浅论复合材料无损检测技术的现状与发展论文【最新版】

合集下载

浅析新型复合材料的无损检测

浅析新型复合材料的无损检测

浅析新型复合材料的无损检测摘要:本研究对新型复合材料的无损检测进行了浅析,重点探讨了无损检测技术在复合材料领域的应用及其难点。

介绍了新型复合材料的特点及其在工程领域中的广泛应用。

同时分析了传统无损检测技术在复合材料中的局限性和不足之处。

其次,详细介绍了几种常用的新型无损检测技术,包括超声波检测、热红外检测和X射线检测等,并探讨了它们的原理和应用范围。

最后讨论了新型无损检测技术在复合材料中的挑战,如信号处理、缺陷分析和可靠性评估。

提出了改进和发展新型无损检测技术的建议,以满足复合材料领域对无损检测精度和效率的要求。

本文的研究成果对于新型复合材料的无损检测技术的发展以及相关工程应用具有重要的参考价值。

关键词:无损检测;新型复合材料;制备方法;特性与应用;原理与分类一、引言随着科技的不断进步和工业发展的需要,新型复合材料在航空航天、汽车、建筑等领域中得到广泛应用。

与传统材料相比,新型复合材料具有轻质、高强度、耐腐蚀等优点,然而,其无损检测成为制约其应用的重要因素之一。

因此,对新型复合材料的无损检测的研究具有重要的理论和实践意义。

二、新型复合材料概述(一)材料组成及制备方法随着科技的不断进步,新型复合材料在各个领域扮演着越来越重要的角色。

新型复合材料是由不同种类的材料组合而成,以达到更优越的性能和特性。

其制备方法也多种多样,可以根据具体的应用需求进行调整。

纳米复合材料是一种常见的新型复合材料,其制备方法主要包括溶胶凝胶法、沉积法和熔化法等。

通过控制材料的尺寸和结构,可以使纳米复合材料具有独特的物理和化学性质。

与传统材料相比,纳米复合材料具有更高的强度、硬度和韧性,同时还具有良好的耐腐蚀性能。

(二)复合材料的特性与应用复合材料具有优异的物理性能。

由于复合材料由不同的材料组成,可以根据实际需求灵活调节其物理性能。

比如,通过调整复合材料中不同材料的比例和形态,可以使其具有较高的密度、导热性和电导率等特性,满足不同场合的需求。

【检测表征】复合材料无损检测技术的现状及发展趋势

【检测表征】复合材料无损检测技术的现状及发展趋势

【检测表征】复合材料无损检测技术的现状及发展趋势摘要由于具有轻质、高强和可加工性等优势,复合材料在航空航天领域的应用不断增加。

碳纤维增强聚合物复合材料(CFRP)构件的损伤特性要求能够简化损伤过程模型,使剩余寿命预测更准确。

随着CFRP结构越来越大、越来越复杂,需要能够量化和充分表征材料状态的无损评估(nondestructive evaluation,NDE)技术来建立能够产生准确的剩余寿命预测的损伤进展模型。

本系列专题文章主要内容来自于美国宇航局兰利中心(NASA Langley Research Cente)的综述性文章,概述了用于航空航天复合材料定量表征的无损检测技术的现状,并讨论无损检测研究的未来方向。

本文首先分析了NDE背景及技术现状。

1复合材料无损检测NDE技术近年来,航空航天领域逐渐提高了CFRP在航空航天飞行器中的应用比例,正如波音787大量使用CFRP、美国宇航局的复合材料乘员舱和液态氢(LH2)低温罐所显示的那样,人们正在推动将复合材料用于主要结构部件。

随着这些CFRP结构越来越大、越来越复杂,一种能够量化和全面表征损伤的无损评价技术呼之欲出。

定量表征CFRP构件损伤的能力是使损伤发展模型能够产生准确的剩余寿命预测的必要条件。

例如,分层损伤的“完整”表征需要超出损伤平面内面积(大小)的定量度量范围,包括损伤发生的深度/层数。

对于多层分层损伤,如果可能的话,全面评估最好包括所有分层的深度和尺寸。

其他损伤类型的“完整”损伤特征可能需要不同的损伤信息,比如微裂纹的最好特征是测量与材料深度相关的微裂纹密度,而纤维波纹度可能需要对意外位置的平面内或平面外对准/波纹角度的受影响位置和相应范围进行统计测量纤维的数量。

获得航空航天复合材料无损检测损伤定量表征的挑战不仅取决于复合材料的结构尺寸和损伤类型的复杂性,还取决于航空航天应用所需复合材料组件的复杂几何结构。

美国国家航空航天局(NASA)无损评估科学分部(NESB)的研究方法包括常规、导波和相敏超声方法、红外热成像和x射线计算机断层成像技术,利用仿真工具优化和开发这些方法是一个活跃的研究领域。

复合材料检测和试验技术在国内的发展状况和趋势

复合材料检测和试验技术在国内的发展状况和趋势
2.在材料选择及性能测试方面的应用
要想获得理想的复合材料结构, 必须对材料进行科学、严格、经济地选择。为了减少材料的预选项目, 首先评定了复合材料的湿热性能。复合材料在一般湿热环境中, 由于吸湿引起的增塑作用, 使其高温力学性能下降。以国内开展的648/BF.MEA环氧树脂体系的碳纤维增强复合材料湿热试验为例,当其吸湿量达到约0.8%时,在125℃,复合材料剪切强度的保持率为69.5%。。由此可见, 湿热老化对复合材料剪切强度的影响及湿热试验对复合材料的重要性。同时, 还需要注意到材料的工艺性考核及冲击疲劳强度。为了快速有效地控制复合材料的质量,要对预浸料及层压板的性能进行一系列的测试试验, 并制订一套完整的试验标准。其测试试验目的如下:
3.在评定复合材料构件质量中的应用
对复合材料构件来说, 当确定了结构设计、工艺制造方案后, 必须对构件的制造过程实行监测, 另外, 对最终零件除进行常规检查测定外, 还要应用无损检测的方法探测其内部缺陷以评定最终产品质量。随炉试板亦称工艺检验试板。它是采用与其所代表的零件相同的材料、制造方法、工作环境条件、固化工艺并随零件同炉或罐固化的试样。通过对试样进行各项性能试验来评价零件的加工质量与设计标准的符合性。
超声检测 超声检测技术是应用声波能量的衰减来探测和判定内部缺陷。它有两种检测方法, 即穿透法和脉冲反射法。在超声检测中, 一般采用三种记录与显示方法, 目前一般用C扫描法。C扫描是在记录纸上以平面视图的方式显示缺陷的影响。超声技术一般用于探测疏松、层间夹杂、分层、紧固件孔缺陷等, 并可进行定量评定, 因此, 它的应用较广泛。
具有可设计性。所以, 复合材料结构设计不同于常规的金属结构设计, 而是一种包含了材料设计和结构设计在内的复合性的设计。复合材料制件的材料设计和结构设计是在同时交错进行, 并且在这一过程中, 要进行不同铺层方向层压板的机械性能试验。虽然复合材料结构设计比金属结构设计复杂得多, 但是, 它具有结构优化怜计的性能。因此, 可以采用大量的试验来保证结沟优化设计的实施, 从而为设计人员提供宽广的活动范围, 可以设计出结构效率更高的构件。

无损检测技术的最新研究进展与应用趋势

无损检测技术的最新研究进展与应用趋势

无损检测技术的最新研究进展与应用趋势无损检测技术是一种在不破坏被检测物体完整性的情况下,通过对材料进行各种无损检测方法的应用,来获取有关材料内部缺陷、损伤或性质变化的信息。

随着科技的不断发展,无损检测技术也在不断创新与进步。

本文将介绍无损检测技术的最新研究进展以及应用趋势。

首先,最新的研究进展之一是超声波无损检测技术的发展。

超声波无损检测技术是一种广泛应用于工程结构、航空航天、医学等领域的无损检测方法。

近年来,基于超声波技术的数字化、自动化、智能化方向的研究不断深入。

例如,通过引入深度学习算法,研究人员开发了基于超声波的人工智能无损检测系统,可以自动识别并评估缺陷。

此外,新型超声传感器的开发也在提高超声波无损检测技术的性能,如新型压电材料的引入能够提供更高的检测灵敏度和更宽的工作频率范围。

其次,热红外无损检测技术也取得了重要的研究进展。

热红外无损检测技术通过检测物体表面的红外辐射来获得有关其内部结构的信息。

这种技术可以广泛应用于建筑、电力、电子、半导体等领域。

近年来,随着红外相机技术的进步和成本的降低,热红外无损检测技术得到了广泛应用。

研究人员已经提出了许多新的图像处理算法和模型来改善热红外图像的质量和信息提取的准确性。

此外,应用基于人工智能的算法,如深度学习,可以实现对热红外图像进行自动缺陷识别和分类,大大提高了检测效率和准确性。

此外,激光技术在无损检测领域也取得了新的研究进展。

激光在无损检测中具有高分辨率、高灵敏度和非接触性等优点,因此在材料缺陷检测、表面形貌测量等方面得到了广泛应用。

最新研究中,研究人员将激光与其他无损检测技术相结合,如红外成像和光纤传感器,以提高检测的准确性和精度。

此外,基于光谱分析的激光无损检测技术也得到了重要的突破。

研究人员通过对物体反射、散射、透射的光谱特性进行分析,可以获取有关材料内部结构和性质的信息,从而实现对材料缺陷的快速检测和定量评估。

在无损检测技术的应用趋势方面,一方面,随着无损检测技术的不断完善和普及,其在制造业、建筑、交通运输等行业的应用会更加广泛。

无损检测技术的研究现状与应用展望

无损检测技术的研究现状与应用展望

无损检测技术的研究现状与应用展望无损检测技术是指利用物理、化学、材料学等科学原理,通过对被检测对象进行无损检测,实现对物体内部结构、材料缺陷、物理性能、化学成分等相关信息的测量和分析。

在很多工业领域中,无损检测技术已经成为了保证产品质量和安全的重要手段。

本文将介绍无损检测技术的研究现状和应用展望。

一、无损检测技术的研究现状1. 检测方法无损检测技术包括很多种检测方法。

其中最常用的有磁粉检测、涡流检测、X射线检测、超声波检测等。

这些技术都有自己的特点和适用范围,可以根据被检测物体的不同需要选择不同的技术进行检测。

2. 检测设备随着技术的不断发展,新型无损检测设备也不断被研发出来。

例如,利用红外线技术进行无损检测的设备、利用激光技术进行无损检测的设备等。

这些设备不仅可以提高检测效率和精度,还能够满足更多的检测需求。

3. 检测精度无损检测技术的发展不仅在于技术方法和设备的不断改进,还在于检测精度的提高。

对于高要求的检测任务,需要更高的检测精度才能够满足。

目前,国内外都在开展高精度无损检测技术的研究。

二、无损检测技术的应用展望1. 航空航天领域在航空航天领域中,无损检测技术可以进行对飞行器内部结构、液压系统、高温材料、复合材料等关键部位的检测,确保飞行器的安全飞行。

未来,无损检测技术的发展将能够进一步提高飞行器残余寿命的估计和风险评估的准确性,从而保障飞行器更加安全。

2. 石化、能源领域在石化、能源领域中,无损检测技术可以进行对油气管道、石油储罐、核电站设备等的检测,防范安全事故的发生。

未来,无损检测技术的应用将更加广泛,例如对火电机组、风力发电设备等的无损检测,从而提高其安全性和运行效率。

3. 汽车制造领域在汽车制造领域,无损检测技术可以进行对汽车发动机、车轮、车底等部位的无损检测。

随着新能源汽车的兴起,无损检测技术的应用需求也将不断增加。

未来,无损检测技术将成为新能源汽车的重要保障。

总的来说,无损检测技术的研究和应用将会不断发展。

无损检测技术的改进与创新趋势展望

无损检测技术的改进与创新趋势展望

无损检测技术的改进与创新趋势展望无损检测技术是一种不改变被测物体外形、性能和使用条件的情况下,通过检测仪器和设备对被测物体进行内部和表面的材料性质、缺陷和结构状态等进行识别和评价的技术。

它在多个领域中扮演着重要的角色,如航空航天、汽车制造、核电站等。

随着科技的进展,无损检测技术也在不断改进和创新,展望未来,该技术将迎来新的发展趋势。

首先,无损检测技术在检测方法上的改进是未来发展的重点。

目前常见的无损检测方法包括超声波检测、射线检测、涡流检测、磁粉检测等。

随着技术的不断发展,新的检测方法也将逐渐崭露头角。

例如,红外热像检测技术在建筑、电力等领域有着广泛的应用前景。

它可以通过测量物体发出的红外辐射来识别潜在的问题,如能源泄漏、电路问题等。

此外,激光技术的应用也为无损检测带来了新的机会。

激光干涉检测技术可以通过光的干涉原理,实现对物体表面形貌的精确测量。

这种技术可以广泛应用于制造业和工业领域。

其次,无损检测技术在设备性能和精度上的改进是一个重要的发展方向。

目前的无损检测设备主要依赖于传感器和计算机技术。

然而,随着计算机和传感器技术的快速发展,无损检测设备的性能将会得到极大提升。

传感器技术的进步将使得无损检测设备更加灵敏和准确。

同时,计算机技术的发展使得大数据的处理和分析成为可能,这将有助于提高对检测结果的解读和评估。

此外,人工智能和机器学习技术的引入也将使无损检测设备更加智能化。

通过对大量数据的学习和训练,设备可以自动检测和识别缺陷,提高工作效率和准确性。

第三,无损检测技术在应用领域拓展方面将有更多的创新。

目前广泛使用无损检测技术的领域主要集中在制造业和航空航天领域。

然而,随着技术的不断进步,该技术将被应用于更多的领域。

例如,在医疗领域,无损检测技术可用于新生儿筛查、乳腺癌筛查等。

此外,无损检测技术还可以应用于文物修复领域,通过非接触式的检测方法保护和修复珍贵的文物和艺术品。

随着无损检测技术在更多领域的应用,它的价值和影响力将进一步得到提升。

复合材料无损检测技术的现状与展望

复合材料无损检测技术的现状与展望

复合材料无损检测技术的现状与展望复合材料是一种由两种或两种以上的不同材料组成的材料,具有两种或两种以上的材料的一个以上的主要特性,并且通过界面作用加以结合。

复合材料具有结构轻、强度高、耐腐蚀性好等优点,广泛应用于航空航天、轨道交通、汽车制造、建筑工程等领域。

由于复合材料在制造和使用过程中存在的隐蔽缺陷和损伤,在实际工程应用中对其无损检测技术提出了挑战。

复合材料无损检测技术的发展和应用具有重要意义。

目前,针对复合材料无损检测技术的发展,国内外学者们开展了大量的研究工作。

复合材料无损检测技术主要包括超声波检测、热成像技术、红外光谱检测、微波检测、电磁检测等多种技术手段。

针对不同复合材料的特性和应用场景,需要结合具体情况选择合适的无损检测技术进行检测分析,以确保复合材料的质量和安全性。

超声波检测是目前应用最为广泛的一种复合材料无损检测技术。

超声波是一种机械波,在弹性介质中传播时,能够产生回波信号。

通过测定回波信号的特性,可以判断材料中存在的缺陷或损伤情况。

超声波检测技术具有分辨率高、灵敏度高、检测速度快等优点,适用于对复合材料中的内部缺陷进行检测分析。

随着超声波检测技术的不断发展,还衍生出了多种改进手段,如相控阵超声波技术、数字式超声波技术等。

这些技术手段在提高检测精度、扩大应用范围等方面具有重要意义。

热成像技术是另一种常用的复合材料无损检测技术。

热成像技术通过测量被检测物体发出的红外辐射,得到物体表面的温度信息,通过对比分析温度分布,可以判断出材料表面的缺陷或损伤情况。

热成像技术具有无接触、无污染、全方位检测等优点,特别适用于对复合材料外表面的损伤进行检测分析。

在热成像技术的基础上,还可以结合红外光谱检测技术,对被检测物体进行更加全面的无损检测分析,提高检测精度和准确性。

除了上述介绍的技术手段外,微波检测技术和电磁检测技术也在复合材料无损检测中得到了广泛应用。

微波检测技术利用微波的穿透性能和衍射特性,可以对材料内部的损伤进行检测分析,具有检测范围广、适用于各种材料等优点。

复合材料无损检测技术的现状与展望

复合材料无损检测技术的现状与展望

复合材料无损检测技术的现状与展望一、无损检测技术的特点无损检测技术可以通过非破坏性方法对复合材料的内部缺陷进行检测,无需破坏检测对象,能够为复合材料的质量控制提供全面的数据,节约成本并提高效率。

同时,该技术对环境和工作人员的安全也具有重要意义。

二、无损检测方法现有的无损检测方法主要包括以下几种:1.超声波检测超声波检测技术是目前应用最广泛的无损检测技术之一。

超声波不仅能够测量材料的厚度,还能检测材料内部的缺陷。

在复合材料的制造中,这种方法广泛应用于判断增强纤维的定向、层压板的结构和碳纤维复合材料的各种缺陷。

2. X 射线检测X 射线检测是一种常用的确定复合材料中是否存在内部缺陷的方法。

在该方法中,通过 X 射线探伤仪对材料进行扫描,然后观察 X 射线照片上的影像来识别任何可能的缺陷。

3. 红外热波检测红外热波检测是以红外线热感相机为基础的一种无损检测方法。

它可以测量复合材料的表面温度并通过软件来处理这些数据以确定材料中是否存在缺陷。

三、现有的技术的局限性当前的无损检测技术面临以下挑战:1. 确定合适的检测参数和技术标准来规范检测精度和可靠性;2. 时间成本高,检测效果受复合材料的厚度、形状、材质和缺陷类型的影响;3. 现有的技术无法满足对大型复合结构或复杂形状构件的全面检测要求。

四、未来的发展方向1. 整合多种无损检测技术,利用不同检测方法的互补性,提高检测精度、评估效率和代码可读性;2. 利用大数据分析技术和人工智能技术来处理海量数据以提高无损检测的准确性和效率;3. 研发新型无损检测技术,例如毫米波辐射检测、压电传感器检测技术和磁场扫描技术,以提高无损检测的有效性。

总之,随着复合材料的广泛应用和无损检测技术的发展,无损检测技术将在精度和效率方面取得更大的进展。

这些技术将会对航空航天、机械制造、汽车生产等各个领域的制造工作产生很大的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅论复合材料无损检测技术的现状与发展论文
1 概述
复合材料之所以能够成为20 世纪迅速地在工业部门推广应用的新材料、新结构, 无损检测技术发挥了十分重要的推动作用, 反过来, 复合材料也为无损检测技术的迅速发展带来了更多的研究空间。

一些过去在金属材料无损检测中因技术障碍而面临困境的检测技术, 在复合材料对无损检测技术的需求牵引下, 得到了新的飞速发展。

如针对初期基于金属材料及其结构在负载作用下产生应力波的物理现象的声发射检测技术、基于物理波相干原理的激光全息干涉检测技术、激光超声检测技术等, 几乎都是70 年代问世, 80 年代在应用中由于物理信号特征解释困难、环境条件要求苛刻或技术上有待进一步突破等原因, 难以在工程上找到用武之地, 自90 年代后则得到了迅速的应用发展。

由于复合材料的先进性与其质量的离散性和高成本并存, 在实际应用中, 即使是经过研究和试验制订的合理工艺, 在结构件的制造过程中还可能会产生缺陷,引起质量问题, 严重时还会导致整个结构件的报废, 造成重大经济损失。

因此, 国外自70 年代以来, 就针对复合材料的研究、应用开展了全方位的无损检测技术研究。

早期主要是沿用金属材料所采取的一些检测方法, 进行复合材料的无损检测技
术探索, 随着研究工作的深入, 人们对复合材料的内部规律和缺陷特征有了更深的认识, 发现完全采用常规金属材料无损检测的方法不能解决复合材料的无损检测问题。

因此, 进入80 年代后, 才真正走向复合材料无损检测, 研究出了许多适应复合材料特点的无损检测新技术、新方法, 从而为解决复合材料的无损检测、促进复合材料的推广应用发挥了重要作用。

目前复合材料无损检测已经应用于材料、结构件和服役无损检测3 个方面。

技术上已从初期的检测方法探索发展到目前的检测方法研究、信号处理技术、传感器技术、缺陷识别技术、成像显示技术、仪器设备技术、结构件检测技术、定量检测与评估、服役结构寿命评估、强度评估和性能测试等。

无损检测技术已经成为复合材料研究和应用中的一项关键技术, 融入复合材料从研究到最终装机应用的全过程。

2 复合材料无损检测技术的应用范围
复合材料无损检测主要应用于以下3 个方面:(1)材料无损检测;(2)结构无损检测;(3)服役无损检测。

2.1 材料无损检测
材料无损检测主要解决材料研究中面临的问题,进行诸如材料内
部缺陷表征、性能测试、缺陷基本判据的建立、无损检测物理数学模型的建立等研究。

其检测对象主要是试样、试片, 采用精细无损检测技术, 面对材料研究过程, 重视无损检测物理数学模型的建立,重点开展新的检测方法研究。

采用高分辨率超声成像检测技术得到的复合材料内部 3 个不同深度位置的超声层析扫描检测结果, 被检测试样为正交铺层的碳纤维层压结构, 厚度为1 .5 mm 。

从图中可以看出碳纤维束的取向, 即使是一些位于纤维束之间的细小缺陷也能较好地检测出来,箭头所指的白色区域即为纤维束间的细小缺陷。

从中还能清晰地看出, 试样近表面层靠近左侧纤维束的走向似乎不如右侧有规律。

这些信息的获得对材料和工艺研究非常有益, 为得到这种微细缺陷信息, 必须采用高精度的超声扫描检测技术。

2.2 结构无损检测
结构无损检测主要解决结构在工艺制订、结构件制造过程中面临的问题, 如对各种结构件进行无损检测所需的仪器设备等检测手段的建立、信号处理技术、缺陷判别、标准建立与完善等。

检测的对象是各种装机应用的工程结构件, 需要工程化检测技术, 面对结构件制造过程, 重视无损检测手段的建立, 重点开展高效可靠的检测技术研究。

图4 是一种典型的针对复合材料结构的超声检测设备, 可以用于多种复合材料结构的自动扫描检测。

2.3 服役无损检测
服役无损检测主要研究装机结构件在服役过程中所需的无损检测方法、手段等, 包括提供有关结构件残余寿命、剩余强度、损伤扩展等综合信息的评估。

检测的对象是装机后的各种服役结构件, 采用易实现、快速可行的外场检测技术, 面对产品结构的安全服役全过程, 重视外场检测技术与结构件的安全服役的质量保证, 重点开展外场检测技术研究。

如中国航空工业制造工程研究所研制生产的FCC 外场复合材料检测仪,是目前用于外场复合材料服役结构件无损检测的主要仪器, 具有很高的检测分辨率。

3 复合材料无损检测技术现状
经过不断的研究、发展和完善, 目前超声和X 射线照相法检测已成为 2 种最主要和成熟的复合材料无损检测技术。

特别是超声检测技术, 由于被检测物理量与复合材料内部缺陷存在最为良好的可精确表述的物理数学关系, 因此, 通常复合材料构件都要求采用超声方法进行100 %无损检测。

大量的研究和应用也表明, 超声是目前国内外复合材料无损检测最为实用有效、应用最为广泛的无损检测技术, 它能可靠地检测出复合材料中的分层、疏松、孔隙等大部分危害性缺陷。

基于超声反射回波原理, 目前可以检测到复合材料内部微细缺陷信息, 采用超声层析检测技术还可以得到复合材料结构内部不同深
度、不同截面位置的C 扫描、T扫描和B 扫描检测结果。

对于一些特殊的复合材料结构, 或者特殊缺陷(如夹层结构中的芯缺陷)及重要部位(如连接接头和较为受力部位), 则采用X 射线照相法辅助检测。

利用X 射线衰减原理, 可以检测出引起材料厚度或密度1 %~ 2 %变化的缺陷, 但对于碳纤维/树脂基复合材料, 由于其密度小、缺陷大多位于铺层之间, 缺陷的存在引起的厚度变化非常小, 因此, X 射线照相法一般不用于这类复合材料的无损检测, 它主要用于夹层结构的无损检测。

声显微和超声层析是揭示复合材料内部微细规律的精细无损检测技术。

在众多的无损检测方法中, 目视检测、敲击法检测、超声谐振法检测是最为廉价的复合材料无损检测方法。

超声相关、X 射线背散射、声-超声、声发射等检测技术, 都在复合材料无损检测中寻找应用空间, 但在复合材料研究和结构件制造过程中, 目前还较难找到应用场合。

未来的复合材料无损检测将更加追求快速高效,因此, 基于干涉原理和温度场分布原理的激光全息干涉检测技术和热/红外成像检测技术, 因其具有非接触、可大面积扫描、快速等特点, 将成为复合材
料结构无损检测的良好技术。

但目前还必须突破一些技术难题, 赋予这些检测技术新的工程应用内涵, 才能使其广泛用于复合材料结构的无损检测。

4 复合材料无损检测技术的发展
未来复合材料的无损检测技术应围绕以下几个方面开展研究。

(1)针对复合材料装机结构件的快速高效无损检测技术。

赋予传统复合材料无损检测新的技术内涵, 使之更适合未来复合材料的低成本设计、制造和装机应用主流, 通过提高传统检测技术的功效, 达到提高检测效率、降低检测成本的目的。

开展无损检测新技术和新方法的研究, 探索研究适合复合材料的快速高效无损检测技术和方法。

美国等复合材料用量较大的国家,自90 年代后期已经开始将复合材料无损检测技术研究的重点转移到快速高效的无损检测方向, 而且有了初步应用成果。

(2)针对新型复合材料的无损检测技术。

与发达国家相比, 目前我国复合材料无损检技术的研究深度和发挥作用的程度还远远不够。

在复合材料及其应用研究过程中, 如果
能很好地掌握其内部微细规律, 对复合材料工艺制订、结构制造等将具有重要的作用和意义。

复合材料的一个重要结构特征就是内部各组分之间物理界面复杂, 如果能利用无损检测技术得到这些界面的全部信息, 将会对材料研究和工艺分析起十分重要的指导作用。

(3)复合材料无损检测技术的升华。

未来复合材料无损检测只有与材料的性能、结构件的寿命和剩余强度密切结合, 才能发挥更大的作用。

近年来国外已经在这方面开展了大量的研究工作。

(4)国内复合材料无损检测硬件的自主建设。

复合材料无损检测也是一个技术产业, 其研究成果和效益在很大程度上是通过为复合材料应用部门提供无损检测硬件平台和技术支持来实现的。

必须经过自身的努力和投入才能得到一流的技术, 形成自己的技术产业, 发挥效益, 复合材料无损检测行业也不例外, 真正的技术和手段必须通过自主研究和开发, 当然, 可以充分利用国际技术平台, 但不应盲目地采购实物。

相关文档
最新文档