偏最小二乘法(PLS)简介
偏最小二乘方法

偏最小二乘方法(PLS-Partial Least Squares))是近年来发展 起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。该种方法,在化合 物结构-活性/性质相关性研究中是一种非常有用的手段。如美国 Tripos公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处 理部分主要是PLS。在PLS方法中用的是替潜变量,其数学基础 是主成分分析。替潜变量的个数一般少于原自变量的个数,所 以PLS特别适用于自变量的个数多于试样个数的情况。在此种 情况下,亦可运用主成分回归方法,但不能够运用一般的多元 回归分析,因为一般多元回归分析要求试样的个数必须多于自 变量的个数。
设矩阵X的阶为I*J,若T的阶与J相等,则主成分回归与 多元线性回归所得结果相同,并不能显示出主成分回归的优 越之处。选取的主成分数一般应该比J 小,而删去那些不重 要的主成分,因为这些主成分所包含的信息主要是噪声,由 此所得的回归方程稳定性较好。 另外,由X所定义的空间可以进一步来说明主成分回归 与多元线性回归的区别。多元线性回归应用了由X的列所定 义的全部空间,而主成分回归所占用的是一子空间。当X的J 列中,有一列可为其它J —1列的线性组合时,则X可用J -1列 的矩阵T来描述,而并不丢失信息。新的矩阵T定义了X的一 个子空间。
2 7 5 4 3 3 Y 9 12 3 6 8 2
运用式(6.3)则可得B矩阵:
0.48 0.71 0.55 B 0.42 0.41 0.24 0.08 0.28 0.05
所用数学模型有效性的量度可用Err:
偏最小二乘法

偏最小二乘法 ( PLS)是光谱多元定量校正最常用的一种方法 , 已被广泛应用 于近红外 、 红外 、拉曼 、核磁和质谱等波谱定量模型的建立 , 几乎成为光谱分析中建立线性定量校正模型的通用方法 〔1, 2〕 。
近年来 , 随着 PLS 方法在光谱分析尤其是分子光谱如近红外 、 红外和拉曼中应用 的深入开展 , PLS 方法还被用来解决模式识别 、定量校正模型适用性判断以及异常样本检测等定性分析问题 。
由于 PLS 方法同时从光谱阵和浓度阵中提取载荷和得分 , 克服主成分分析 ( PCA)方法没有利用浓度阵的缺点 , 可有效降维 , 并消除光谱间可能存在的复共线关系 , 因此取得令人非常满意的定性分析结果 〔3 ~ 5〕 。
本文主要介绍PLS 方法在光谱定性分析方面的原理及应用 实例 。
偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。
该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。
如美国Tripos 公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS 。
在PLS 方法中用的是替潜变量,其数学基础是主成分分析。
替潜变量的个数一般少于原自变量的个数,所以PLS 特别适用于自变量的个数多于试样个数的情况。
在此种情况下,亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。
§§ 6.3.1 基本原理6.3 偏最小二乘(PLS )为了叙述上的方便,我们首先引进“因子”的概念。
一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。
偏最小二乘法算法

偏最小二乘法1.1基本原理偏最小二乘法(PLS)是基于因子分析的多变量校正方法,其数学基础为主成分分析。
但它相对于主成分回归(PCR)更进了一步,两者的区别在于PLS法将浓度矩阵Y和相应的量测响应矩阵X同时进行主成分分解:X=TP+EY=UQ+F式中T和U分别为X和Y的得分矩阵,而P和Q分别为X和Y的载荷矩阵,E和F 分别为运用偏最小二乘法去拟合矩阵X和Y时所引进的误差。
偏最小二乘法和主成分回归很相似,其差别在于用于描述变量Y中因子的同时也用于描述变量X。
为了实现这一点,数学中是以矩阵Y的列去计算矩阵X的因子。
同时,矩阵Y的因子则由矩阵X的列去预测。
分解得到的T和U矩阵分别是除去了人部分测量误差的响应和浓度的信息。
偏最小二乘法就是利用各列向量相互正交的特征响应矩阵T和特征浓度矩阵U进行回归:U=TB得到回归系数矩阵,又称关联矩阵E:B=(TT )F U因此,偏最小二乘法的校正步骤包括对矩阵Y和矩阵X的主成分分解以及对关联矩阵B的计算。
1.2主成分分析主成分分析的中心目的是将数据降维,以排除众多化学信息共存中相互重叠的信息。
他是将原变量进行转换,即把原变量的线性组合成几个新变量。
同时这些新变量要尽可能多的表征原变量的数据结构特征而不丢失信息。
新变量是一组正交的,即互不相关的变量。
这种新变量又称为主成分。
如何寻找主成分,在数学上讲,求数据矩阵的主成分就是求解该矩阵的特征值和特征矢量问题。
卞面以多组分混合物的量测光谱来加以说明。
假设有n个样本包含p个组分,在m 个波长下测定其光谱数据,根据比尔定律和加和定理有:如果混合物只有一种组分,则该光谱矢量与纯光谱矢量应该是方向一致,而人小不同。
换句话说,光谱A表示在由p个波长构成的p维变量空间的一组点(n个),而这一组点一定在一条通过坐标原点的直线上。
这条直线其实就是纯光谱b。
因此由m个波长描述的原始数据可以用一条直线,即一个新坐标或新变量来表示。
如果一个混合物由2个组分组成,各组分的纯光谱用bl, b2表示,则有:<=c“b: + c i2bl有上式看出,不管混合物如何变化,其光谱总可以用两个新坐标轴bl,b2来表示。
pls最小二乘法

偏最小二乘法
偏最小二乘法(Partial Least Squares, PLS)是一种多元统计分析方法,通常用于处理具有多个自变量(特征)和一个或多个因变量(响应变量)的数据集。
PLS的主要目标是通过线性组合自变量来建立与因变量之间的关系,同时减少自变量之间的多重共线性。
PLS的核心思想是将自变量和因变量进行分解,然后找到它们之间的最大协方差方向。
这种方法可以降低数据维度,同时保留与因变量相关性最高的信息。
PLS可以应用于回归问题和分类问题。
PLS的应用领域包括化学分析、生物信息学、工程、金融和其他领域,特别是在处理高维数据和样本较少的情况下,PLS可以帮助提高模型性能和降低过拟合的风险。
PLS方法通常包括以下步骤:
1. 数据准备:收集自变量和因变量的数据。
2. 标准化:对数据进行标准化处理,以确保不同变量的尺度一致。
3. 模型拟合:建立PLS模型,找到自变量和因变量之间的最大协方差方向。
4. 模型评估:评估模型的性能,通常使用交叉验证等方法。
5. 预测:使用训练好的PLS模型进行新数据的预测。
PLS有不同的变种,包括PLS回归(用于连续因变量),PLS-DA(用于分类问题),以及其他扩展。
这种方法在实际数据分析和建模中具有广泛的应用,可以帮助解决多变量数据分析中的问题。
偏最小二乘回归方法(PLS)

偏最小二乘回归方法1 偏最小二乘回归方法(PLS)背景介绍在经济管理、教育学、农业、社会科学、工程技术、医学和生物学中,多元线性回归分析是一种普遍应用的统计分析与预测技术。
多元线性回归中,一般采用最小二乘方法(Ordinary Least Squares :OLS)估计回归系数,以使残差平方和达到最小,但当自变量之间存在多重相关性时,最小二乘估计方法往往失效。
而这种变量之间多重相关性问题在多元线性回归分析中危害非常严重,但又普遍存在。
为消除这种影响,常采用主成分分析(principal Components Analysis :PCA)的方法,但采用主成分分析提取的主成分,虽然能较好地概括自变量系统中的信息,却带进了许多无用的噪声,从而对因变量缺乏解释能力。
最小偏二乘回归方法(Partial Least Squares Regression:PLS)就是应这种实际需要而产生和发展的一种有广泛适用性的多元统计分析方法。
它于1983年由S.Wold和C.Albano等人首次提出并成功地应用在化学领域。
近十年来,偏最小二乘回归方法在理论、方法和应用方面都得到了迅速的发展,己经广泛地应用在许多领域,如生物信息学、机器学习和文本分类等领域。
偏最小二乘回归方法主要的研究焦点是多因变量对多自变量的回归建模,它与普通多元回归方法在思路上的主要区别是它在回归建模过程中采用了信息综合与筛选技术。
它不再是直接考虑因变量集合与自变量集合的回归建模,而是在变量系统中提取若干对系统具有最佳解释能力的新综合变量(又称成分),然后对它们进行回归建模。
偏最小二乘回归可以将建模类型的预测分析方法与非模型式的数据内涵分析方法有机地结合起来,可以同时实现回归建模、数据结构简化(主成分分析)以及两组变量间的相关性分析(典型性关分析),即集多元线性回归分析、典型相关分析和主成分分析的基本功能为一体。
下面将简单地叙述偏最小二乘回归的基本原理。
偏最小二乘法基本知识

偏最小二乘法(PLS)简介-数理统计偏最小二乘法partial least square method是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。
近几十年来,它在理论、方法和应用方面都得到了迅速的发展。
偏最小二乘法长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。
而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。
这是多元统计数据分析中的一个飞跃。
偏最小二乘法在统计应用中的重要性体现在以下几个方面:偏最小二乘法是一种多因变量对多自变量的回归建模方法。
偏最小二乘法可以较好的解决许多以往用普通多元回归无法解决的问题。
偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。
主成分回归的主要目的是要提取隐藏在矩阵X中的相关信息,然后用于预测变量Y的值。
这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。
但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分进行挑选,那样又太困难了。
偏最小二乘回归可以解决这个问题。
它采用对变量X和Y都进行分解的方法,从变量X和Y 中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。
现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了基本概念偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模型来描述独立变量Y与预测变量组X之间的关系:Y= b0 + b1X1 + b2X2 + ... + bpXp在方程中,b0是截距,bi的值是数据点1到p的回归系数。
例如,我们可以认为人的体重是他的身高、性别的函数,并且从各自的样本点中估计出回归系数,之后,我们从测得的身高及性别中可以预测出某人的大致体重。
偏最小二乘法

偏最小二乘法( PLS)是光谱多元定量校正最常用的一种方法, 已被广泛应用于近红外、红外、拉曼、核磁和质谱等波谱定量模型的建立, 几乎成为光谱分析中建立线性定量校正模型的通用方法〔1, 2〕。
近年来, 随着PLS方法在光谱分析尤其是分子光谱如近红外、红外和拉曼中应用的深入开展, PLS 方法还被用来解决模式识别、定量校正模型适用性判断以及异常样本检测等定性分析问题。
由于PLS方法同时从光谱阵和浓度阵中提取载荷和得分, 克服主成分分析( PCA)方法没有利用浓度阵的缺点, 可有效降维, 并消除光谱间可能存在的复共线关系, 因此取得令人非常满意的定性分析结果〔3 ~5〕。
本文主要介绍PLS方法在光谱定性分析方面的原理及应用实例。
偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。
该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。
如美国Tripos公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS。
在PLS方法中用的是替潜变量,其数学基础是主成分分析。
替潜变量的个数一般少于原自变量的个数,所以PLS特别适用于自变量的个数多于试样个数的情况。
在此种情况下,亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。
§§ 6.3.1 基本原理6.3 偏最小二乘(PLS)为了叙述上的方便,我们首先引进“因子”的概念。
一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。
在主成分回归中,第一步,在矩阵X的本征矢量或因子数测试中,所处理的仅为X矩阵,而对于矩阵Y 中信息并未考虑。
偏最小二乘法PLS和PLS回归的介绍及其实现方法

偏最小二乘法PLS和PLS回归的介绍及其实现方法偏最小二乘法(Partial Least Squares,简称PLS)是一种多元统计学方法,常用于建立回归模型和处理多重共线性问题。
它是对线性回归和主成分分析(PCA)的扩展,可以在高维数据集中处理变量之间的关联性,提取重要特征并建立回归模型。
PLS回归可以分为两个主要步骤:PLS分解和回归。
1.PLS分解:PLS分解是将原始的预测变量X和响应变量Y分解为一系列的主成分。
在每个主成分中,PLS根据两者之间的协方差最大化方向来寻找最佳线性组合。
PLS根据以下步骤来获得主成分:1)建立初始权重向量w,通常是随机初始化的;2) 计算X和Y之间的协方差cov(X,Y);3)将w与X与Y的乘积进行中心化,得到新的X'和Y';4)标准化X'和Y',使得它们的标准差为1;5)多次迭代上述步骤,直到达到设定的主成分数目。
2.回归:在PLS分解之后,我们得到了一组主成分,接下来可以使用这些主成分来建立回归模型。
回归模型可以通过以下步骤来构建:1)将X和Y分别表示为主成分的线性组合;2)根据主成分得分对回归系数进行估计;3)使用估计的回归系数将新的X预测为Y。
PLS的实现可以通过以下几种方法:1.标准PLS(NIPALS算法):它是最常见的PLS算法。
它通过递归地估计每个主成分和权重向量来实现PLS分解。
该算法根据数据的方差最大化原则得到主成分。
2.中心化PLS:数据在进行PLS分解之前进行中心化。
中心化可以确保主成分能够捕捉到变量之间的相关性。
3. PLS-DA:PLS-Discriminant Analysis,是PLS在分类问题中的应用。
它通过利用PLS分解找到最佳线性组合,以区分两个或多个不同的分类。
4. PLS-SVC:PLS-Support Vector Classification,是PLS在支持向量机分类中的应用。
它通过PLS寻找最优线性组合,同时最小化分类误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏最小二乘法(PLS)简介偏最小二乘法(PLS )简介偏最小二乘法(PLS )简介简介偏最小二乘法是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。
近几十年来,它在理论、方法和应用方面都得到了迅速的发展。
偏最小二乘法长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。
而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。
这是多元统计数据分析中的一个飞跃。
偏最小二乘法在统计应用中的重要性体现在以下几个方面:偏最小二乘法是一种多因变量对多自变量的回归建模方法。
偏最小二乘法可以较好的解决许多以往用普通多元回归无法解决的问题。
偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。
主成分回归的主要目的是要提取隐藏在矩阵X 中的相关信息,然后用于预测变量Y 的值。
这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。
但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分进行挑选,那样又太困难了。
偏最小二乘回归可以解决这个问题。
它采用对变量X 和Y 都进行分解的方法,从变量X 和Y 中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。
现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了基本概念偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模型来描述独立变量Y 与预测变量组X 之间的关系:偏最小二乘法(PLS) 简介Y = b0 + b1X1 + b2X2 + ... + bpXp在方程中,b0是截距,bi的值是数据点1到p的回归系数。
例如,我们可以认为人的体重是他的身高、性别的函数,并且从各自的样本点中估计出回归系数,之后,我们从测得的身高及性别中可以预测出某人的大致体重。
对许多的数据分析方法来说,最大的问题莫过于准确的描述观测数据并且对新的观测数据作出合理的预测。
多元线性回归模型为了处理更复杂的数据分析问题,扩展了一些其他算法,象判别式分析,主成分回归,相关性分析等等,都是以多元线性回归模型为基础的多元统计方法。
这些多元统计方法有两点重要特点,即对数据的约束性:变量X 和变量Y 的因子都必须分别从X'X 和Y'Y 矩阵中提取,这些因子就无法同时表示变量X和Y的相关性。
预测方程的数量永远不能多于变量Y 跟变量X 的数量。
偏最小二乘回归从多元线性回归扩展而来时却不需要这些对数据的约束。
在偏最小二乘回归中,预测方程将由从矩阵Y'XX'Y 中提取出来的因子来描述;为了更具有代表性,提取出来的预测方程的数量可能大于变量X 与Y 的最大数。
简而言之,偏最小二乘回归可能是所有多元校正方法里对变量约束最少的方法,这种灵活性让它适用于传统的多元校正方法所不适用的许多场合,例如一些观测数据少于预测变量数时。
并且,偏最小二乘回归可以作为一种探索性的分析工具,在使用传统的线性回归模型之前,先对所需的合适的变量数进行预测并去除噪音干扰。
因此,偏最小二乘回归被广泛用于许多领域来进行建模,象化学,经济学,医药,心理学和制药科学等等,尤其是它可以根据需要而任意设置变量这个优点更加突出。
在化学计量学上,偏最小二乘回归已作为一种标准的多元建模工具。
计算过程基本模型偏最小二乘法(PLS)简介作为一个多元线性回归方法,偏最小二乘回归的主要目的是要建立一个线性模型:Y=XB+E ,其中Y 是具有m 个变量、n 个样本点的响应矩阵,X 是具有p 个变量、n 个样本点的预测矩阵,B是回归系数矩阵,E为噪音校正模型,与Y具有相同的维数。
在通常情况下,变量X 和Y 被标准化后再用于计算,即减去它们的平均值并除以标准偏差。
偏最小二乘回归和主成分回归一样,都采用得分因子作为原始预测变量线性组合的依据,所以用于建立预测模型的得分因子之间必须线性无关。
例如:假如我们现在有一组响应变量Y(矩阵形式)和大量的预测变量X(矩阵形式),其中有些变量严重线性相关,我们使用提取因子的方法从这组数据中提取因子,用于计算得分因子矩阵:T=XW ,最后再求出合适的权重矩阵W,并建立线性回归模型:Y=TQ+E,其中Q是矩阵T的回归系数矩阵,E为误差矩阵。
一旦Q计算出来后,前面的方程就等价于Y=XB+E,其中B=WQ,它可直接作为预测回归模型。
偏最小二乘回归与主成分回归的不同之处在于得分因子的提取方法不同,简而言之,主成分回归产生的权重矩阵W反映的是预测变量X之间的协方差,偏最小二乘回归产生的权重矩阵W 反映的是预测变量X 与响应变量Y 之间的协方差。
在建模当中,偏最小二乘回归产生了pxc的权重矩阵W,矩阵W的列向量用于计算变量X的列向量的nxc的得分矩阵T。
不断的计算这些权重使得响应与其相应的得分因子之间的协方差达到最大。
普通最小二乘回归在计算Y在T上的回归时产生矩阵Q,即矩阵Y的载荷因子(或称权重),用于建立回归方程:Y=TQ+E。
一旦计算出Q,我们就可以得出方程:Y=XB+E ,其中B=WQ ,最终的预测模型也就建立起来了。
非线性迭代偏最小二乘法用于计算偏最小二乘回归的一种标准算法是非线性迭代偏最小二乘法(NIPALS),在这种算法中有许多变量,有些被规范化了,有些却没有。
下面提到的算法被认为是非线性迭代偏最小二乘法中最有效的一种。
对h=1...c,且A0=X'Y , M0=X'X, CO=I,变量 c 已知。
计算qh,Ah'Ah 的主特征向量。
wh=GhAhqh, wh=wh/||wh|| ,并将wh 作为W 的列向量。
偏最小二乘法(PLS) 简介ph=Mhwh, ch=wh'Mhwh, ph=ph/ch ,并将ph 作为P 的列向量。
qh=Ah'wh/ch ,并将qh 作为Q 的列向量。
Ah+1=Ah - chphqh' ,Bh+1=Mh - chphph'Ch+1=Ch - whph'得分因子矩阵T 可以计算出来:T=XW ,偏最小二乘回归系数 B 也可由公式B=WQ 计算出。
SIMPLS 算法还有一种对偏最小二乘回归组分的估计方法,被称为SIMPLS 算法。
对h=1...c ,且A0=X'Y , M0=X'X, C0=I ,变量 c 已知。
计算qh,Ah'Ah 的主特征向量。
wh=Ahqh, ch=wh'Mhwh, wh=wh/sqrt(ch) ,并将wh 作为W 的列向量。
ph=Mhwh ,并将ph 作为P 的列向量。
qh=Ah'wh ,并将qh 作为Q 的列向量。
vh=Chph ,vh=vh/||vh||Ch+1=Ch - vhvh' ,Mh+1=Mh - phph'Ah+1=ChAh与NIPALS 相同,SIMPLS 的T 由公式T=XW 计算出, B 由公式B=WQ' 计算。
相关文献许禄,《化学计量学方法》,科学出版社,北京,1995。
偏最小二乘法(PLS) 简介王惠文,《偏最小二乘回归方法及应用》,国防科技出版社,北京,1996。
Chin, W. W., and Newsted, P. R. (1999). Structural Equation Modeling analysis with Small Samples Using Partial Least Squares. In Rick Hoyle (Ed.), Statistical Strategies for Small SampleResearch, Sage Publications.Chin, W. W. (1998). The partial least squares approach for structural equation modelling. In George A. Marcoulides (Ed.), Modern Methods for Business Research, Lawrence ErlbaumAssociates.Barclay, D., C. Higgins and R. Thompson (1995). The Partial Least Squares (PLS) Approach to Causal Modeling: Personal Computer Adoption and Use as an Illustration. Technology Studies,volume 2, issue 2, 285-309.Chin, W. W. (1995). Partial Least Squares Is To LISREL As Principal Components Analysis Is To Common Factor Analysis. Technology Studies. volume 2, issue 2, 315-319.Falk, R. F. and N. Miller (1992). A Primer For Soft Modeling. Akron, Ohio: The University ofAkron Press.Fornell, C. (Ed.) (1982). A Second Generation Of Multivariate Analysis, V olume 1: Methods. NewYork: Praeger.。