
3.00E-
06
1000.003
3.00E-06
1000.047
4.70E-
05
100k
1000003
3.00E-06
1000003
3.00E-
06
1000003
3.00E-06
图2自动增益模块流程图
图3自动增益模块原理图
2.2.
正弦波形醒后经过AGC电路后,进入如图4所示的滞回比较器,整成方波。该电路的窗口电压为96mV
图4滞回比较器
3.
图5软件流程图
4.
4.1.
表1测试仪器
序号
名称、型号、规格
数量
1
RIGOLDG4102100M信号发生器
1
2
RIGOL DS2202A 200M数字示波器
1.2.
系统总体框图如图1所示,待测信号首先进入自动增益电路,其输出电压增益到一个大于后级滞回比较器窗口电压的固定值,经过比较器电路后,输出给FPGA进行相关参数的测量,并最终显示在屏幕上。在FPGA内部,数字电路系统与片内单片机通信,基于闸门时间为1s的等精度测量算法,测算相关参数。
放大信号信号整形参数测量结果输出
1
3
RIGOLDP832可编程直流电源
1
4
FLUKE1Biblioteka B万用电表14.2.
4.2.1.
(1)测试方法:选取1Hz、100Hz、1KHz、1MHz、10MHz5个频率点,测 量分别测量输入信号在3mVrms、10mVrms、50mVrms、100mVrms、1Vrms的结 果,并计算误差
(2)测量结果
表2频率测量数据表
幅度
10mVrms
50mVrms
100mVrms
1Vrms
频率
测量值/Hz
误差
测量值
/Hz
误差
测量值/Hz
误差
测量值/Hz
误差
1
0.999169
8.31E-04
0.999988
1.19E-
05
0.999885
1.15E-04
0.999992
8.00E-
06
100
99.998248
1.75E-05
1.1.4.
频率等参数的测量采用闸门时间为1s的等精度测量法。闸门时间与待测信 号同步,相比于传统方案,避免了对被测信号计数所产生±1个字的误差,有效提高了系统精度。测量频率时,在闸门时间内同时对待测信号和标准信号(时钟信号)计数,标准信号计数值除以待测信号计数值乘上时钟周期即为待测周期;测量两个信号的时间间隔时,通过异或门将时间间隔转化为周期脉冲信号,通过 对脉冲信号等精度测量得到间隔时间。测量频率时计算闸门时间内的上升沿脉冲除以闸门时间;测量两个信号的相位差时,则计算第一个信号
系统精度。
经过实测,本设计达到了赛题基本部分和发挥部分的全部指标,并在部分指标上远超赛题发挥部分要求。
关键词:FPGA自动增益控制等精度测量法
1.
1.1.
1.1.1.
方案一:OPA690固定增益直接放大。由于待测信号频率范围广,电压范围大,所以选用宽带运算放大器OPA690,5V双电源供电,对所有待测信号进行较 大倍数的固定增益。对于输入的正弦波信号,经过OPA690的固定增益,小信号得到放大,大信号削顶失真,所以均可达到后级滞回比较器电路的窗口电压。
444
100
Hz
9.995
1
0.04
9
29.99
87
0.004
333
50
0
69.99
5
0.007
143
89.9
987
0.001
444
10K
Hz
9.996
3
0.03
7
30.00
01
0.000
32
49.99
998
4E-
05
69.99
437
0.008
043
90.0
004
0.000
444
1MH
z
9.996
274
1000003
3.00E-
04
10M
10000035
3.50E-06
10000037
3.70E-
06
10000039