1热学习题解答

合集下载

热学习题1

热学习题1
5
(2)问大气压强为何值时水银可完全从管内倒出? 解: ( 1 ) 已 知 : p0 = 1.0 × 10 Pa , 取 管 内 的 气 体 为 系 统 , 开 始 系 统 的 状 态 为 :
5
′ = p0 + p1 ,V1′ = 50S , T1′ p1
( S 为管的截面积)
倒置后,设水银柱高度为 xcm ,则系统的状态为:
D
5
−3
3
钢瓶中放出来的,问一瓶压缩空气可以排出多少立方米的水? 解:以瓶中的气体为研究对象,由理想气体的状态方程得:
118 ×105 Pa × 2 × 10−3 m3 (15 × 9.8 × 103 + 118 × 105 ) Pa × V = (273.15 + 17) K (273.15 + 30) K
∴V = 0.993m3
故:可排出多 0.993m 的水 1.11 容积为 0.01m 的瓶内盛有氢气;假定在气焊过程中温度保持 27 C 不变,问当瓶内压 强由 49.1× 10 Pa 降为 9.81× 10 Pa 时,共用去多少克氢气?
5 5 3
D
3
解:由理想气体的状态方程得: 开始: p1V1 =
t = 0 DC 时, ε = 0mV , t ∗ = 0 t∗
500 3
100
50 3o −100 50 − 3 −100 500 3
100
200
300
400
500
t ( DC )
(4)由于 t 随 ε 作非线性变化, t 随 ε 作线性变化,因此 t 与 t 是非线性变化关系,只有在
∗ ∗
冰点和汽点二者才具有相同值。 1.6 水银气压计中,混进了一个气泡,因此它的读数比实际的气压小些,当精确气压计的水 银柱高度为 768mm 时,它的水银高只有 748mm ;而水银面到管顶的距离为 80mm .问当此 气压计的水银高为 734mm 时,实际的气压是多少帕?(空气温度不变)

热学专题(2024高考真题及解析)

热学专题(2024高考真题及解析)

热学专题1.[2024·安徽卷] 某人驾驶汽车,从北京到哈尔滨.在哈尔滨发现汽车的某个轮胎内气体的压强有所下降(假设轮胎内气体的体积不变,且没有漏气,可视为理想气体),于是在哈尔滨给该轮胎充入压强与大气压相同的空气,使其内部气体的压强恢复到出发时的压强(假设充气过程中,轮胎内气体的温度与环境温度相同,且保持不变).已知该轮胎内气体的体积V0=30 L,从北京出发时,该轮胎内气体的温度t1=-3 ℃,压强p1=2.7×105 Pa.哈尔滨的环境温度t2=-23 ℃,大气压强p0取1.0×105 Pa.求:(1)在哈尔滨时,充气前该轮胎内气体压强的大小;(2)充进该轮胎的空气体积.1.(1)2.5×105 Pa(2)6 L[解析] (1)在哈尔滨时,设充气前该轮胎内气体压强的大小为p2.由查理定律可得p1T1=p2 T2其中p1=2.7×105 Pa,T1=(273-3) K=270 K,T2=(273-23) K=250 K解得p2=2.5×105 Pa(2)设充进该轮胎的空气体积为V.以充进的空气和该轮胎内原有的气体整体为研究对象,由玻意耳定律可得p2V0+p0V=p1V0解得V=6 L2.[2024·北京卷] 一个气泡从恒温水槽的底部缓慢上浮,将气泡内的气体视为理想气体,且气体分子个数不变,外界大气压不变.在上浮过程中气泡内气体 ()A.内能变大B.压强变大C.体积不变D.从水中吸热2.D[解析] 上浮过程气泡内气体的温度不变,内能不变,故A错误;气泡内气体压强p=p0+ρ水gh,故上浮过程气泡内气体的压强减小,故B错误;由玻意耳定律pV=C知,气体的体积变大,故C错误;上浮过程气体体积变大,气体对外做功,由热力学第一定律ΔU=Q+W 知,气体从水中吸热,故D正确.3.[2024·甘肃卷] 如图所示,刚性容器内壁光滑、盛有一定量的气体,被隔板分成A 、B 两部分,隔板与容器右侧用一根轻质弹簧相连(忽略隔板厚度和弹簧体积).容器横截面积为S 、长为2l.开始时系统处于平衡态,A 、B 体积均为Sl ,压强均为p 0,弹簧为原长.现将B 中气体抽出一半,B 的体积变为原来的34.整个过程系统温度保持不变,气体视为理想气体.求: (1)抽气之后A 、B 的压强p A 、p B . (2)弹簧的劲度系数k.3.(1)45p 0 23p 0 (2)8p 0S15l[解析] (1)抽气前两部分的体积为V =Sl ,对A 分析,抽气后V A =2V -34V =54Sl 根据玻意耳定律得p 0V =p A ·54V 解得p A =45p 0对B 分析,若压强不变的情况下抽去一半的气体,则体积变为原来的一半,即V B =12V ,则根据玻意耳定律得p 0·12V =p B ·34V 解得p B =23p 0(2)由题意可知,弹簧的压缩量为l4,对活塞受力分析有p A S =p B S +F 根据胡克定律得F =k l4联立得k =8p 0S15l4.[2024·广东卷] 差压阀可控制气体进行单向流动,广泛应用于减震系统.如图所示,A、B 两个导热良好的汽缸通过差压阀连接,A内轻质活塞的上方与大气连通,B的体积不变.当A内气体压强减去B内气体压强大于Δp时差压阀打开,A内气体缓慢进入B中;当该差值小于或等于Δp时差压阀关闭.当环境温度T1=300 K时,A内气体体积V A1=4.0×10-2 m3;B 内气体压强p B1等于大气压强p0.已知活塞的横截面积S=0.10 m2,Δp=0.11p0,p0=1.0×105 Pa.重力加速度大小g取10 m/s2.A、B内的气体可视为理想气体,忽略活塞与汽缸间的摩擦,差压阀与连接管道内的气体体积不计.当环境温度降低到T2=270 K时:(1)求B内气体压强p B2;(2)求A内气体体积V A2;(3)在活塞上缓慢倒入铁砂,若B内气体压强回到p0并保持不变,求已倒入铁砂的质量m.4.(1)9×104 Pa(2)3.6×10-2 m3(3)110 kg[解析] (1)当环境温度降低到T2=270 K时,B内气体压强降低.若此时差压阀没打开,设p B2'为差压阀未打开时B内气体的压强,B内气体体积不变,由查理定律得p0 T1=p B2' T2解得p B2'=9×104 Pa由于A、B内气体压强差p0-p B2'<Δp,故差压阀未打开,则p B2=p B2'即p B2=9×104 Pa(2)差压阀未打开时,A内气体的压强不变,由盖-吕萨克定律得V A1 T1=V A2 T2解得V A2=3.6×10-2 m3(3)倒入铁砂后,B内气体的温度和体积都不变,但压强增加,故可知A中气体通过差压阀进入B中,当B内气体压强为p0时,A内气体压强比B内气体压强高Δp,再根据A的活塞受力平衡可知(p0+Δp)S=p0S+mg解得m=110 kg5.[2024·广西卷] 如图甲,圆柱形管内封装一定质量的理想气体,水平固定放置,横截面积S =500 mm 2的活塞与一光滑轻杆相连,活塞与管壁之间无摩擦.静止时活塞位于圆管的b 处,此时封闭气体的长度l 0=200 mm .推动轻杆先使活塞从b 处缓慢移动到离圆柱形管最右侧距离为5 mm 的a 处,再使封闭气体缓慢膨胀,直至活塞回到b 处.设活塞从a 处向左移动的距离为x ,封闭气体对活塞的压力大小为F ,膨胀过程F -15+x曲线如图乙.大气压强p 0=1×105 Pa .(1)求活塞位于b 处时,封闭气体对活塞的压力大小; (2)推导活塞从a 处到b 处封闭气体经历了等温变化;(3)画出封闭气体等温变化的p -V 图像,并通过计算标出a 、b 处坐标值.5.(1)50 N (2)见解析 (3)如图所示[解析] (1)活塞位于b 处时,根据平衡条件可知此时气体压强等于大气压强p 0,故此时封闭气体对活塞的压力大小为 F =p 0S =1×105×500×10-6 N=50 N (2)根据题意可知F -15+x 图线为一条过原点的直线,设斜率为k ,可得F =k ·15+x 根据F =pS 可得气体压强为p =k(5+x )S故可知活塞从a 处到b 处对封闭气体由玻意耳定律得 pV =k(5+x )S·S ·(x +5)×10-3=k ·10-3故可知该过程中封闭气体的pV 值恒定不变,故可知a →b 过程封闭气体做等温变化.(3)分析可知全过程中气体做等温变化,开始在b 处时,有 p b V b =p 0Sl 0在b 处时气体体积为 V b =Sl 0=10×10-5 m 3 在a 处时气体体积为 V a =Sl a =0.25×10-5 m 3 根据玻意耳定律有 p a V a =p b V b =p 0Sl 0解得p a=40×105 Pa故封闭气体等温变化的p-V图像如图6.[2024·海南卷] 用铝制易拉罐制作温度计,一透明薄吸管里有一段油柱(长度不计)粗细均匀,吸管与罐密封性良好,罐内气体可视为理想气体,已知罐体积为330 cm3,薄吸管底面积为0.5 cm2,罐外吸管总长度为20 cm,当温度为27 ℃时,油柱离罐口10 cm,不考虑大气压强变化,下列说法正确的是()A.若在吸管上标注等差温度值,则刻度左密右疏B.该装置所测温度不高于31.5 ℃C.该装置所测温度不低于23.5 ℃D.其他条件不变,缓慢把吸管拉出来一点,则油柱离罐口距离增大6.B[解析] 设油柱离罐口的距离为x,由盖-吕萨克定律得V1T1=VT,其中V1=V0+Sl1=335cm3,T1=(273+27)K=300 K,V=V0+Sl=(330+0.5x)cm3,代入解得T=(3067x+1980067)K,根据T=(t+273) K可知t=(3067x+150967)℃,故若在吸管上标注等差温度值,则刻度均匀,故A错误;当x=20 cm时,该装置所测的温度最高,代入解得t max≈31.5 ℃,故该装置所测温度不高于31.5 ℃,当x=0时,该装置所测的温度最低,代入解得t min≈22.5 ℃,故该装置所测温度不低于22.5 ℃,故B正确,C错误;其他条件不变,缓慢把吸管拉出来一点,由盖-吕萨克定律可知,油柱离罐口距离不变,故D错误.7.(多选)[2024·海南卷] 一定质量的理想气体从状态a 开始经ab 、bc 、ca 三个过程回到原状态,已知ab 垂直于T 轴,bc 延长线过O 点,下列说法正确的是 ( )A .bc 过程外界对气体做功B .ca 过程气体压强不变C .ab 过程气体放出热量D .ca 过程气体内能减小7.AC [解析] 由理想气体状态方程pVT =C ,化简可得V =Cp ·T ,V -T 图线中,各点与原点连线的斜率的倒数表示气体的压强,则图线的斜率越大,压强越小,故p a <p b =p c ,bc 过程为等压变化,气体体积减小,外界对气体做功,故A 正确;由A 选项可知,ca 过程气体压强减小,故B 错误;ab 过程为等温变化,故气体内能不变,即ΔU =0,气体体积减小,外界对气体做功,故W >0,根据热力学第一定律ΔU =Q +W ,解得Q <0,故ab 过程气体放出热量,故C 正确;ca 过程,气体温度升高,内能增大,故D 错误.8.(多选)[2024·河北卷] 如图所示,水平放置的密闭绝热汽缸被导热活塞分成左右两部分,左侧封闭一定质量的理想气体,右侧为真空,活塞与汽缸右壁中央用一根轻质弹簧水平连接.汽缸内壁光滑且水平长度大于弹簧自然长度,弹簧的形变始终在弹性限度内且体积忽略不计.活塞初始时静止在汽缸正中间,后因活塞密封不严发生缓慢移动,活塞重新静止后 ( )A .弹簧恢复至自然长度B .活塞两侧气体质量相等C .与初始时相比,汽缸内气体的内能增加D .与初始时相比,活塞左侧单位体积内气体分子数减少8.ACD [解析] 初始状态活塞受到左侧气体向右的压力和弹簧向左的弹力而处于平衡状态,弹簧处于压缩状态.因活塞密封不严,可知左侧气体向右侧真空散逸,左侧气体压强变小,右侧出现气体,对活塞有向左的压力,由于最终左、右两侧气体相通,故两侧气体压强相等,因此弹簧恢复原长,A 正确;由于活塞向左移动,最终两侧气体压强相等,左侧气体体积小于右侧气体体积,所以左侧气体质量小于右侧气体质量,B 错误;密闭的汽缸绝热,与外界没有能量交换,与初始时相比,弹簧弹性势能减少了,所以气缸内气体的内能增加,C 正确;初始时气体都在活塞左侧,最终气体充满整个汽缸,所以初始时活塞左侧单位体积内气体分子数应该是最终的两倍,D 正确.9.[2024·湖北卷] 如图所示,在竖直放置、开口向上的圆柱形容器内用质量为m 的活塞密封一部分理想气体,活塞横截面积为S ,能无摩擦地滑动.初始时容器内气体的温度为T 0,气柱的高度为h.当容器内气体从外界吸收一定热量后,活塞缓慢上升15h 再次平衡.已知容器内气体内能变化量ΔU 与温度变化量ΔT 的关系式为ΔU =C ΔT ,C 为已知常数,大气压强恒为p 0,重力加速度大小为g ,所有温度都为热力学温度.求: (1)再次平衡时容器内气体的温度. (2)此过程中容器内气体吸收的热量.9.(1)65T 0 (2)15h (p 0S +mg )+15CT 0[解析] (1)容器内气体进行等压变化,则由盖-吕萨克定律得V 0T 0=V1T 1即ℎS T 0=(ℎ+15ℎ)S T 1解得T 1=65T 0(2)此过程中容器内气体内能增加量ΔU =C (T 1-T 0) 容器内气体压强p =p 0+mgS气体体积增大,则气体对外做功,W =-pS ·15h 根据热力学第一定律得ΔU =W +Q 联立解得Q =15h (p 0S +mg )+15CT 010.[2024·湖南卷] 一个充有空气的薄壁气球,气球内气体压强为p 、体积为V.气球内空气可视为理想气体.(1)若将气球内气体等温膨胀至大气压强p 0,求此时气体的体积V 0(用p 0、p 和V 表示); (2)小赞同学想测量该气球内气体体积V 的大小,但身边仅有一个电子天平.将气球置于电子天平上,示数为m =8.66×10-3 kg(此时须考虑空气浮力对该示数的影响).小赞同学查阅资料发现,此时气球内气体压强p 和体积V 还满足:(p -p 0)(V -V B 0)=C ,其中p 0=1.0×105 Pa 为大气压强,V B 0=0.5×10-3 m 3为气球无张力时的最大容积,C =18 J 为常数.已知该气球自身质量为m 0=8.40×10-3 kg,外界空气密度为ρ0=1.3 kg/m 3,g 取10 m/s 2.求气球内气体体积V 的大小.10.(1)pVp0(2)5×10-3 m3[解析] (1)理想气体做等温变化,根据玻意耳定律有pV=p0V0解得V0=pVp0(2)设气球内气体质量为m气,则m气=ρ0V0对气球进行受力分析如图所示根据平衡条件有mg+ρ0gV=m气g+m0g结合题中p和V满足的关系(p-p0)(V-V B0)=C联立解得V=5×10-3 m311.[2024·江苏卷] 某科研实验站有一个密闭容器,容器内有温度为300 K、压强为105 Pa 的气体,容器内有一个面积为0.06 m2的观测台.现将这个容器移动到月球,容器内的温度变成240 K.整个过程可认为气体的体积不变,月球表面为真空状态.求:(1)气体现在的压强;(2)观测台对气体的压力.11.(1)8×104 Pa(2)4.8×103 N[解析] (1)由题知,整个过程可认为气体的体积不变,则根据查理定律得p1T1=p2 T2解得p2=8×104 Pa(2)根据压强的定义,观测台对气体的压力F=p2S=4.8×103 N12.[2024·江西卷] 可逆斯特林热机的工作循环如图所示.一定质量的理想气体经ABCDA 完成循环过程,AB和CD均为等温过程,BC和DA均为等容过程.已知T1=1200 K,T2=300 K,气体在状态A的压强p A=8.0×105 Pa,体积V1=1.0 m3,气体在状态C的压强p C=1.0×105 Pa.求:(1)气体在状态D的压强p D;(2)气体在状态B的体积V2.12.(1)2.0×105 Pa(2)2.0 m3[解析] (1)气体从状态D到状态A的过程发生等容变化,根据查理定律有p DT2=p A T1解得p D=2.0×105 Pa(2)气体从状态C到状态D的过程发生等温变化,根据玻意耳定律有p C V2=p D V1解得V2=2.0 m3气体从状态B到状态C发生等容变化,因此气体在状态B的体积也为V2=2.0 m313.[2024·山东卷] 一定质量理想气体经历如图所示的循环过程,a→b过程是等压过程,b→c过程中气体与外界无热量交换,c→a过程是等温过程.下列说法正确的是 ()A.a→b过程,气体从外界吸收的热量全部用于对外做功B.b→c过程,气体对外做功,内能增加C.a→b→c过程,气体从外界吸收的热量全部用于对外做功D.a→b过程,气体从外界吸收的热量等于c→a过程放出的热量13.C[解析] a→b过程是等压过程且体积增大,则W ab<0,由盖-吕萨克定律可知T b>T a,则ΔU ab>0,根据热力学第一定律ΔU=Q+W可知,气体从外界吸收的热量一部分用于对外做功,另一部分用于增加内能,A错误;b→c过程中气体与外界无热量交换,即Q bc=0,由于气体体积增大,则W bc<0,由热力学第一定律ΔU=Q+W可知,ΔU bc<0,即气体内能减少,B错误;c→a过程是等温过程,即T c=T a,则ΔU ac=0,根据热力学第一定律可知a→b→c过程,气体从外界吸收的热量全部用于对外做功,C正确;由A项分析可知Q ab=ΔU ab-W ab,由B项分析可知W bc=ΔU bc,由C项分析可知0=W ca+Q ca,又ΔU ab+ΔU bc=0,联立解得Q ab-(-Q ca)=(-W ab-W bc)-W ca,根据p-V图像与坐标轴所围图形的面积表示外界与气体之间做的功,结合题图可知a→b→c过程气体对外界做的功大于c→a过程外界对气体做的功,即-W ab-W bc>W ca,则Q ab-(-Q ca)>0,即a→b过程气体从外界吸收的热量Q ab大于c→a过程放出的热量-Q ca,D错误.14.[2024·山东卷] 图甲为战国时期青铜汲酒器,根据其原理制作了由中空圆柱形长柄和储液罐组成的汲液器,如图乙所示.长柄顶部封闭,横截面积S1=1.0 cm2,长度H=100.0 cm,侧壁有一小孔A.储液罐的横截面积S2=90.0 cm2、高度h=20.0 cm,罐底有一小孔B.汲液时,将汲液器竖直浸入液体,液体从孔B进入,空气由孔A排出;当内外液面相平时,长柄浸入液面部分的长度为x;堵住孔A,缓慢地将汲液器竖直提出液面,储液罐内刚好储满液体.已知液体密度ρ=1.0×103 kg/m3,重力加速度大小g取10 m/s2,大气压p0=1.0×105 Pa.整个过程温度保持不变,空气可视为理想气体,忽略器壁厚度.(1)求x;(2)松开孔A,从外界进入压强为p0、体积为V的空气,使满储液罐中液体缓缓流出,堵住孔A,稳定后罐中恰好剩余一半的液体,求V.14.(1)2 cm(2)8.92×10-4 m3[解析] (1)在缓慢地将汲液器竖直提出液面的过程中,封闭气体发生等温变化,根据玻意耳定律有p1(H-x)S1=p2HS1根据题意可知p1=p0,p2+ρgh=p0联立解得x=2 cm(2)对新进入的气体和原有的气体整体分析,由玻意耳定律有S2)p0V+p2HS1=p3(HS1+ℎ2=p0又p3+ρg·ℎ2联立解得V=8.92×10-4 m315.(多选)[2024·新课标卷] 如图所示,一定量理想气体的循环由下面4个过程组成:1→2为绝热过程(过程中气体不与外界交换热量),2→3为等压过程,3→4为绝热过程,4→1为等容过程.上述四个过程是四冲程柴油机工作循环的主要过程.下列说法正确的是()A.1→2过程中,气体内能增加B.2→3过程中,气体向外放热C.3→4过程中,气体内能不变D.4→1过程中,气体向外放热15.AD[解析] 1→2为绝热过程,则Q=0,由于气体体积减小,则外界对气体做功,即W>0,根据热力学第一定律ΔU=Q+W可知ΔU>0,即气体内能增加,故A正确;2→3为等压过程,气体体积增大,根据盖-吕萨克定律可知,气体温度升高,则气体内能增大,即ΔU>0,由于气体体积增大,则气体对外界做功,即W<0,根据热力学第一定律ΔU=Q+W可知Q>0,即气体从外界吸热,故B错误;3→4为绝热过程,则Q=0,由于气体体积增大,则气体对外界做功,即W<0,根据热力学第一定律ΔU=Q+W可知ΔU<0,即气体内能减小,故C错误;4→1为等容过程,压强减小,根据查理定律可知,气体温度降低,则气体内能减小,即ΔU<0,由于体积不变,则W=0,根据热力学第一定律ΔU=Q+W可知Q<0,即气体向外放热,故D正确.16.[2024·浙江6月选考] 如图所示,测定一个形状不规则小块固体体积,将此小块固体放入已知容积为V0的导热效果良好的容器中,开口处竖直插入两端开口的薄玻璃管,其横截面积为S,接口用蜡密封.容器内充入一定质量的理想气体,并用质量为m的活塞封闭,活塞能无摩擦滑动,稳定后测出气柱长度为l1.将此容器放入热水中,活塞缓慢竖直向上移动,再次稳定后气柱长度为l2、温度为T2.已知S=4.0×10-4 m2,m=0.1 kg,l1=0.2 m,l2=0.3 m,T2=350 K,V0=2.0×10-4 m3.大气压强p0=1.0×105 Pa,环境温度T1=300 K,g取10 m/s2.(1)在此过程中器壁单位面积所受气体分子的平均作用力(选填“变大”“变小”或“不变”),气体分子的数密度(选填“变大”“变小”或“不变”);(2)求此不规则小块固体的体积V;(3)若此过程中气体内能增加10.3 J,求吸收的热量Q.16.(1)不变 变小 (2)4×10-5 m 3 (3)14.4 J[解析] (1)温度升高时,活塞缓慢上升,受力不变,故封闭气体压强不变,由p =F S 知器壁单位面积所受气体分子的平均作用力不变;由于气体体积变大,所以气体分子的数密度变小.(2)气体发生等压变化,有V 0-V+l 1S T 1=V 0-V+l 2S T 2 解得V =4×10-5 m 3(3)此过程中,外界对气体做功为W =-p 1S (l 2-l 1)对活塞受力分析,有p 1S =mg +p 0S由热力学第一定律得ΔU =W +Q其中ΔU =10.3 J联立解得Q =14.4 J。

热学教程习题解答

热学教程习题解答

《热学教程》习题解答第一章习题(P43)1.1解:根据trR R R T 16.273)(= 则: )K (1.29135.9028.9616.273=⨯=T1.2解:(1)摄氏温度与华氏温度的关系为C)(5932F)( t t +=解出: 40-=t(2)华氏温标与开氏温标的关系为)15.273(5932-+=T t解出: 575=t(3)摄氏温度与开始温度的关系为15.273-=T t可知:该方程无解,即摄氏温标和开氏温标不可能给出相同的读数。

1.3解:根据定压理想气体温标的定义式K 15.373732038.0K 16.273limK 16.273)(0===→trP V V V T tr1.4解:(1)第三种正确。

因为由实验发现,所测温度的数值与温度计的测温质有关,对同种测温质,还与其压强的大小有关。

(2)根据理想气体温标定义trP P PT tr 0limK 16.273→=当这个温度计中的压强在水的三相点时都趋于零时,即0→tr P 时,则所测温度值都相等。

1.5解:(1)根据2t t βαε+=,由t 值可求出ε的值(见后表)(2)根据b a t +=*ε,利用0=*t ,100=*t 及相应的ε值,可得b a +⨯=00与 b a +⨯=15100解出:0,320==b a这样,由ε320=*t 求出相应的*t 值(见后表)。

(3)将与t 对应的ε及*t 值列表如下:由表中数据即可作出t -ε,*-t ε和*-t t 图(图略)。

(4)很明显,除冰点,t 与*t 相同外,其它温度二者温度值都不相同。

*-t ε是正比关系,但是用温度t 是比较熟悉的,与日常生活一致。

1.6解:当温度不变时,C PV =,设气压计的截面积为S ,由题意可知:S P S )73474880()734(80)748768(-+⨯-=⨯-可解出:)Pa (1099.9)Pa (76010013.1)734948020(45⨯=⨯⨯+⨯=P1.7解:设气体压强分别为P 1、P 2,玻璃管横截面积为S ,由题意可知: (1)cmHg P P 2001+= hcmHg P P -=02S h P S P )70()2070(21-⨯=-⨯解出:)cm (55.3=h (注意大气压强单位变换) (2)S P S P 70)2070(21⨯≥-⨯ )Pa (1065.65040⨯=≤cmHg P1.8答:活塞会移动。

热学第二版课后习题答案

热学第二版课后习题答案

热学第二版课后习题答案热学第二版课后习题答案热学是物理学中的一门重要学科,研究热量的传递、热力学规律以及热力学系统的性质等。

在学习热学的过程中,课后习题是检验学生对知识掌握程度的重要手段。

下面将为大家提供热学第二版课后习题的答案。

第一章:热力学基础1. 什么是热力学第一定律?它的数学表达式是什么?热力学第一定律是能量守恒定律的推广,它表明能量可以从一种形式转化为另一种形式,但总能量守恒。

数学表达式为ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外界做功。

2. 什么是热容?如何计算物体的热容?热容是物体吸收或释放单位温度变化时所需的热量。

计算物体的热容可以使用公式C = Q/ΔT,其中C表示热容,Q表示吸收或释放的热量,ΔT表示温度变化。

3. 什么是等容过程?等容过程的特点是什么?等容过程是指在恒定体积条件下进行的热力学过程。

在等容过程中,系统对外界做功为零,因为体积不变。

等容过程的特点是内能变化等于吸收的热量,即ΔU = Q。

第二章:理想气体的热力学性质1. 理想气体的状态方程是什么?它的含义是什么?理想气体的状态方程是PV = nRT,其中P表示气体的压强,V表示气体的体积,n表示气体的物质量,R表示气体常数,T表示气体的温度。

这个方程表示了理想气体的状态与其压强、体积、物质量和温度之间的关系。

2. 理想气体的内能与温度有何关系?理想气体的内能与温度成正比,即U ∝ T。

当温度升高时,理想气体的内能也会增加。

3. 理想气体的等温过程与绝热过程有何区别?等温过程是指在恒定温度条件下进行的热力学过程,绝热过程是指在没有热量交换的情况下进行的热力学过程。

在等温过程中,气体的温度保持不变,而在绝热过程中,气体的内能保持不变。

第三章:热力学第二定律1. 热力学第二定律的表述是什么?它有哪些等效表述?热力学第二定律的表述是热量不会自发地从低温物体传递到高温物体。

它有三个等效表述:卡诺定理、克劳修斯不等式和熵增原理。

(完整版)大学物理热学习题附答案

(完整版)大学物理热学习题附答案

一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。

初一物理热学练习题及答案20题

初一物理热学练习题及答案20题

初一物理热学练习题及答案20题1. 问题:一个水杯中的水加热后,水温升高,说明了什么?答案:加热会使物体的温度上升。

2. 问题:什么是热传导?答案:热传导是指物体之间由于温度差异而发生的热量传递。

3. 问题:热传导的方式有哪些?答案:热传导的方式包括导热、对流和辐射。

4. 问题:将一个铁片加热后,铁片的温度较快地变高,这是属于哪种热传导方式?答案:这是属于导热的热传导方式。

5. 问题:热传导的速度与物体的什么性质有关?答案:热传导的速度与物体的热导率有关。

6. 问题:导热性能好的物质通常都是什么样的?答案:导热性能好的物质通常是金属或导热材料。

7. 问题:一个铁锅放在火上加热,锅柄的一端会感觉到温度升高,这是属于哪种热传导方式?答案:这是属于热对流的热传导方式。

8. 问题:什么是热辐射?答案:热辐射是指物体由于温度差异而发射出来的热能。

9. 问题:热辐射的速度与物体的什么性质有关?答案:热辐射的速度与物体的表面温度和颜色有关。

10. 问题:在遮阳伞下感觉凉爽是因为?答案:在遮阳伞下感觉凉爽是因为遮挡了太阳的辐射热量。

11. 问题:什么是绝热?答案:绝热是指物体与外界不进行热量交换。

12. 问题:什么是温度?答案:温度是物体内部分子热运动的程度。

13. 问题:什么是热平衡?答案:热平衡是指两个物体的温度相等时,它们之间不再发生热量交换。

14. 问题:导热性能差的物质通常都是什么样的?答案:导热性能差的物质通常是绝缘材料。

15. 问题:什么是热膨胀?答案:热膨胀是指物体由于温度升高而体积增大的现象。

16. 问题:什么是热容?答案:热容是指单位质量物质升高1摄氏度所吸收或释放的热量。

17. 问题:温度计是利用什么原理工作的?答案:温度计是利用物质的热胀冷缩原理工作的。

18. 问题:什么是显热?答案:显热是指物体在相变过程中吸收或释放的热量。

19. 问题:什么是相变?答案:相变是指物质由一种状态变为另一种状态的过程。

大学物理热学练习题及答案

大学物理热学练习题及答案

大学物理热学练习题及答案第一题:一个物体的质量是1 kg,温度从20°C升高到30°C,如果物体的比热容是4200 J/(kg·°C),求物体吸收的热量。

解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。

代入数据得:Q = 1 kg × 4200 J/(kg·°C) × (30°C - 20°C)= 1 kg × 4200 J/(kg·°C) × 10°C= 42,000 J所以物体吸收的热量为42,000 J。

第二题:一块金属材料的质量是0.5 kg,它的比热容是400 J/(kg·°C),经过加热后,材料的温度升高了60°C。

求该金属材料所吸收的热量。

解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。

代入数据得:Q = 0.5 kg × 400 J/(kg·°C) × 60°C= 12,000 J所以金属材料吸收的热量为12,000 J。

第三题:一个热容为300 J/(kg·°C)的物体,吸收了500 J的热量后,温度升高了多少摄氏度?解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。

将已知数据代入公式:500 J = m × 300 J/(kg·°C) × Δθ解方程得:Δθ = 500 J / (m × 300 J/(kg·°C))= 500 J / (m/(kg·°C)) × (kg·°C/300 J)= (500/300) °C≈ 1.67°C所以温度升高了约1.67°C。

大学热学题库及答案详解

大学热学题库及答案详解

大学热学题库及答案详解一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q - WB. ΔH = Q + WC. ΔS = Q/TD. ΔG = Q - W答案:A2. 在等压过程中,系统与外界交换的热能等于:A. ΔUB. ΔHC. ΔSD. ΔG答案:B3. 理想气体的内能只与温度有关,这是因为:A. 理想气体分子间无相互作用力B. 理想气体分子间有相互作用力C. 理想气体分子的动能与温度无关D. 理想气体分子的势能与温度无关答案:A二、填空题4. 根据热力学第二定律,不可能制造一个循环动作,其唯一结果就是______。

答案:从单一热源吸热全部转化为功而不产生其他效果5. 熵是热力学系统无序程度的度量,其变化量总是______。

答案:不小于零三、简答题6. 简述热力学第二定律的克劳修斯表述和开尔文-普朗克表述。

答案:热力学第二定律的克劳修斯表述是:不可能实现一个循环过程,其唯一结果就是从一个单一热源吸热并将这热量完全转化为功。

开尔文-普朗克表述是:不可能从单一热源吸热使之完全转化为功而不产生其他影响。

7. 解释什么是卡诺循环,并说明其效率。

答案:卡诺循环是一种理想化的热机循环,包括两个等温过程和两个绝热过程。

其效率由下式给出:η = 1 - (Tc/Th),其中Tc是冷热源的绝对温度,Th是热热源的绝对温度。

四、计算题8. 已知理想气体的摩尔质量为M,气体的温度从T1升高到T2,求气体的内能变化量ΔU。

答案:对于理想气体,内能变化量仅与温度变化有关,与压力和体积无关。

内能变化量可以通过以下公式计算:ΔU = n * Cv * (T2 -T1),其中n是气体的摩尔数,Cv是摩尔定容热容。

9. 一个绝热容器内装有一定量的气体,气体经历一个绝热过程,其体积从V1减小到V2,求气体的温度变化。

答案:对于绝热过程,根据热力学第一定律,Q = ΔU,且W = -P *ΔV。

由于绝热过程Q = 0,所以ΔU = -W = P * (V1 - V2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 温度习题答案一、 选择题 1. D 2. B二、填空题1. Pa 31008.9⨯ K 4.90 C 08.182-三、计算题1. 解:漏掉的氢气的质量kg T Vp T V p R M m m m 32.0)(22211121=-=-=∆第2章 气体分子动理论答案一、选择题1. B解:两种气体开始时p 、V 、T 均相同,所以摩尔数也相同。

现在等容加热 V C MQ μ=△T ,R C R C V V 25,232H He ==由题意 μM Q =He R 23⋅△T = 6 J 所以 R M Q 252H ⋅=μ△T =(J)1063535H =⨯=e Q 。

2. C 解:由,)(,)(,He 222O 1112R MT V p R MT V p R MT pV ⋅=⋅==μμμ,,2121T T p p ==又 所以,21)()21HeO 2==V V MMμμ(根据内能公式,2RT iM E ⋅=μ得二者内能之比为65352121=⋅=E E3. B解:一个分子的平均平动动能为,23kT w =容器中气体分子的平均平动动能总和为3210410523232323-⨯⨯⨯⨯===⋅==pV RT M kT N Mw N W A μμ =3(J)。

4. C解:由RpVC E RT MpV T C ME VV ===得 ,μμ, 可见只有当V 不变时,E ~ p 才成正比。

5. D解:因为)(d v f NN =d v ,所以)(21212v f N mv v v ⋅⋅⎰d ⎰=21221v v mv v d N表示在1v ~2v 速率间隔内的分子平动动能之和。

6. D 解:由,2,2122v n d z nd ππλ==体积不变时n 不变,而v ∝T , 所以, 当T 增大时,λ不变而z 增大。

二、填空题1. 27.8×10-3 kg ⋅mol -1 解:由RT MpV μ=可得摩尔质量为523mol10013.1100.130031.8103.11⨯⨯⨯⨯⨯⨯====--p RT pV MRT M ρμ)m ol (kg 108.2713--⋅⨯=2. 1.28×10-7K 。

[1eV = 1.6×1019-J ,摩尔气体常数R = 8.31 (J·mol1-·K1-)]解:由V C ME μ=∆△T 和R C V 23=得(K)1028.131.8211.0106.11071912--⨯=⨯⨯⨯⨯=∆=∆V C M E T μ3. ()gM RTmol 2ln 。

(符号exp[α],即e α)解:由21,00mol ==-n n en n RTghM 得 。

g M RT h RT gh M ⋅==mol mol )2(ln ,2ln4. 当理想气体处于平衡态时,气体分子速率分布函数为)(v f ,则分子速率处于最概然速率v p 至∞范围内的概率=∆NNv f(v)Pv ⎰∞d 。

解:由)(d v f NN=d v 可知,速率P v ~ ∞之间的分子数为 △⎰⎰∞==Pv v v Nf N N d )(d所以, ⎰∞=∆Pv v v f NNd )(5. 495m ⋅s -1 。

解:由RT MpV μ=得pRTρμ=所以, 方均根速率 )s (m 4951024.110013.11033312522---⋅=⨯⨯⨯⨯===ρμpRTv三、计算题 1. 解:T R iM Pt E ∆⋅==∆2μ,式中P 为功率,则 (K)81.431.8251101025=⨯⨯⨯=⋅=∆R M Pt T μ2. 解:平均速率为)s (m 8.3186425024083062041021-⋅=+++⨯+⨯+⨯+⨯+⨯==∑∑iii Nv N v最概然速率)s (m 0.401-⋅=p v方均根速率为 286425024083062041022222222++++⨯+⨯+⨯+⨯+⨯==∑∑ii i Nv N v)s (m 7.331-⋅=3. 解:设管内总分子数为N .由p = nkT = NkT / V(1) N = pV / (kT ) = 1.61×1012个.(2) 分子的平均平动动能的总和= (3/2) NkT = 10-8 J (3) 分子的平均转动动能的总和= (2/2) NkT = 0.667×10-8 J (4) 分子的平均动能的总和= (5/2) NkT = 1.67×10-8 J第3章 热力学第一定律答案一、选择题1. 理想气体向真空作绝热膨胀。

[ A ] (A) 膨胀后,温度不变,压强减小;(B) 膨胀后,温度降低,压强减小; (C) 膨胀后,温度升高,压强减小;(D) 膨胀后,温度不变,压强不变。

解:真空绝热膨胀过程中0,0==Q A ,由热力学第一定律知0=∆E ,所以0=∆T ,温度不变,对始末二状态,,2211V p V p = V 增大,p 减小。

2. 氦、氮、水蒸气(均视为理想气体),它们的摩尔数相同,初始状态相同,若使它们在体积不变情况下吸收相等的热量,则[ C ] (A) 它们的温度升高相同,压强增加相同;(B) 它们的温度升高相同,压强增加不相同; (C) 它们的温度升高不相同,压强增加不相同; (D) 它们的温度升高不相同,压强增加相同。

解:体积不变时吸热)(221122V p V p iT R i M E Q -=∆⋅=∆=μ,Q 相等,但三种气体的自由度i 不同,故温升T ∆不相同;又p V iQ V V V ∆===2,21, 所以压强的增量也不相同。

3. 如图所示,一定量理想气体从体积1V 膨胀到体积2V 分别经历的过程是:A →B 等压过程;A →C 等温过程;A →D 绝热过程。

其中吸热最多的过程 [ A ] (A) 是A →B ;(B) 是A →C ; (C) 是A →D ;(D) 既是A →B ,也是A →C ,两过程吸热一样多。

解:由热力学第一定律A E Q +∆=,绝热过程A →D 不吸热,Q = 0等温过程A →C 内能不变,12,0V ACV A Q E AC AC ===∆的面积 等压过程A →B ,12,0V ABV E A E Q E AB AB +∆=+∆=>∆面积所以,AD AC AB Q Q Q >> 吸热最多的过程是A →B 。

4. 一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分。

两边分别装入质量相等、温度相同的H 2和O 2。

开始时绝热板P 固定,然后释放之,板P 将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计)。

在达到新的平衡位置后,若比较两边温度的高低,则结果是:[ B ] (A) H 2比O 2温度高; (B) O 2比H 2温度高;(C) 两边温度相等, 且等于原来的温度;(D) 两边温度相等, 但比原来的温度降低了。

解:开始时,由RT MpV μ=知,两边V 、T 相等,μ小的p 大,所以22O H p p >。

释放绝热板后H 2膨胀而O 2被压缩,达到新的平衡后,两边压强相等,绝热膨胀后温度降低,绝热压缩温度升高,所以平衡后O 2比H 2温度高。

5. 如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为0p ,右边为真空。

今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 [ B ] 0(A)p (B )2/0p02(C)p γ (D) γ2/0p(v p C C /=γ)解:绝热自由膨胀,0,0==QA 所以0,0=∆=∆T E 。

以气体为研究对象,,1100V p V p =因212V V =,所以0121p p =。

6. 1 mol 的单原子分子理想气体从状态A 变为状态B ,如果不知是什么气体,变化过程也不知道,但A 、B 两态的压强、体积和温度都知道,则可求出:12[ B ] (A) 气体所作的功; (B) 气体内能的变化;(C) 气体传给外界的热量; (D) 气体的质量。

解:功和热量与过程有关,不知是什么过程,无法求;由RT MpV μ=,μ不知道无法求质量M ;内能的变化(),221122V p V p iT R i M E -=∆=∆μ因i = 3,2121V V p p 、、、已知,故可求。

7. 如果卡诺热机的循环曲线所包围的面积从图中的abcdaabcda 与ab 'c 'da 所作的功和热机效率的变化情况是: [ D ] (A) 净功增大,效率提高; (B) 净功增大,效率降低;(C) 净功和效率都不变;(D) 净功增大,效率不变。

解:卡诺循环的效率121T T -=η只与二热源温度有关,曲线所围面积在数值上等于净功,所以净功增大,效率不变。

8. 用下列两种方法(1) 使高温热源的温度1T 升高T ∆;(2) 使低温热源的温度2T 降低同样的T ∆值, 分别可使卡诺循环的效率升高1η∆和 2η∆,两者相比: [ B ] (A) 12ηη∆<∆; (B) 12ηη∆>∆;(C) 12ηη∆=∆; (D) 无法确定哪个大。

解:卡诺循环效率121T T -=η, 1121122121)(,T T T T T T T T T T T ∆=∆--=∆∆⋅=∆=∆ηη 因为12T T <,所以由上二式可知,12ηη∆>∆。

9. 下面所列四图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在物理上可能实现的循环过程的图的符号。

[ B ](D)(C)(A)(B)解:绝热线与等温线相交,在交点处,绝热线斜率值大于等温线,所以(A )错;二条绝热线不可能相交;所以(C )、(D )错。

二、填空题1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是 体积、温度和压强,而随时间不断变化的微观量是 分子的运动速度、动量和动能 。

2. 不规则地搅拌盛于良好绝热容器中的液体,液体温度在升高,若将液体看作系统,则: (1) 外界传给系统的热量 等于 零; (2) 外界对系统作的功 大于 零; (3) 系统的内能的增量 大于 零。

(填大于、等于、小于)3. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B ,将从外界吸收热量416 J ;若经准静态等压过程变到与平衡态B 有相同的温度的平衡态C ,将从外界吸收热量582 J 。

所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所作的功为166 J 。

解:由题意A →B 过程C A E Q V →∆==,J 416过程J 5822=+∆=A E Q P因为B 、C 在同一直线上,所以A Q A E Q E E V P +=+∆=∆=∆121, 所以在等压过程中系统对外作功(J)166416582=-=-=V P Q Q A 。

相关文档
最新文档