第六章变量之间的关系及答案doc资料

合集下载

(完整word版)一元线性回归模型习题及答案

(完整word版)一元线性回归模型习题及答案

一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。

AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。

DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。

AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。

CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。

B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。

B A i i ˆˆ0Y Y 0σ∑=时,(-)=B 2iiˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。

D A ()()()i i 12iX X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii122iX Y -nXY ˆX -nXβ∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i iˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。

第6章 相关与回归分析习题解答

第6章 相关与回归分析习题解答

第六章 相关与回归分析思考与练习一、判断题1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。

答:错。

应是相关关系。

单位成本与产量间不存在确定的数值对应关系。

2.相关系数为0表明两个变量之间不存在任何关系。

答:.错。

相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的关系。

3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。

答:对,因果关系的判断还有赖于实质性科学的理论分析。

4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。

答:错。

两者是精确的函数关系。

5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。

答:对。

6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。

答:对。

因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同,估计的结果仍然不一样。

二、选择题1.变量之间的关系按相关程度分可分为:b 、c 、da.正相关;b. 不相关;c. 完全相关;d.不完全相关; 2.复相关系数的取值区间为:aa. 10≤≤R ;b.11≤≤-R ;c.1≤≤∞-R ;d.∞≤≤-R 1 3.修正自由度的决定系数a 、b 、da.22R R ≤; b.有时小于0 ; c. 102≤≤R ;d.比2R 更适合作为衡量回归方程拟合程度的指标 4.回归预测误差的大小与下列因素有关:a 、b 、c 、da 样本容量;b 自变量预测值与自变量样本平均数的离差c 自变量预测误差;d 随机误差项的方差三、问答题1.请举一实例说明什么是单相关和偏相关?以及它们之间的差别。

答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。

然而,如果我们仔细观察,可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之间事实上应该是负相关。

第六章计量经济学

第六章计量经济学

第六章 虚拟变量的回归模型第一部分 学习目标和要求本章主要介绍虚拟变量的基本概念及其应用。

需要掌握并理解以下内容:(1) 虚拟变量的基本概念、虚拟变量分别作为解释变量和被解释变量的情形、虚拟变量回归模型的类型和解释变量个数选取规则; (2) 定量变量与不同数量定性变量(一对一、一对多和多对多)虚拟变量模型; (3) 应用虚拟变量改变回归直线的截距或斜率; (4) 分段线性回归;(5) 应用虚拟变量检验回归模型的结构稳定性、传统判别结构稳定性的方法及存在的缺陷、虚拟变量法比较两个回归方程的结构方法。

第二部分 练习题一、解释下列概念:1.虚拟变量2.方差分析模型(ANOV A ) 3.协方差模型(ANOCV A ) 4.基底5.级差截距系数 6.虚拟变量陷阱二、简要回答下列问题:1.虚拟变量在线性回归模型中的作用是什么?举例说明。

2.回归模型中虚拟变量个数的选取原则是什么?为什么?3.如果现在有月度数据,在对下面的假设进行检验时,你将引入几个虚拟变量? A) 一年中的每月均呈现季节性波动趋势;B) 只有双数月份呈现季节性波动趋势。

4.如果现在让你着手检验上海和深圳两个股票市场在过去5年内的收益率是否有显著差异,如何使用虚拟变量进行?三、考虑如下模型:12i i i Y D u ββ=++其中,i D 对前20个观察值取0,对后30个观察值取1。

已知2()300i Var u =。

(1) 如何解释1β和2β? (2) 这两组的均值分别是多少?(3) 已知12()15Cov ββ∧∧+=-。

如何计算12()ββ∧∧+的方差?四、考虑如下模型:12i i i i Y D X u ααβ=+++ 其中Y 代表一位大学教授的年薪; X 为从教年限; D 为性别虚拟变量。

考虑定义虚拟变量的三种方式:(1)D 对男性取值1,对女性取值0; (2)D 对女性取值1,对男性取值2; (3)D 对女性取值1,对男性取值-1;对每种虚拟变量定义解释上述回归模型。

《生物统计学》复习题及答案

《生物统计学》复习题及答案

《生物统计学》复习题一、 填空题(每空1分,共10分)1.变量之间的相关关系主要有两大类:( 因果关系),(平行关系 )2.在统计学中,常见平均数主要有(算术平均数)、(几何平均数 )、(调和平均数)3.样本标准差的计算公式( 1)(2--=∑n X X S )4.小概率事件原理是指(某事件发生的概率很小,人为的认为不会发生 )5.在标准正态分布中,P (-1≤u ≤1)=(0。

6826 ) (已知随机变量1的临界值为0.1587)6.在分析变量之间的关系时,一个变量X 确定,Y 是随着X 变化而变化,两变量呈因果关系,则X 称为(自变量),Y 称为(依变量)二、 单项选择题(每小题1分,共20分)1、下列数值属于参数的是:A 、总体平均数B 、自变量C 、依变量D 、样本平均数2、 下面一组数据中属于计量资料的是A 、产品合格数B 、抽样的样品数C 、病人的治愈数D 、产品的合格率3、在一组数据中,如果一个变数10的离均差是2,那么该组数据的平均数是A 、12B 、10C 、8D 、2 4、变异系数是衡量样本资料 程度的一个统计量。

A 、变异B 、同一C 、集中D 、分布5、方差分析适合于,数据资料的均数假设检验。

A、两组以上B、两组C、一组D、任何,此差异是:6、在t 检验时,如果t = t0、01A、显著水平B、极显著水平C、无显著差异D、没法判断7、生物统计中t检验常用来检验A、两均数差异比较B、两个数差异比较C、两总体差异比较D、多组数据差异比较8、平均数是反映数据资料性的代表值。

A、变异性B、集中性C、差异性D、独立性9、在假设检验中,是以为前提。

A、肯定假设B、备择假设C、原假设D、有效假设10、抽取样本的基本首要原则是A、统一性原则B、随机性原则C、完全性原则D、重复性原则11、统计学研究的事件属于事件。

A、不可能事件B、必然事件C、小概率事件D、随机事件12、下列属于大样本的是A、40B、30C、20D、1013、一组数据有9个样本,其样本标准差是0.96,该组数据的标本标准误(差)是A、0.11B、8.64C、2.88D、0.3214、在假设检验中,计算的统计量与事件发生的概率之间存在的关系是。

第六章-相关与回归

第六章-相关与回归
(1)r 为无单位的相对数值,可直接用于不同资料
间相关程度的比较。
(2)1≤r≤1,0≤|r|≤1。 |r|越接近于1,说明两变量的相关程度越强; |r|越接近于0,两变量的相关程度越差。
(3)r=0表示x与y无相关, r<0表示负相关, r>0表示正相关, |r|=1为完全相关。
二、样本相关系数的计算
(x1,y1),(x2,y2),…,(xn,yn)。
前面已经指出,要研究两种变量间的关系,最简单的方 法是把一系列观测数据在坐标中用散点图表示,如果散点 大致分布在一条直线附件,就可以判断两者为直线回归关 系。这种关系可用直线回归方程表示。则总体直线回归方 程为:
yi xi i (i=1,2,…,n) i服 N 0 从 ,2,且相互独
相关变量间的关系一般分为两种: 一种是平行关系,是研究变量间关系的强弱程度,此
时我们不关心在它们之间是谁影响了谁,谁是因,谁是果, 变量间的地位是平等的。如黄牛的体长和胸围之间的关系, 猪的背膘厚度和眼肌面积之间的关系等都属于平行关系。
另一种是因果关系,即一个变量的变化受另一个或几 个变量的影响。如仔猪的生长速度受遗传特性、营养水平、 饲养管理条件等因素的影响,子代的体高受亲本体高的影 响。
N 1N 1 (XX X)Y ( Y Y)
(XX)Y (Y) (XX)2 (YY)2
r SP xy
xy(x)n(y)
SSxSSy
x2(nx)2y2(ny)2
其中:
SPxy— 变量x和变量y的离均差乘积和简称乘积和 SSx — 变量x 的离均差平方和 SSy — 变量y 的离均差平方和
相关系数r 的特点:
变量。
例如,进行药物疗效试验 时,应用不同的剂量 (x),分析疗效(y)如 何受到药物剂量的影响及 其变化规律。这里规定的

第六章(三)常用连续型随机变量的理论分布

第六章(三)常用连续型随机变量的理论分布

(一)抽样分布的含义与无偏估计量 1、抽样分布的含义:统计推断是以总 体分布和样本抽样分布的理论关系为 基础的。 由总体中随机地抽取若干个体组成样 本,即使每次抽取的样本含量相等, 其统计量也将随样本的不同而有所不 同。因而样本统计量也是随机变量, 也有其概率分布,我们把统计量的概 率分布称为抽样分布。
如果总体是无限总
体,那么可以得到 无限多个随机样本。
随机样本1 2 3
……
无穷个样本
图 总体和样本的关系
如果从容量为N的有限总体抽样,若每次抽取容量为n的 样本,那么一共可以得到 N n个样本(所有可能的样本个数)。 抽样所得到的每一个样本可以计算一个平均数,全部可能 的样本都被抽取后可以得到许多平均数。 如果将抽样所得到的所有可能的样本平均数集合起来便构
正态分布的分位点的定义:
3、正态分布分位点计算
标准正态分布 N (0,1) 密度函数图形为:
x 图中的点 称为标准正态分布的 (1 )% 的分位点,相当于已知
F(x ) p( X x ) 1
求其中的 x
4、单侧概率与双侧概率 •统计学中,把随机变量 x 落在区间 (μ-kσ,μ+kσ)之外的概率称为双侧(两 尾)概率,记作α。 •对应于双侧概率可以求得随机变量x 小于μ-kσ或大于μ+kσ的概率,称为 单侧概率,记作α/2。
2、无偏估计 • 在统计学上,如果所有可能样本的 某一统计数的平均数等于总体的相 应参数,则称该统计数为总体相应 参数的无偏估计值。
• 设有一N=3的总体,具有变量3,4, 5;求得μ=4,σ2=0.6667, σ=0.8165 • 现以n=2作独立的回置抽样,总共得 Nn=32=9个样本。 • 抽样结果列入下表:

第六章 变量之间的关系

第六章 变量之间的关系

第六章变量之间的关系1.小车下滑的时间一、学生起点分析学生的知识技能基础:本节课是学生在七年级上册教材中学习了探索规律,从统计图中获取信息的基础上,通过表格形式来理解变量、自变量、因变量这些概念。

我们生活在变化的世界中,变量与变量的关系,在生活生产中无处不在,通过对实际问题的理解,在表格信息中发现两个变化的量,通过了解哪一个是主动变化的,哪一个是随着变化的,来识别自变量和因变量,这对今后学习函数知识是非常重要的。

学生的活动经验基础:在以前的学习中,学生已经经历了分组学习、互相探讨、合作交流等形式可以解决一些实际问题,因此具备了合作学习的能力。

二、教学任务分析在学生现有的知识基础上,本节的教学及学习任务是鼓励学生充分地从表格中获取信息,运用自己的语言进行描述,并与同伴进行交流,提高学生合作交流的意识。

通过对表格的观察,进一步体会变量之间的关系,来明确自变量与因变量,并发展学生通过资料分析进行预测的能力。

为此本节课的教学目标如下:1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。

2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。

3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。

三、教学设计分析本节课设计了七个教学环节:情境引入、分组实验、合作探究、概念介绍、练习提高、课堂小结、布置作业。

第一环节情境引入活动内容:我们生活在变化的世界中,很多东西都在发生变化,请学生列举一些日常生活中经常发生变化的事物。

如:随年龄的增长,身高、体重都发生了变化;随着时间的变化汽车行驶的路程也在变化;烧一壶水10分钟水开了……活动目的:通过举例,希望学生体会身边的事物无时无刻不在发生变化,培养学生善于观察的能力。

实际教学效果:大部分学生能够举出例子。

从学生熟悉的事例入手,提高了他们的学习热情,培养了他们的学习兴趣,并能深刻体会到数学来源于生活。

七年级数学第六章 变量之间的关系北师大版知识精讲

七年级数学第六章 变量之间的关系北师大版知识精讲

初一数学第六章变量之间的关系北师大版【本讲教育信息】一. 教学内容:第六章变量之间的关系[教学要求]1、能分清实际问题中的常量与变量、自变量与因变量,并能举出反映变量之间关系的例子。

2、通过对某种图形中变量之间关系的探索,进一步体验一个变量的变化对另一个变量的影响,发展符号感。

能根据具体问题,用关系式表示某些变量之间的关系。

3、经历从图像中分析变量之间关系的过程进一步感受变量之间的关系。

4、进一步经历从图中分析变量之间关系的过程,从而加深对图像表示自变量与因变量关系的理解,逐步培养从图像中获取信息的能力。

[重点及难点]1、重点是对常量、自变量及因变量等概念的理解。

难点是根据表格中的数据尝试对变化趋势进行初步的预测。

2、重点是根据具体问题求自变量与因变量之间的关系式,并能用关系式求因变量的值。

难点是建立实际问题中自变量与因变量之间的关系式。

3、从熟悉的情景出发用图像直观的表示两个变量之间的关系,并获得对图像反映变量之间关系的体验。

4、重点是从图像中获取信息,难点是用语言描述图像所表示的变化过程。

[知识要点]一、小车下滑的时间1、如果用h 表示支撑物的高度,t 表示小车下滑时间,随着h 逐渐变大,t 的变化趋势是什么?在表中,支撑物高度h 和小车下滑时间t 都在变化,它们都是变量,其中t 随h 的变化而变化,h 是自变量,t 是因变量。

二、变化中的三角形(1)关系式:表示自变量与因变量之间关系的数学式子叫做关系式。

△ABC 底边BC 上的高是6厘米,当三角形的顶点C 沿所在直线向点B 运动时,三角形的面积发生了什么变化?如果三角形的底边长为x 厘米,那么三角形的面积y 可以表示为(y =3x )圆锥的高是4厘米,当圆锥的底面半径由小到大变化时,圆锥的体积也随之发生了变化。

如果圆锥底面半径为r (厘米),那么圆锥的体积V 与r 的关系式为(V =43πr 2)圆锥的底面半径是2厘米,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化,如果圆锥的高为h (厘米),那么圆锥的体积V 与h 的关系式为(V =43πh )(2)因变量的值:对于每一个确定的自变量值,例如x=a时,因变量有一个唯一确定的对应值,这个对应值,叫做当自变量x=a时的因变量的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末总复习第六章《变量之间的关系》2011.6
基本概念:变量、自变量、因变量
表示变量关系的三种方法及特征是
他们各自的优点
一、填空题
1.在变化过程中,我们把变化着的量叫做变量,其中一个叫__________,一个叫_________.
2.表示两个变量之间的关系有______种,分别是_ .
3.在△ABC中,当面积S一定时,底边BC的长度a与底
边BC上的高h之间的关系式为________.
4.每周一,我们仰望国旗冉冉升起,请在图6-27中画出
国旗升高的高度h与时间t的大致图象.
5.图6-28表示一辆汽车行驶的速度和时间的图象,你能
用语言描述汽车的行驶情况吗?________ ________
图6-27 图6-28
6.已知关系式y=kx+2,且自变量x=-3时,因变量y=0,则当自变量x=9时,因变量y的值是________.
7.声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下:
气温(x℃)0 5 10 15 20
音速y(米/秒)331 334 337 340 343
从表中可知音速y随温度x的升高而__________.在气温为20 ℃的一天召开运动会,某人看到发
令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点__________米.
二、选择题
1.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为图中的()
2.弹簧的长度与所挂物体的质量的关系如图6-29所
示,由图可知不挂重物时弹簧的长度为()
A.8 cm
B.9 cm
C.10 cm
D.11 cm
3.一根蜡烛长20 cm,点燃后每小时燃烧 5 cm,燃烧时剩
下的高度y(cm)与燃烧时间x(小时)的关系用下图
中___ ____图象表示
图6-29 4.长途汽车客运公司规定旅客可以随身携带一定重量的行李,如果超过规
定,则需要购买行李票,行李费用y(元)与行李重量x(千克)之间的
图象如图6-30所示,当携带________千克的行李不收费用.
A.20
B.30
C.40
D.50
5.土地沙漠化是人类生存的大敌,某地现有绿地4万公顷,由于人们环保
意识不强,植被遭到严重破坏.经观察土地沙化速度为0.2万公顷/年,那
么t年后该地所剩绿地面积S(万公顷)关系图为()图6-30
三、解答题
1.如图6-31,表示一骑自行车者与一骑摩托车者沿相
同路线由甲地到乙地行驶过程的图象,两地间的距离是
100千米,请根据图象回答或解决下面的问题.
(1)谁出发的较早?早多长时间?谁到达乙地早?早
到多长时间?
(2)两人在途中行驶的速度分别是多少?
(3)指出在什么时间段内两车均行驶在途中;在这段
时间内,①自行车行驶在摩托车前面;②自行车与摩托
车相遇;③自行车行驶在摩托车后面?
2.小明某天上午9时骑自行车离开家,15时回家,他有
意描绘了离家的距离与时间的变化情况(如图6-32
所示). 图6-31
(1)图象表示了哪两个变量的关系?哪个是自变量?
哪个是因变量?
(2)10时和13时,他分别离家多远?
(3)他到达离家最远的地方是什么时间?离家多远?
(4)11时到12时他行驶了多少千米?
(5)他可能在哪段时间内休息,并吃午餐?
(6)他由离家最远的地方返回时的平均速度是多少?
图6-32
答案与提示:
一、(1)自变量因变量;(2)3 表格法关系式法图象法;(3)a=h S
2;(4)(5)略;(6)8;(7)加快,68.6 二、(1)D ;(2)C ;(3)B ;(4)B ;(5)B. 三、1.(1)自行车出发较早,早3个小时,摩托车到达乙地较早,早3个小时. (2)自行车:12.5千米/时;摩托车:50千米/时.(3)①3<x <4 ②x=4 ③4<x <5.
2.(1)时间与距离,时间是自变量,距离是因变量;(2)10时和13时,分别离家10千米和30千米;
(3)到达离家最远的时间是12时,离家30千米;(4)11时到12时,他行驶了13千米;(5)他可能在12时到13时间休息,吃午餐;(6)共用了2时,因此平均速度为
15千米/时.。

相关文档
最新文档