新人教版七年级数学下册周测培优卷10
专题10.2直方图-2021-2022学年七年级数学下册尖子生同步培优题典(原卷版)【人教版】

2021-2022学年七年级数学下册尖子生同步培优题典【人教版】专题姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•泗阳县期中)一组数据共40个,分为6组,第1到第4组的频数之和为28,第5组的频率为0.1,则第6组的频数为( )A.4B.6C.8D.102.(2021秋•井研县期末)某校对1200名女生的身高进行了测量,身高在1.58~1.60(单位:m)这一小组的频率为0.25,则该组的人数为( )A.250B.300C.600D.9003.(2022春•宜兴市校级月考)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数分布直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~12小时之间的学生数大约是( )A.280B.100C.380D.2604.(2022春•江阴市校级月考)一次数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、5、15、8,则第5组的频率是( )A.0.1B.0.2C.0.3D.0.45.(2021秋•南关区校级期末)小明将一枚质地均匀的硬币连续抛掷10次,落地后正面向上7次,反面向上3次,下列说法正确的是( )A.正面向上的频率是7B.正面向上的频率是0.7C.正面向上的频率是3D.正面向上的频率是0.36.(2022•温州模拟)某校950名七年级学生参加跳绳测试,随机抽取部分学生成绩并绘制频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,若校方规定次数达到130次(包括130次)的成绩为“优良”,侧该校成绩“优良”的学生人数约为( )A.35B.65C.350D.6507.(2022•亳州一模)为了解某校八年级400名学生的跳绳情况(60秒跳绳的次数),随机对该年级50名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数x为:60≤x<80),则以下说法正确的是( )A.跳绳次数不少于100次的占80%B.大多数学生跳绳次数在140~160范围内C.跳绳次数最多的是160次D.由样本可以估计全年级400人中跳绳次数在60~80次的大约有48人8.(2022•丘北县一模)某公司今年1~4月的电子产品销售总额如图1所示,其中平板电脑的销售额占当月电子产品销售总额的百分比如图2,据图中信息,得到的结论不合理的是( )A.这4个月,电子产品销售总额为290万元B.平板电脑销售额占当月电子产品销售总额的百分比,1月最高C.这4个月,平板电脑销售额最低的是3月D.平板电脑4月份的销售额比3月份有所下降9.(2022•温州模拟)如图是九(1)班45名同学每周课外阅读时间的频数分布直方图(每组含前一个边界值,不含后一个边界值),由图可知,每周课外阅读时间在6小时及以上的人数有( )A.36人B.14人C.8人D.6人10.(2022•沈河区校级模拟)商店准备进货重量不同的大米,经重量需求的市场调查以后,做出如下统计图,则商店应多进的大米重量规格是( )A.2kg/包B.3kg/包C.4kg/包D.5kg/包二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022春•仪征市期中)为了解一组数据的分布情况,我们可以将一个样本的50个数据分成5组,若第1、2、3、4组的频数分别为2、8、15、15,则第5组的频率为 .12.(2022春•洪泽区期中)王老师为了解本班学生对新冠病毒防疫知识的掌握情况,对本班45名学生的新冠病毒防疫知识进行了测试,并把测试成绩分为5组,第1~4组的频数分别为12,10,6,8,则第5组的频率是 .13.(2022春•大丰区期中)一个样本有100个数据,拟绘制频数分布直方图.现已知最大数为96,最小数为53,如果设置组距为5,则可分成 组.14.(2022春•广陵区期中)为了解新冠肺炎疫情解封后刚复学时学生的心理健康,扬州市某区在全区7600名初中同学中随机抽查了500名同学进行问卷调查,对500个数据进行整理,在频数的统计表中各组的频数之和等于 .15.(2022•辽宁模拟)在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是 .类型健康亚健康不健康数据(人)327116.(2022春•江都区校级月考)为了了解某地初二年级男生的身高情况,某班40名学生的身高如下表,则m的值为 .分组147.5~155.5155.5~163.5163.5~171.5171.5~179.5频数611m频率0.4517.(2022•鹿城区一模)某项目小组对新能源汽车充电成本进行抽测,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中充电成本在300元/月及以上的车有 辆.18.(2021秋•舟山期末)十一国庆期间,小明爸爸从金塘收费站出发到舟山市人民政府办事,导航显示有两条路径可以选择,L1:经过东西快速路;L2:经过海天大道.据统计,通过两条路径所用的时间互不影响所用时间,所用时间落在各时间段内的频率如表:(由公路部门根据当天统计)小明爸爸只有55分钟时间用于赶往目的地,请问他会选择 路径.(填L1或L2)时间(分)35~4040~4545~5050~5555~60L1的频率0.10.20.20.30.2L2的频率00.10.50.30.1三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2022春•石家庄期中)某校为创建书香校园,倡导读书风尚,开展了师生“大阅读”活动,并制订“大阅读”星级评选方案,每月评选一次.为了了解活动开展情况,某星期学校组织对全校八年级“大阅读”五星级评选工作进行抽样调查,随机抽取20名学生阅读的积分情况进行分析,过程如下:收集数据:20名学生的“大阅读”积分如下(单位:分):32 43 34 35 15 46 48 24 45 1025 40 56 42 55 30 47 28 37 42整理数据:请你按如下表格分组整理、描述样本数据,并把下列表格补充完整.积分/分10≤x<2020≤x<3030≤x<4040≤x<5050≤x<60星级红橙黄绿青频数234m n 根据以上数据可制成不完整的频数分布直方图.(1)填空;这组数据的组距是 ,m= ;(2)补全频数分布直方图;(3)估计该校八年级400名学生中获得绿星级及其以上的人数.20.(2022春•大丰区期中)某校为创建书香校园,倡导读书风尚,开展了师生“大阅读”活动,并制订“大阅读”星级评选方案(以整数评分),每月评选一次.为了了解活动开展情况,某星期学校组织对全校八年级“大阅读”五星级评选工作进行抽样调查,随机抽取20名学生阅读的积分情况进行分析:【收集数据】20名学生的“大阅读”积分如下(单位:分):32 43 34 35 15 46 48 24 45 10 25 40 60 42 55 30 47 28 37 42【整理数据】请你按如下表格分组整理、描述样本数据,并把下列表格补充完整.积分/分10≤x≤1920≤x≤2930≤x≤3940≤x≤4950≤x≤60星级红橙黄绿青频数235m n 根据以上数据可制成不完整的频数分布直方图.(1)填空:m= ,n= ;(2)补全频数分布直方图;【得出结论】(3)估计该校八年级600名学生中获得绿星级以上的人数.(4)已知该校八年级学生小艺的积分为a分,是绿星级;小贤的积分为b分,是青星级.如果俩人的积 .分均未出现在样本中,那么b﹣a的最大值是 21.(2022•砚山县一模)某校为了提高学生学习安全知识的积极性,举办了“安全第一”知识大赛,该校所有学生均参加初赛.初赛中,将安全知识设置为100分试卷,学生的分数均在50分以上,为了解学生对安全知识的掌握情况,学校随机抽取一部分学生的成绩进行统计分析,绘制了如下统计图表:频数(人)频率成绩x(分)20.0450<x<60100.260≤x<7014b70≤x<8080≤x <90a 0.3290≤x <10080.16请根据统计图表提供的信息,解答下列问题:(1)本次抽样调查的样本容量是 ;(2)a = ;b = ;(3)补全频数分布直方图;(4)若该校有2800名学生,初赛成绩不低于80分为优秀,则本次初赛达到优秀的学生大约有多少人?22.(2022春•海陵区校级月考)某市举行“传承好家风征文比赛,已知每篇参赛征文成绩记m 分(60≤m ≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了不完整的两幅统计图表.征文比赛成绩频数分布表分数段频数频率60≤m <70380.3870≤m <80a 0.3280≤m <90b c 90≤m ≤100100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中a +b 的值是 ;c 的值是 ;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.23.(2022•西华县一模)某中学为检验思想政治课的学习效果,对八年级学生进行“社会主义核心价值观”知识测试(满分100分),随机抽取部分学生的测试成绩进行统计,并将统计结果绘制成如下尚不完整的统计图表:测试成绩频数分布表组别成绩分组频数频率A50≤x<6040.1B60≤x<70100.25C70≤x<80m nD80≤x<9080.2E90≤x≤10060.15根据以上信息解答下列问题:(1)填空:m= ,n= .(2)补全频数分布直方图.(3)若要画出该组数据的扇形统计图,请计算C组所在扇形的圆心角度数为 .(4)学校计划对测试成绩达到80分及以上的同学进行表彰,若该校共有400人参加此次知识测试,请估计受到表彰的学生人数.24.(2022春•西湖区校级月考)为庆祝“五四”青年节,某中学举行了一场书法比赛,比赛结束后,书法老师随机抽取了部分参赛学生的成绩x(x取整数,满分100分)作为样本,整理并绘制成如图不完整的统计图表.分数段频数频率60≤x<70300.1570≤x<80m0.4580≤x<9060n90≤x≤100200.1请根据以上图表提供的信息,解答下列问题:(1)表格中m= ,n= ;(2)把频数分布直方图补充完整;(3)全校共有600名学生参加比赛,请你估计成绩不低于80分的学生人数.。
2020-2021学年人教版七年级数学下册第10章《数据的收集、整理与描述》提优测试卷

人教版七年级数学下册第10章《数据的收集、整理与描述》提优测试卷题号一二三总分得分(时间:90分钟满分:120分)一、选择题(本大题共8小题,每小题3分,24分在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020云南昆明期末,1)下列调查中,调查方式选择合理的是( )A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解我市七年级学生的身高情况,选择抽样调查C.为了检测乘坐飞机的旅客是否携带违禁物品,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查2.(2020安徽铜陵期末,3)2020年5月20日,随着第一批考生经体温检测等流程后进入考点,铜陵市2020年初中学业水平体育考试正式拉开序幕据了解,铜陵市共有.7万名考生报名参加体育考试,为了了解考生体育成绩,从中抽取2000名考生的体育成绩进行统计,在这个问题中样本是( )A.1.7万名考生B.抽取的2000名考生C.1.7万名考生的体育成绩D.抽取的2000名考生的体育成绩3.(2019四川南充中考,4)在2019年南充市初中毕业升学体育与健康考试中,某校九年级(1)班体育委员对本班50名同学参加球类自选项目的情况做了统计,制作出扇形统计图(如图所示),则该班选考乒乓球的人比选考羽毛球的人多( )A.5人B.10人C.15人D.20人4.(2020陕西延安实验中学期末,6)为了了解某校七年级800名学生的跳绳情况(60秒跳绳的次数),随机对该年级50名学生进行了调查.根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数x为60≤x<80),则以下说法正确的是( )A.最多的跳绳次数是160B.大多数学生跳绳次数在140~160范围内C.跳绳次数不少于100的占80%D.由样本可以估计全年级800人中跳绳次数在60~80范围内的有70人5.(2020北京丰台期末,6)小明统计了同学们5月份平均每天观看北京市“空中课堂”的时间,并绘制了统计图,如图所示(每组数据不包括左端值和右端值).下面有四个推断:①此次调查中,小明一共调查了100名学生;②此次调查中,平均每天观看时间不足30分钟的人数占调查总人数的10%;③此次调查中,平均每天观看时间超过60分钟的人数超过调查总人数的一半;④此次调查中,平均每天观看时间不足60分钟的人数少于平均每天观看时间在60~90分钟范围内的人数所有合理推断的序号是( )A.①②B.①④C.③④D.②③④6.(2020北京海淀期末,5)某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图对于以下四种说法,你认为正确的是( )①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%;④在当地互联网行业中,从事设计岗位的90后人数比从事互联网行业的80前的总人数少A.①③B.②④C.①②D.③④7.(2020浙江嘉兴期末,8)5G移动通信网络将推动我国数字经济发展迈上新台阶,据预测,2020年到2025年中国直接经济产出和间接经济产出的情况如图所示,根据图中提供的信息,下列推断不正确的是( )A.2020年到2025年,5G间接经济产出和直接经济产出都呈增长趋势B.2020年到2022年,5G间接经济产出和直接经济产出共10.7万亿元C.2023年到2024年,5G间接经济产出和直接经济产出的增长率相同D.2020年到2025年,5G间接经济产出总量比直接经济产出总量多3万亿元8.(2018云南中考,13)2017年12月8日,2017带一路数字科技文化节·玉溪暨第10届全国三维数字化创新设计大赛总决赛在玉溪圆满闭幕某校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了如图所示的两幅统计图下列四个选项中,说法错误的是( )A.抽取的学生人数为50B.“非常了解”的人数占抽取的学生人数的12%C.a=72°D.估计全校“不了解”的人数为428二、填空题(本大题共8小题,每小题4分,共32分)9.(2020安徽马鞍山期末,9)下列调查:①调查人们在使用某款手机过程中容易出现的问题;②调查某县中学生对“D&”事件的看法;③调查某班学生的视力情况;④调乘坐飞机的旅客是否携带了违禁物品,其中,适宜采用抽样调查方式的有________10.(2020湖南株洲中考,14)王老师对本班40个学生所穿校服尺码的数据统计如下:则该班学生所穿校服尺码为“L”的人数为________11.(2019山东德州模拟,10)A班学生参加“垃圾分类知识竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图如图所示,那么成绩高于60分的学生占A班参赛人数的百分比为________12.(2019上海中考,14)小明为了解所在小区居民各类生活垃圾的投放情况,随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并作出各类生活垃圾投放量分布情况的扇形统计图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共________13.(2018湖南邵阳中考,15)某市对九年级学生进行综合素质评价,评价结果分为A、B、C、D、E五个等级现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中综合素质评价结果为“A”的学生有________人14.(2019浙江宁波效实中学月考,13)某城市为了了解本市男、女青少年平均身高发育情况,随机调查了6岁18岁的男、女青少年各100人,制作成如图所示的不同年龄平均身高统计图,从图中可知,该城市的男性青少年的身高高于同年龄女性青少年的身高的年龄段大概是________15.(2020湖北十堰中考,13)某校即将举行30周年校庆,拟定了A,B,C,D四种活动方案,为了解学生对方案的意见,学校随机抽取了部分学生进行问卷调查(每人只能赞成一种方案),将调查结果进行统计并绘制成如图所示的两幅不完整的统计图.若该校有学生3000人,请根据以上统计结果估计该校学生赞成方案B的人数为________16.(2019云南中考,5)某中学九年级甲、乙两个班参加了一次数学考试,每班的考试人数都为40,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图所示:根据以上统计图提供的信息,D等级这一组人数较多的班是________三、解答题(本大题共7小题,共64分)17.(2020浙江金华中考,19)(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目进行线上问卷调查(每人必须只选其中一项),得到不完整的统计表和如图所示不完整的统计图.请根据图表信息回答下列问题:(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数18.(2020河北石家庄一模,19)(6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和如图所示的部分频数分布直方图:请结合图表完成下列各题:(1)表中a的值为________;(2)将频数分布直方图补充完整;(3)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?19.(2020山东聊城中考,19)(9分)为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图所示的两幅不完整的统计图根据以上信息,回答下列问题:(1)本次调查的样本容量为________,统计图中的a=________, b=________。
七年级下优十数学试卷答案

一、选择题(每题3分,共30分)1. 下列数中,是有理数的是()A. √2B. πC. -3/5D. √-1答案:C2. 若a > b,则下列不等式中错误的是()A. a + 2 > b + 2B. 2a > 2bC. a - 2 < b - 2D. -a < -b答案:C3. 下列方程中,解为整数的是()A. x^2 - 4x + 3 = 0B. x^2 - 4x - 3 = 0C. x^2 + 4x + 3 = 0D. x^2 + 4x - 3 = 0答案:B4. 若a, b是方程x^2 - (a + b)x + ab = 0的两个实数根,则a + b的值为()A. aB. bC. a + bD. a - b答案:C5. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 1C. y = 1/xD. y = 3x - 2答案:C6. 下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 矩形答案:A7. 若直角三角形的两条直角边长分别为3和4,则斜边长为()A. 5B. 6C. 7D. 8答案:A8. 下列各式中,能被3整除的是()A. 24B. 25C. 26D. 27答案:A9. 若一个长方体的长、宽、高分别为a、b、c,则其体积V为()A. abcB. a + b + cC. ab + bc + caD. a^2 + b^2 + c^2答案:A10. 下列命题中,正确的是()A. 所有的平行四边形都是矩形B. 所有的等腰三角形都是等边三角形C. 所有的等边三角形都是等腰三角形D. 所有的矩形都是平行四边形答案:C二、填空题(每题3分,共30分)11. 3/4 + 2/3 = ____答案:17/1212. (x - 5)^2 = 25,则x = ____答案:10 或 -1013. x^2 - 5x + 6 = 0的解为x = ____答案:2 或 314. 若y = kx + b,且k = 1/2,b = -3,则y = ____答案:y = 1/2x - 315. 若a, b是方程2x^2 - 5x + 3 = 0的两个实数根,则a + b = ____答案:5/216. 若y = kx,且x = 2时,y = 4,则k = ____答案:217. 下列各数中,能被4整除的是____答案:24,2818. 一个长方体的长、宽、高分别为6cm、4cm、3cm,则其表面积为____答案:108cm²19. 若一个圆的半径为5cm,则其周长为____答案:31.4cm20. 下列图形中,是轴对称图形的是____答案:正方形、等边三角形三、解答题(每题10分,共40分)21. 解方程:2x - 5 = 3x + 1答案:x = -622. 若a, b是方程x^2 - 4x + 3 = 0的两个实数根,求a^2 + b^2的值。
新人教版七年级数学下第10周测试卷含答案

【人教版七年级数学(下)周周测】第10周测试卷(测试范围:第七章平面直角坐标系)班级:___________ 姓名:___________ 得分:___________一、选择题(每小题3分,共30分)1.下列点中,位于直角坐标系第二象限的点是()A.(2,1)B.(-2,-1)C.(-2,1)D.(2,-1)2.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4)B.(1,5)C.(1,-3)D.(-5,5)3.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?()A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)4根据下列表述,能确定位置的是()A.开江电影院左侧第12排B.甲位于乙北偏东30°方向上C.开江清河广场D.某地位于东经107.8°,北纬30.5°5.在平面直角坐标系中,若m为实数,则点(﹣2,m2+1)在()A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系中,已知点A(﹣4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是()A.(0,﹣2)B.(4,6)C.(4,4)D.(2,4)7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)8.已知点P(x,y)的坐标满足|x|=3=2,且xy<0,则点P的坐标是()A.(3,-2)B.(-3,2)C.(3,-4)D.(-3,4)9.已知点A(1,0)B(0,2),点P在x轴上,且△P AB的面积为5,则点P的坐标为()A.(-4,0)B.(6,0)C.(-4,0)或(6,0)D.(0,12)或(0,-8)10.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(a-,b).如,f(1,3)=(1-,3);②g(a,b)=(b,a).如,g(1,3)=(3,1);③h(a,b)=(a-,b-).如,h(1,3)=(1-,3-).按照以上变换有:f(g(h(2,3-)))=f(g(2-,3))=f(3,2-)=(3-,2-),那么f(g(h(3-,5)))等于()A.(5-,3-)B.(5,3)C.(5,3-)D.(5-,3)二、填空题(每小题3分,共30分)11.当x= 时,点M(2x-4,6)在y轴上.12.点A(2,7)到x轴的距离为.13.在平面直角坐标系中,一青蛙从点A(﹣1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为.14.如图所示的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是.15.点P(x+1,x﹣1)不可能在第象限.16.已知点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,且点N到y轴的距离为5,则点N的坐标为.17.已知点P(2a﹣6,a+1),若点P在坐标轴上,则点P的坐标为.18.将点P(-3,y)向下平移2个单位,向左平移3个单位后得到点Q(x,-1),则xy=_________.19.已知点M的坐标为(1,﹣2),线段MN=3,MN∥x轴,点N在第三象限,则点N 的坐标为.20.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于X轴,则点C的坐标为___.三、解答题(共40分)21.(6分)如图的方格中有25个汉字,如四1表示“天”,请沿着以下路径去寻找你的礼物:(1)一1→三2→二4→四3→五1(2)五3→二1→二3→一5→三4(3)四5→四1→一2→三3→五2.22.(6分)已知点P(﹣2x,3x+1)是平面直角坐标系中第二象限内的点,且点P到两轴的距离之和为11,求P的坐标.23.(6分)已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.24.(6分)如图是画在方格纸上的某一小岛的示意图.(1)分别写出点A,C,E,G,M的坐标;(2)(3,6),(7,9),(8,7),(3,3)所代表的地点分别是什么?25.(8分)如图所示的方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点A(1,0),B(4,0),C(3,3),D(1,4).(1)描出A、B、C、D、四点的位置,并顺次连接ABCD;(2)四边形ABCD的面积是________.(3)把四边形ABCD向左平移5个单位,再向上平移1个单位得到四边形A′B′C′D′,写出点A′、B′、C′、D′的坐标.26.(10分)如图,在平面直角坐标系xoy 中,)3,4(),0,1(),5,1(---C B A . (1)求出△ABC 的面积.(2)在图中画出△ABC 向右平移3个单位,再向下平移2个单位的图形△1`11C B A . (3)写出点111,,C B A 的坐标.27.(10分)下表是用电脑中Excel (电子表格)制作的学生成绩档案的一部分.中间工作区被分成若干单元格,单元格用它所在列的英文字母和所在行的数字表示.如“余天泽”所在的单元格表示为A 2.(1)C 4单元格中的内容是什么?表中“88”所在的单元格怎样表示?(2)SUM (B 2︰B 4)表示对单元格B 2至B 4内的数据求和.那SUM (B 3︰D 3)表示什么?其结果是多少?A BCD…1 姓名语文 数学 英语 …2 余天泽 99 100 93 ... 3 陈晨 82 96 88 (4)江阳869182…28.(10分)如图,在直角坐标系xOy中,A(﹣1,0),B(3,0),将A,B同时分别向上平移2个单位,再向右平移1个单位,得到的对应点分别为D,C,连接AD,B C.(1)直接写出点C,D的坐标:C,D;(2)四边形ABCD的面积为;(3)点P为线段BC上一动点(不含端点),连接PD,PO.求证:∠CDP+∠BOP=∠OP D.参考答案3.A【解析】根据点到x轴的距离等于纵坐标的长度求出点A的纵坐标,再根据点到y轴的距离等于横坐标的长度求出横坐标,即可得解.解:∵A点到x轴的距离为3,A点在第二象限,∴点A的纵坐标为3,∵A点到y轴的距离恰为到x轴距离的3倍,A点在第二象限,∴点A的横坐标为﹣9,∴点A的坐标为(﹣9,3).故选A.4.D【解析】根据在平面直角坐标系中,要用两个数据才能表示一个点的位置:有序数对,坐标,极坐标,经纬度,可得答案.解:A、开江电影院左侧第12排,不能确定具体位置,故A错误;B、甲位于乙北偏东30°方向上,不能确定甲乙的距离,故B错误;C、开江清河广场,一个数据无法确定位置,故C错误;D、某地位于东经107.8°,北纬30.5°,故D正确;故选:D.5.B【解析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.解:由﹣2<0,m2+1≥1,得点(﹣2,m2+1)在第二象限,故选:B.6.B【解析】先根据点A、B的坐标确定出平移规律,再求解即可.解:∵点A(﹣4,0),点B(0,2),平移后点A、B重合,∴平移规律为向右平移4个单位,向上平移2个单位,∴点B的对应点的坐标为(4,6).故选:B.7.B.【解析】如图可知第四个顶点为:即:(3,2).故选:B.8.D.【解析】∵|x|=3y=2,∴x=3或-3,y=4,∵xy<0,∴x=-3,y=4,∴点P的坐标为(-3,4),故选D.9.C【解析】根据三角形的面积可得AP的长度为5,根据点A的坐标可得:点P的坐标为(-4,0)或(6,0).10.B.【解析】f(g(h(﹣3,5)))=f(g(3,﹣5)=f(﹣5,3)=(5,3),故选B.11.2.【解析】由点M(2x-4,6)在y轴上,得2x-4=0,解得x=2.12.7【解析】根据点到x轴的距离等于纵坐标的长度解答.解:点A(2,7)到x轴的距离为7.13.(1,2).【解析】根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答.解:点A(﹣1,0)向右跳2个单位长度,即﹣1+2=1,向上2个单位,即:0+2=2,∴点A′的坐标为(1,2).故答案为:(1,2).14.(﹣3,0).【解析】根据“士”的坐标向右移动两个单位,再向上移动两个单位,可得原点,根据“炮”的位置,可得答案.解:如图:,“炮”的坐标是(﹣3,0),故答案为:(﹣3,0).15.二【解析】求出点P的横坐标大于纵坐标,再根据各象限内点的坐标特征解答.解:∵(x+1)﹣(x﹣1)=2,∴点P的横坐标大于纵坐标,∴点P(x+1,x﹣1)不可能在第二象限.故答案为:二.16.(﹣5,2)或(5,2)【解析】根据点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,可得点M的纵坐标和点N的纵坐标相等,由点N到y轴的距离为5,可得点N的横坐标的绝对值等于5,从而可以求得点N的坐标.∵点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,∴点M的纵坐标和点N的纵坐标相等.∴y=2.∵点N到y轴的距离为5,∴|x|=5.得,x=±5.∴点N的坐标为(﹣5,2)或(5,2).17.(﹣8,0)或(0,4).【解析】分点P在x轴上,纵坐标为0;在y轴上,横坐标为0,分别列式求出a的值,再求解即可.解:当P在x轴上时,a+1=0,解得a=﹣1,P(﹣8,0);当P在y轴上时,2a﹣6=0,解得a=3,P(0,4).所以P(﹣8,0)或(0,4).故答案为(﹣8,0)或(0,4).18.-6.【解析】∵点P(-3,y)向下平移2个单位,向左平移3个单位后得到点Q(x,-1),∴-3-3=x,y-2=-1,解得x=-6,y=1,∴xy=(-6)×1=-6.19.(﹣2,2).【解析】根据平行于x轴的直线上点的纵坐标相等求出点N的纵坐标,再分点N在点M的右边与左边两种情况求出点N的横坐标,然后根据点N在第三象限解答.∵点M的坐标为(1,﹣2),MN∥x轴,∴点N的纵坐标为﹣2,∵MN=3,∴点N在点M的右边时,横坐标为1+3=4,此时,点N(4,﹣2),点N在点M的左边时,横坐标为1﹣3=﹣2,此时,点N(﹣2,﹣2),∵点N在第三象限,∴点N的坐标为(﹣2,2).故答案为:(﹣2,2).3,520.()【解析】利用平面直角坐标系的平移求出坐标即可.解:∵正方形D的边长为4,AB平行于CD轴,A(-1,1),∴B(3,1),∴C(3,5).故答案为(3,5).21.(1)我是最棒的;(2)努力就能行;(3)明天会更好.【解析】(1)根据表格,分别找出一1→三2→二4→四3→五1表示的汉字,排列即可;(2)根据表格,分别找出五3→二1→二3→一5→三4表示的汉字,排列即可;(3)根据表格,分别找出四5→四1→一2→三3→五2表示的汉字,排列即可.解:(1)一1表示我,三2表示是,二4表示最,四3表示棒,五1表示的,所以礼物为:我是最棒的;(2)五3表示努,二1表示力,二3表示就,一5表示能,三4行,所以礼物为:努力就能行;(3)四5表示明,四1表示天,一2表示会,三3表示更,五2表示好,所以礼物为:明天会更好.22.(﹣4,7).【解析】根据第二象限点的横坐标是负数,纵坐标是正数以及点到两坐标轴的距离的和列出方程,然后求解得到x的值,再求解即可.∵点P(﹣2x,3x+1)在第二象限,且到两轴的距离之和为11,∴2x+3x+1=11,解得x=2,所以,﹣2x=﹣2×2=﹣4,3x+1=3×2+1=7,所以,点P的坐标为(﹣4,7).23.(1)点P的坐标为:(﹣12,﹣9);(2)P点坐标为:(0,﹣3).【解析】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).24.(1)A(2,9),C(5,8),E(5,5),G(7,4);(2)(3,6),(7,9),(8,7),(3,3)分别代表点B、D、F、H.【解析】(1)根据平面直角坐标系分别写出各点的坐标即可;(2)分别找出各点在平面直角坐标系中的位置,即可得解.(1)A(2,9),C(5,8),E(5,5),G(7,4);(2)(3,6),(7,9),(8,7),(3,3)分别代表点B、D、F、H.25.(1)如图.(2)四边形ABCD(3)四边形A′B′C′D′如图.点A′(-4,1)、B′(-1,1)、C′(-2,4),D′(-4,5).【解析】(1)先根据A 、B 、C 、D 四个点的坐标描出四个点的位置,再顺次连结即可;(2)四边形ABCD 的面积可由一个长方形和周围两个小直角三角形的面积求和得到;(3)先根据平移变换的作图方法作出图形,即可得到点A ′、B ′、C ′、D ′的坐标.26.(1)7.5;(2)见解析;(3)111(2,3),(2,2),(1,1)A B C --【解析】根据三角形的面积计算法则进行计算,根据图象的平移法则找出平移后的各点,然后顺次连接.(1)S =5×3÷2=7.5(2)如图:(3))1,1(),2,2(),3,2(111--C B A27.见解析【解析】(1)C 4单元格中的内容是91,表中“88”所在的单元格可表示为D 3;(2)SUM (B 3︰D 3)表示对单元格B 3至D 3内的数据求和,其结果是266.28.(1)(4,2),(0,2);(2)8;(3)见解析【解析】(1)根据C 、D 两点在坐标系中的位置即可得出此两点坐标;(2)先判断出四边形ABCD 是平行四边形,再求出其面积即可;(3)过点P 作PQ ∥AB ,故可得出CD ∥PQ ,AB ∥PQ ,由平形线的性质即可得出结论.解:(1)由图可知,C(4,2),D(0,2).故答案为:(4,2),(0,2);(2)∵线段CD由线段BA平移而成,∴AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴S平行四边形ABCD=4×2=8.故答案为:8;。
人教版七年级数学下册 期末试卷培优测试卷

人教版七年级数学下册期末试卷培优测试卷一、选择题1.9的值是()A.﹣3 B.3 C.±3 D.﹣92.下列车标,可看作图案的某一部分经过平移所形成的是()A.B.C.D.3.如果点P(1-2m,m)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限B.第二象限C.第三象限D.第四象限4.下列两个命题:①过一点有且只有一条直线和已知直线平行;②垂直于同一条直线的两条直线互相平行,其中判断正确的是()A.①②都对B.①对②错C.①②都错D.①错②对5.如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2−∠3=90°B.∠1−∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3−∠1=180°6.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是()A.3 B.4 C.5 D.67.如图,将木条a,b与c钉在一起,1110∠=︒,250∠=︒,要使木条a与b平行,木条a 顺时针旋转的度数至少是()A.10︒B.20︒C.30D.40︒8.在平面直角坐标系中,对于点P(x,y),我们把点P′(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为点A2,点A2的友好点为点A3,点A3的友好点为点A4,⋯⋯以此类推,当点A1的坐标为(2,1)时,点A2021的坐为()A.(2,1)B.(0,﹣3)C.(﹣4,﹣1)D.(﹣2,3)二、填空题9.4的算术平方根是_____.10.已知点P 关于x 轴的对称点为(,1)a -,关于y 轴的对称点为(2,)b -,那么点P 的坐标是________.11.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.13.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图2中115AEF ∠=︒,则图3中CFE ∠的度数为_______.14.已知221m <,若0,m >且2m +是整数,则m =______ .15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ,……,第n 次移动到点n A ,则点2021A 的坐标是______.三、解答题17.计算:(1)3(2)1627(1)--+--⨯-(2)223(5)3-+--18.求下列各式中的x 值.(1)2164x -=(2)3(1)64x -=19.完成下面推理过程,并在括号中填写推理依据:如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3,试说明:AD 平分∠BA C .证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC = =90°(垂直定义)∴ ∥EG (同位角相等,两直线平行)∴∠1= ( )∠2=∠3( )又∵∠3=∠E (已知)∴ =∠2∴AD 平分∠BAC20.如图, 在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A 、B 、C 的对应点分别为A B C '''、、.(1)在图中画出平移后的三角形A B C ''';(2)写出点A '的坐标;(3)三角形ABC 的面积为 . 21.数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用()21-表示它的小数部分”张老师说:“晶晶同学的说法是正确的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:已知83x y +=+,其中x 是一个整数,且01y <<,请你求出20193(3)x y +-的值.二十二、解答题22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm 2,则此正方形的对角线AC 的长为 dm . (2)若一圆的面积与这个正方形的面积都是2πcm 2,设圆的周长为C 圆,正方形的周长为C 正,则C 圆 C 正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm 2,李明同学想沿这块正方形边的方向裁出一块面积为12cm 2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示);(2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示);②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.24.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求∠BAC +∠B +∠C 的度数. (1)阅读并补充下面推理过程解:过点A 作ED ∥BC ,∴∠B =∠EAB ,∠C =又∵∠EAB +∠BAC +∠DAC =180°∴∠B +∠BAC +∠C =180°解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC ,∠B ,∠C “凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ∥ED ,求∠B +∠BCD +∠D 的度数.(提示:过点C 作CF ∥AB ) 深化拓展:(3)如图3,已知AB ∥CD ,点C 在点D 的右侧,∠ADC =70°,点B 在点A 的左侧,∠ABC =60°,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求∠BED 的度数.25.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数.小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.26.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.【参考答案】一、选择题1.B解析:B【分析】 99的算术平方根,而9的算术平方根是3,进而得出答案.【详解】解:因为32=9, 9,故选:B .【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的前提.2.D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A 、不是经过平移所形成的,故此选项错误;B 、不是是经过平移所形成的,故此选项错误;C 、不是经过平解析:D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A 、不是经过平移所形成的,故此选项错误;B 、不是是经过平移所形成的,故此选项错误;C 、不是经过平移所形成的,故此选项错误;D 、是经过平移所形成的,故此选项正确;故选:D .【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义.3.B【分析】互为相反数的两个数的和为0,求出m 的值,再判断出所求点的横纵坐标的符号,进而判断点P 所在的象限.【详解】解:∵点P (1-2m ,m )的横坐标与纵坐标互为相反数∴120m m -+=解得m =1∴1-2m =1-2×1=-1,m =1∴点P 坐标为(-1,1)∴点P 在第二象限故选B .【点睛】本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-). 4.C【分析】根据平行公理及其推论判断即可.【详解】解:①过直线外一点有且只有一条直线和已知直线平行,故错误;②在同一平面内,垂直于同一条直线的两条直线互相平行,故错误;故选:C .【点睛】本题主要考查了命题与定理,平行公理及其推论,属于基础知识,要牢牢掌握. 5.D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 6.A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 7.B【分析】根据两直线平行同旁内角互补和对顶角相等,求出旋转后∠2的同旁内角的度数,然后利用对顶角相等旋转后∠1的度数,继而用旋转后∠1减去110°即可得到木条a 旋转的度数.【详解】解:要使木条a 与b 平行,∴旋转后∠1+∠2=180°,∵∠2=50°,∴旋转后∠1=180°﹣50°=130°,∴当∠1需变为130 º,∴木条a至少旋转:130º﹣110º=20º,故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等,在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.8.A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).∵2021=505×4+1,∴点A2021的坐标为(2,1).故选:A.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键.二、填空题9.【详解】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【详解】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.10.【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x 轴对称,横坐标不变、纵坐标变为相反数;(2)关于y 轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:(2,1)【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x 轴对称,横坐标不变、纵坐标变为相反数;(2)关于y 轴对称,横坐标变为相反数,纵坐标不变点P 关于x 轴的对称点为(,1)a -,则点P 的纵坐标为1点P 关于y 轴的对称点为(2,)b -,则点P 的横坐标为2则点P 的坐标为(2,1)故答案为:(2,1).【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.11.90°【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90°902n ︒ 【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠.【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°;同理可得:∠P 2=14(∠AEF +∠CFE )=45°, ∠P 3=18(∠AEF +∠CFE )=22.5°, ...,∴902n nP ︒∠=, 故答案为:90°,902n ︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案. 【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD =50°,∴12ECD ACD ∠=∠=25°,∴∠1=25°,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13.15°【分析】利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE.【详解】解:∵AE∥BF,∴∠BFE=180°-∠AEF=65°解析:15°【分析】利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE.【详解】解:∵AE∥BF,∴∠BFE=180°-∠AEF=65°,∵2∠BFE+∠BFC=180°,∴∠BFC=180°-2∠BFE=50°,∴∠CFE=∠BFE-∠BFC=15°,故答案为:15°.【点睛】本题考查了平行线的性质、折叠的性质以及角的计算,通过角的计算,求出∠BFE的度数是解题的关键.14.2【分析】根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案.【详解】解:∵是整数,∴m是整数,∵,∴m2≤4,∴−2≤m≤2,∴m =−2,−1解析:2【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 整数即可求出答案.【详解】解:∵∴m 是整数, ∵2m <∴m 2≤4,∴−2≤m ≤2,∴m =−2,−1,0,1,2当m =±2或−1∵0,m >∴m =2故答案为:2.【点睛】本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m 的范围,本题属于中等题型.15.【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正解析:()1,3-【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正确建立坐标系.16.(1010,-1)【分析】根据图象可得移动8次图象完成一个循环,从而可得出点的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-解析:(1010,-1)【分析】A的坐标.根据图象可得移动8次图象完成一个循环,从而可得出点2022【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),…,可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化,横坐标每一次循环增加4∵2021÷8=252…5,∴2021A的坐标为(252×4+2,-1),∴点2021A的坐标是是(1010,-1).故答案为:(1010,-1).【点睛】本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1);(2)【分析】(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.解:解析:(1)3;(2)5【分析】(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.【详解】解:(1)原式=24(3)(1)+--⨯-=633-=;(255【点睛】本题考查了实数的混合运算,算术平方根以及立方根的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键.18.(1);(2)x=5.【详解】分析:(1)先移项,然后再求平方根即可;(2)先求x-1立方根,再求x 即可.详解:(1),∴;(2),∴x -1=4, ∴x=5.点睛:本题考查了立方解析:(1)52x =±;(2)x =5. 【详解】分析:(1)先移项,然后再求平方根即可;(2)先求x -1立方根,再求x 即可.详解:(1)2254x =,∴52x =±;(2)()1x -∴x -1=4, ∴x =5.点睛:本题考查了立方根和平方根的定义和性质,解题时牢记定义是关键,此题比较简单,易于掌握.19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠解析:;;EGC AD E ∠∠;两直线平等行,同位角相等;两直线平行,内错角相等;1∠;等量代换;角平分线定义根据AD ⊥BC ,EG ⊥BC ,可得//AD EG ,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得1E ∠=∠,2=3∠∠,由已知条件∠3=∠E ,等量代换即可的12∠=∠,即可证明AD 平分∠BA C .【详解】证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC =EGC ∠=90°(垂直定义)∴AD ∥EG (同位角相等,两直线平行)∴∠1=E ∠(两直线平等行,同位角相等)∠2=∠3(两直线平行,内错角相等)又∵∠3=∠E (已知)∴1∠=∠2(等量代换)∴AD 平分∠BAC (角平分线的定义)故答案是:∠EGC ;AD ;∠E ;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义.【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键.20.(1)见解析;(2);(3)【分析】(1)根据平移规律确定,,的坐标,再连线即为平移后的三角形;(2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面解析:(1)见解析;(2)()3,1-;(3)7【分析】(1)根据平移规律确定A ',B ',C '的坐标,再连线即为平移后的三角形A B C '''; (2)根据平移规律写出A '的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可.【详解】(1)如图所示,三角形A B C '''即为所求;(2)若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C''',点A'的坐标为(-3,1);(3)三角形ABC的面积为:4×5-12×2×4-12×1×3-12×3×5=7.【点睛】本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键.21.26【分析】先估算出的范围,再求出x,y的值,即可解答.【详解】解:∵,∴的整数部分是1,小数部分是∴的整数部分是9,小数部分是,∴x=9,y=,∴=3×9+(-)2019=27+(解析:26【分析】3x,y的值,即可解答.【详解】解:∵3<2,∴313-1∴8393-1,∴x=9,3-1,∴20193(x y +=3×9+2019=27+(-1)2019=27-1=26.【点睛】二十二、解答题22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采解析:(12)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm 和2xcm∴长方形面积为:2x •3x =12解得x∴长方形长边为>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.二十三、解答题23.(1) ;(2)① ;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1)1902a ︒- ;(2)①1454a ︒+ ;②50︒ 【分析】(1)由平行线的性质得到4'B FC a ∠=∠=,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F ,∴14a ∠=∠=,∵//AD BC ,∴4'B FC a ∠=∠=,180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- , ∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-, 再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭', 13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠, 11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭, 又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.24.(1)∠DAC ;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D=∠FCD ,∠B=∠BCF ,然后根据已知条件即可得到结论;解析:(1)∠DAC ;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D =∠FCD ,∠B =∠BCF ,然后根据已知条件即可得到结论;(3)过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数.【详解】解:(1)过点A 作ED ∥BC ,∴∠B =∠EAB ,∠C =∠DCA ,又∵∠EAB +∠BAC +∠DAC =180°,∴∠B +∠BAC +∠C =180°.故答案为:∠DAC ;(2)过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ,∴∠D =∠FCD ,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.25.(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:(1)CPDαβ∠=∠+∠,理由见解析;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠;当点P在射线AM上时,CPDβα∠=∠-∠.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE +∠CPE =∠α+∠β.(2)当点P 在A 、M 两点之间时,∠CPD =∠β-∠α.理由:如图,过P 作PE ∥AD 交CD 于E .∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠CPE -∠DPE =∠β-∠α;当点P 在B 、O 两点之间时,∠CPD =∠α-∠β.理由:如图,过P 作PE ∥AD 交CD 于E .∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE -∠CPE =∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.26.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论;(2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒;(2)由(1)知,60BAN ∠=︒,45EDF ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45EDF ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.。
2022-2023学年人教版七年级数学下册期末培优检测卷

2022-2023学年七年级数学人教版(下) 期末培优检测卷一、选择题(本大题共12道小题)1. 已知点P(x+3,x﹣4)在x轴上,则x的值为( )A.3B.4C.﹣3D.﹣42. (2021·安徽合肥市·七年级期中)若6x>-6y,则下列不等式中一定成立的是( )A.x+y>0B.x-y>0C.x+y<0D.x-y<03. 若不等式组52230xx->⎧⎨+>⎩的最小整数解是a,最大整数解是b,则a+b=( )A.2B.1C.4D.04. 若不等式组213xx a->⎧⎨≤⎩的整数解共有三个,则a的取值范围是()A.5≤a<6B.5<a≤6C.5<a<6D.5≤a≤65. 如图,点E,F分别是AB,CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是()A.∠AEF=∠EFCB.∠A=∠BCFC.∠AEF=∠EBCD.∠BEF+∠EFC=180°6. (2021春•永定区期中)已知二元一次方程4x-3y=3,用含x的代数式表示y为()A. B. C. D.7. (2021春•天心区期中)若一个正数的两个平方根分别为2-a与3a+6,则这个正数为()A.2B.-4C.6D.368. (2021•长沙模拟)不等式组的解集在数轴上表示正确的是()A. B. C. D.9. 将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°10. 天虹商场现销售某品牌运动套装,上衣和裤子一套售价500元.若将上衣价格下调5%,将裤子价格上调8%,则这样一套运动套装的售价提高0.2%.设上衣和裤子在调价前单价分别为x元和y元,则可列方程组为()A.B.C. D. 11. 从-2,-1,0,1,2,3,5这七个数中,随机抽取一个数记为m,若数m 使关于x 的不等式组22141x m x m >+⎧⎨--≥+⎩无解,且使关于x 的一元一次方程(m -2)x =3有整数解,那么这六个数所有满足条件的m 的个数有( )A.1B.2C.3D.412. (2021·重庆巴蜀中学七年级月考)如图,在平面直角坐标系上有点A(1,﹣1),点A 第一次向左跳动至A 1(﹣1,0),第二次向右跳动至A 2(2,0),第三次向左跳动至A 3(﹣2,1),第四次向右跳动至A 4(3,1)…依照此规律跳动下去,点A 第9次跳动至A 9的坐标( )A.(﹣5,4)B.(﹣5,3)C.(6,4)D.(6,3) 二、填空题(本大题共8道小题) 13. 若不等式231x x x a -+++-≥对一切数x 都成立,则a 的取值范围是________.14. (2021·全国七年级单元测试)不等式122123x x ++>-的最大整数解是__________. 15. (2021·孝义市教育科技局教学研究室七年级期中)点M(a+2,2a-8)是第四象限内一点,若点M 到两坐标轴的距离相等,则点M 的坐标为__________.16. 对于实数x,规定[x]表示不大于x 的最大整数,例如[1.2]=1,[-2.5]=-3,若[x-2]=-1,则x 的取值范围为______.17. (2021·全国七年级单元测试)某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.问宾馆一楼的房间有_______间.18. (2021·山西七年级期末)某中学七年级甲、乙两个班参加了一次数学考试,每班的考试人数都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,现将两个班数学考试成绩统计如下:根据以上统计图提供的信息,可知两个班人数相等的等级是__________.19. 自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.20. (2021·孝义市教育科技局教学研究室七年级期中)如图,将直角三角形ABC 沿着AB 方向平移得到三角形DEF,若AB=6cm,BC=4cm,CH=1cm,图中阴影部分的面积为221cm 4,则三角形ABC 沿着AB 方向平移的距离为__________cm.三、计算题(本大题共2道小题)21. 解方程组和不等式(组):(1)解方程组453212x y x y -=⎧⎨+=⎩ (2)解不等式组:()()()26352141x x x x ⎧->+⎪⎨--≤+⎪⎩22. 解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+34n 3m 133n 2m . 四、解答题(本大题共6道小题)23. 如图,CD ⊥AB 于D,点F 是BC 上任意一点,FE ⊥AB 于E,且∠1=∠2,∠3=80°.(1)证明:∠B=∠ADG;(2)求∠BCA 的度数.24. (2021春•雨花区期中)如图平面直角坐标系中,A(﹣3,3),B(0,2),C(﹣2,0).(1)把三角形ABC 向下平移3个单位长度,再向右平移2个单位,得到三角形A ′B ′C ′,在坐标系中画出平移后的图形并写出A ′、B ′、C ′的坐标.(2)求三角形ABC 的面积.25. (2021春•潮阳区校级期中)某水果店计划进A,B两种水果共100千克,这两种水果的进价和售价如下表所示.(1)若该水果店购进这两种水果共花费740元,求该水果店分别购进A,B两种水果各多少千克?(2)在(1)的基础上,为了促销,水果店老板决定把A种水果全部八折出售,B种水果全部降价10%出售,那么售完后共获利多少元?26. 某水果从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中大樱桃损耗了5%,小樱桃损耗了15% .若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为每千克多少元?(结果精确到0,1)27. 如图,在平面直角坐标系xOy中,已知A(4,0),将线段OA平移至CB,点D在x轴正半轴a +|b﹣3|=0.连接OC,AB,CD,BD.上,C(a,b),且2(1)写出点C的坐标为;点B的坐标为;(2)当△ODC的面积是△ABD的面积的3倍时,求点D的坐标;(3)设∠OCD=α,∠DBA=β,∠BDC=θ,判断α、β、θ之间的数量关系,并说明理由.28. (2021春•芝罘区期中)阅读下列材料:小明同学遇到下列问题:解方程组小明发现如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的(2x+3y)看成一个整体,把(2x﹣3y)看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令m=2x+3y,n=2x﹣3y.原方程组化为,解的,把代入m=2x+3y,n=2x﹣3y,得解得所以,原方程组的解为.请你参考小明同学的做法解方程组:(1); (2).。
七年级数学下学期第10周周考试题试题(共4页)

射洪外国语2021-2021学年(xuénián)七年级数学下学期第10周周考试题老师寄语同学们,人生不可能一帆风顺:当你身处逆境的时候,要可以笑对困难,笑对人生;当你身处顺境的时候,切莫骄傲自满,得意忘形。
班级姓名学号目的分数实际得分一、选择〔每一小题3分,一共30分〕1、以下各数中,互为相反数的是〔〕2、假如A、1B、-1C、±1D、20213、计算的结果是〔〕A、-1B、1C、D、-2254、2021年度一季度,全国城镇新增就业人口289万人,用科学记数法表示289万,正确的选项是〔〕5、某企业今年3月份的产值为万元,4月份的产值比3月份增长了10%,假设5月份的增长率和4月份一样,那么5月份的产值用代数式表示为〔〕6、计算所得的结果是〔〕A、7、以下代数式不是单项式的是〔〕8、代数式中,整式(zhěnɡ shì)有〔〕个A、4B、5C、6D、7、9、以下各组是同类项的有〔〕10、一个多项式与,那么这个多项式是〔〕二、填空题〔每空2分,一共26分〕11、有理数属于非负整数的有,属于分数的有。
12、。
13、绝对值不大于3的整数有。
14、苹果每千克3元,梨每千克2元,买a千克苹果和千克梨,一共用了元。
15、当时,关于的代数式16、单项式的系数是,次数是。
17、多项式的次数是,常数项是。
18、把多项式:。
19、假设单项式。
20、把多项式使其中(qízhōng)一个不含字母是,结果是。
三、计算〔每一小题5分,一共20分〕21、 22、23、24、四、化简求值:〔6分〕25、,其中五、解答(jiědá)题〔18分〕26、的值。
〔6分〕x的多项式的值与x的值无关,求的值。
〔6分〕27、关于x取何值,代数式的值28、试说明:不管恒定不变。
〔6分〕内容总结(1)20、把多项式使其中一个不含字母是,结果是(2)〔6分〕。
七年级数学下学期培优作业10试题

54D 3E 21C B A C21B A 七年级下册数学培优作业10一、选择题1.以下运算中,正确的选项是 ( )(A)(a +b )2=a 2+b 2 (B)(-x -y )2=x 2+2xy +y 2(C)(x +3)(x -2)=x 2-6 (D)(-a -b )(a +b )=a 2-b 22.y -x =2,x -3y =1,那么x 2-4xy +3y 2的值是 ( )(A)-1 (B)-2 (C)-3 (D)-43.如图,∠A =60°,∠B =70°,将纸片的一角折叠,使点C •落在△ABC 内,假设∠2=800那么∠1的度数为 〔 〕A . 200 B. 300 C .400 D. 无法确定(第3题) (第4题) (第5题)4. 如图是一种机器零件上的螺丝,那么该螺丝总长度L 的合格尺寸应该是 ( )A. L =13B. 13<L <15C. 12≤L ≤14D. 12<L <145.如图,以下能断定AB ∥CD 的条件有 ( )个.(1) ︒=∠+∠180BCD B ;(2)21∠=∠;(3) 43∠=∠;(4) 5∠=∠B .x 的不等式组10x x a <⎧⎨>⎩无解,那么a 的取值范围是 〔 〕 A.a <10 B.a ≤ 10 C.a7.把面值20元的纸币换成1元或者5元的纸币,那么换法一共有 〔 〕A. 4种 B. 5种 C .6种 D. 7种8.小敏和小捷两人玩“打弹珠〞游戏,小敏对小捷说:“把你珠子的一半给我,我就有30颗珠子〞.小捷却说:“只要把你的12给我,我就有30颗〞,假如设小捷的弹珠数为x颗,小敏的弹珠数为y颗,那么列出的方程组正确的选项是 ( )〔A〕230260x yx y+=⎧⎨+=⎩〔B〕230230x yx y+=⎧⎨+=⎩〔C〕260230x yx y+=⎧⎨+=⎩〔D〕260260x yx y+=⎧⎨+=⎩9.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的间隔依序为2、3、4、6,且相邻两木条的夹角均可调整,假设调整木条的夹角时不破坏此木框,那么任两螺丝的距离的最大值是 ( )(A)5 (B)6(C)7 (D) 1010.等腰三角形一腰上的高与另一腰的夹角为45°,那么这个等腰三角形的底角为( )(A)67° (B)67.5° (C)22.5° (D)67.5°或者22.5°二、填空题11.计算:212⎛⎫-=⎪⎝⎭.12.截至2021年3月,我国HY两股票账户总数约为16700万户,16700万户用科学计数法表示为户.13.二元一次方程2x+ay=7有一个解是21xy=⎧⎨=-⎩,那么a的值是.14.如图,射线AC∥BD,∠A=70°,∠B=40°,那么∠P=°.15.在△ABC中,假设∠A=∠B,∠C=60°,那么该三角形的形状是三角形.16.分解因式:a2(x-y)-b2(x-y)=.17.假设x=1,y=2是方程组242ax yx y b+=⎧⎨+=⎩的解,ab=.18.数学活动课上,教师在黑板上画直线平行于射线AN〔如图〕,让同学们在直线,和射线AN上各找一点B和C,使得以A、B、C为顶点的三角形是等腰直角三角形.这样的三角形最多能画个.三、解答题19.计算:(1)44440.50.412.41.25⨯⨯; (2)t m+1·t+〔-t〕2·t m〔m是整数〕20.先化简,再求值:(1)(a+1)2-〔1-a〕〔-a-1〕,其中a=34;21.因式分解:(1)x2-64; (2)x2-5x+4; (3)x2y-6xy2+9y3.22.(1)解方程组:7313,4 2.x yx y+=⎧⎨-=⎩(2)解2331,(1)322.(2)4x xxx-+⎧⎪⎨+>-⎪⎩<()E D C B A23.如图,AD 平分∠BAC ,∠EAD =∠EDA .〔1〕∠EAC 与∠B 相等吗?为什么?〔2〕假设∠B =50°,∠CAD ︰∠E =1︰3,求∠E 的度数.24.某地“梅花节〞期间,某公司70名职工组团前往参观欣赏梅花,旅游景点规定:①门票每人60元,无优惠;②景区玩耍可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?25.乘法公式的探究及应用(1)如图1,可以求出阴影局部的面积是 〔写成两数平方差的形式〕;(2)如图2,假设将阴影局部裁剪下来,重新拼成一个矩形,面积是 〔写成多项式乘法的形式〕;(3)比拟图1、图2阴影局部的面积,可以得到公式 ;(4)运用你所得到的公式,计算:〔a +b -2c 〕〔a -b +2c 〕.26.某公司经营甲、乙两种商品,每件甲种商品进价12万元售价14.5万元,每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变,现准备购进甲、乙两种商品一共20件,所用资金不低于190万元,不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)假设用〔2〕中所求得的利润再次进货,请直接写出获得最大利润的进货方案.励志赠言经典语录精选句;挥动**,放飞梦想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周测培优卷10
分数的加法和减法的应用能力检测卷
一、我会填。
(每空2分,共16分)
1.从1里面连续减去1
5,减去( )次后结果是0。
2.一小袋面粉5千克,用去了7
8,还剩下( )。
3.一令白纸,第一周用了它的310,第二周用了它的2
5,还剩下这令白
纸的( )。
4.水果店运来苹果25吨,比香蕉多1
3吨,求运来苹果和香蕉共多少吨。
列式为( ),结果是( )。
5.一瓶水12L ,喝了它的27,还剩它的( )。
一瓶水12L ,喝了2
7L ,还
剩( )L 。
6.一本故事书,依依第一天看了全书的25,第二天看了剩下的2
5,第
( )天看得多。
二、我会辨。
(对的画“√”,错的画“×”)(每题3分,共9分)
1.一根木料,用去25,还剩3
5m 。
( ) 2.一根木料,用去25 m ,还剩下3
5 m 。
( )
3.淘气用一张彩纸的34折轮船,笑笑用一张同样大的彩纸的3
5折飞机。
笑笑所用的彩纸要大些。
( ) 三、我会选。
(每题4分,共12分)
1.学校买来一批书,其中文艺书占25,科技书占文艺书的13。
1
3这个分
率对应的单位“1”是( )。
A .学校买来的这批书 B .科技书的本数 C .文艺书的本数
2. 妈妈给小军买了一个文具盒用去31
2元,买了一个篮球用去43.2元,
共用去( )元。
A .46.4
B .4615
C .467
10
3.一杯纯牛奶,小红喝了1
4杯后,加满温开水,又喝了半杯后就去做
作业了。
小红喝的水多还是牛奶多?说法正确的是( )。
A .牛奶多 B .水多 C .一样多 四、计算挑战。
(共18分)
1.直接写出得数。
(每题1分,共6分)
54-34= 15+16= 0.125-18= 13+17= 12-16= 34+16=
2.计算下面各题,怎样简便就怎样算。
(每题3分,共6分)
79-⎝ ⎛⎭⎪⎫49-
25 58+920-18+1120
3.解方程。
(每题3分,共6分)
1+x -38=9
10 x -⎝ ⎛⎭
⎪⎫23+14=112
五、走进生活,解决问题。
(每题9分,共45分)
1.环保小组每周按计划回收废品,艳艳完成了环保小组任务的9
25,
琪琪完成了2
5,剩下的由霏霏完成。
霏霏完成了小组任务的几分之几?
2.一块地的面积是56公顷,其中的13种玫瑰花,1
6种郁金香,其余的部
分种杜鹃花。
种杜鹃花的面积占总面积的几分之几?
3.一根木料,第一次截去310米,第二次截去910米,还剩3
10米。
这根
木料原长多少米?
4.用1米长的铁丝正好围成一个等腰三角形,一条腰长2
5米,底长多
少米?
5.第17屇世界游泳锦标赛奖牌分布情况如下表:
(1)美国、中国和俄罗斯获得的奖牌数共占奖牌总数的几分之几?
(2)其他国家获得的奖牌数占奖牌总数的几分之几?
答案
一、1.5 2.1
8
3.310
4.25-13+25 715吨
5.57 314 [点拨] 第一问列式是1-27,第二问列式是12-27。
6.一 二、1.× 2.× 3.× 三、1.C 2.C 3.A
四、1.12 1130 0 1021 13 11
12
2. 79-⎝ ⎛⎭
⎪⎫49-25
=79-49+25 =13+25 =1115 58+920-18+1120 =58-18+⎝ ⎛⎭⎪⎫920+1120
=1
2+1
=112 3.1+x -38=9
10
解:x +58= 9
10
x = 910-58 x = 1140
x -⎝ ⎛⎭
⎪⎫23+14=112 解:x -1112=112
x =112+1112 x =1
五、1.1-925-25=6
25
答:霏霏完成了小组任务的6
25。
2.1-13-16=12
答:种杜鹃花的面积占总面积的1
2。
[点拨] 不能用56去减13、1
6,而要用1去减。
3.310+910+310=32(米)
答:这根木料原长3
2米。
4.1-25-25=15(米)
答:底长1
5米。
5.(1) 23114+538+25
228
=46228+30228+25228 =101228
答:美国、中国和俄罗斯获得的奖牌数共占奖牌总数的101
228。
(2)1-101228=127228
答:其他国家获得的奖牌数占奖牌总数的127
228。