复合材料缺陷及无损检测技术共37页文档
复合材料无损检测技术

五、超声波检测
原理:利用缺陷与基体间不同特征引起的波长吸收/反射差 异来判定被测物(20KHz);
优势
1. 操作简单;
局限
1. 不同的缺陷需使用
不同的探头; 2. 对人员要求高;
2. 可定位缺陷位置;
8
五、超声波检测
9
五、超声波检测
适用于:分层,孔隙等缺陷;
大型蜂窝结构部件、大曲面结构部件
3
三、X射线检测
原理:利用缺陷与基体间的密度差异引起的X射线吸收率;
局限
1. 设备复杂成本高; 2. 需安全防护; 3. 无法现场检测;
4
三、X射线检测
适用于:检测材料中的孔隙(黑影),裂纹(黑纹), 纤维屈曲(白纹),夹杂(白点)等 缺陷;
黑纹 白点
黑影
中小型复材部件
5
四、红外热成像检测
原理:利用缺陷与基体间不同热特征引起的温度差异来 判定被测物;
优势
1. 操作方便; 2. 设备简单; 3. 可现场检测;
局限
1. 要求工件传热性好; 2. 测试深度有限; 3. 灵敏度不高;
6
四、红外热成像检测
适用于:脱粘,分层等面积性缺陷;
复材薄板与金属胶接
复材无损检测技术
2018-4-27
目录
01-02 03-03 04-05 06-07 08-10
复材常见缺陷 复材常见检测技术 X射线检测
红外热成像检测
超声波检测
一、复材常见缺陷
分层
纤维弯曲
孔隙
基体开裂、脱粘
纤维断裂、突出
冲击、撞伤损伤
1
一、复材常见缺陷
1
分层: 存储时间过长;热膨胀系数不匹配;挥发物产生
复合材料缺陷激光散斑数字成像无损检测技术

复合材料缺陷激光散斑数字成像无损检测技术帅家盛(北京嘉盛国安科技有限公司)一、应用背景:复合材料在航空、航天、兵器、船舶、汽车、建筑、医疗、制药、压力容器、橡胶工业等行业中占的比例越来越大,然而复合材料在生产和使用过程易产生开胶、分层、冲击损伤、渗水、蜂窝变形等缺陷,缺陷的扩展给装备带来安全隐患。
目前国内复合材料的检测普遍采用落后的敲击法、超声波、声阻检测方法,这些方法普遍存在灵敏度低、对操作者要求高、缺陷难以定量和定位、检测速度慢等问题。
国外普遍采用先进的激光错位散斑成像无损检测技术,不仅检测灵敏度高,缺陷可以直观数码成像,还可以精确测量缺陷的尺寸、位置,操作简捷方便、速度快,成为复合材料生产或现场无损检测专门解决方案。
成立于1977年的美国激光技术有限公司(LTI)是世界激光散斑成像无损检测技术的领导者,其激光散斑成像技术克服了其它检测手段和早期激光干涉检测技术的许多瓶颈和局限,广泛应用于飞机、火箭、卫星、导弹、舰船、飞船、装甲等生产或在役检测,在实践中证实了巨大的成本效益和超强的无损检测能力。
二、数字激光散斑成像检测原理和特点:1、基本检测原理:激光错位散斑无损检测系统利用共路径干涉计对工件表面对加载变化的离面变形一次导数进行成像,原理如下图所示:上图左为用LTI迈克逊错位散斑成像干涉仪检测带有一个120mm直径平底孔平板结构试件的原理示意图,平板中部被加载后表面产生变形,被激光错位镜头和高端摄像头进行实时采集和数字相移处理,输出到计算机处理器操作系统,检测结果可以在电脑屏幕上实时成像显示,如右图所示。
图中激光错位探头通常使用经过两个重要改进的迈克逊干涉计:其一、一个镜片被精确的倾斜,从而得到了一个相对于工件第二张图像的一个剪切偏移量(或错位图像)。
剪切量是一个矢量,它包括一个角度和一个位移量。
剪切量决定了干涉计对表面位移导数的灵敏度。
在检测视野内,剪切矢量偏置的两幅激光散斑图像的对应点在工件表面上方发生干涉。
复合材料检测

复合材料检测复合材料是一种由两种或两种以上的材料组合而成的材料,具有优良的性能和广泛的应用领域。
然而,由于其复杂的结构和多样的组成,复合材料的质量检测成为了一个非常重要的问题。
本文将介绍复合材料检测的方法和技术,以及在实际应用中的一些注意事项。
首先,复合材料的检测方法有很多种,其中包括非破坏性检测和破坏性检测。
非破坏性检测是指在不破坏样品的情况下进行检测,常用的方法包括超声波检测、X射线检测、磁粉检测等。
这些方法可以快速、准确地检测出复合材料中的缺陷和异物,对于保证产品质量和安全性具有重要意义。
而破坏性检测则是指在破坏样品的情况下进行检测,通过对样品的组织结构和性能进行分析来评估其质量和可靠性。
其次,复合材料的检测技术也在不断地发展和完善。
随着科学技术的进步,新型的检测设备和方法不断涌现,为复合材料的质量检测提供了更多的选择和可能。
例如,纳米材料的应用使得复合材料的表面和内部缺陷可以更加精细地检测和分析,提高了检测的准确性和可靠性。
同时,人工智能和大数据技术的应用也为复合材料的检测提供了新的思路和方法,使得检测过程更加智能化和高效化。
此外,在实际应用中,复合材料的检测还需要注意一些问题。
首先,检测人员需要具备专业的知识和技能,能够熟练操作各种检测设备和仪器,并能够准确地分析和判断检测结果。
其次,检测过程需要严格遵循相关的标准和规范,确保检测结果的准确性和可靠性。
最后,对于检测结果的处理和分析也需要进行科学、合理的评估,及时采取相应的措施和处理方法,保证产品质量和安全性。
综上所述,复合材料的检测是一个非常重要的环节,关系着产品质量和安全性。
随着科学技术的不断进步和发展,复合材料的检测方法和技术也在不断地完善和提高,为保障产品质量和安全性提供了更多的可能。
因此,我们需要不断地学习和掌握新的检测方法和技术,提高自身的检测能力和水平,为复合材料的质量检测做出更大的贡献。
复合材料无损检测的介绍

2012.No16 0摘 要 复合材料以其优异的特性得到了越来越多人的重视,随着其应用范围和应用量的不断增加,人们对其质量的要求也越来越高。
在这种情况下,各种检测手段便开始被应用在了复合材料的质量检测中。
其中,无损检测技术 (简称NDT)以其不破坏材料完整性等优点而成为亮点。
本文对复合材料和无损检测进行了介绍,着重介绍了无损检测技术在复合材料检测中的应用。
关键词 复合材料 无损检测在现代高技术中,材料技术已与信息技术、能源技术并列为三大支柱技术,而高新技术对于新材料的依赖也变得越来越突出。
由于复合材料具有高的比强度和比刚度,性能可设计自由度高,抗腐蚀和抗疲劳能力高,减震性能好,可以制成所需的任意形状的产品和综合发挥各组成材料的优点等特性,复合材料已经和无机材料、金属材料和高分子材料一起成为材料领域的四个方面之一[1]。
复合材料的先进性与其质量的离散性和高成本并存,在实际应用中,即使经过研究和试验制定了合理的工艺,但在复合材料结构件的制造过程中还有可能产生缺陷,引起质量问题,甚至导致整个结构件的报废,造成重大经济损失。
因此自20世纪70年代起,国外针对复合材料的制造和应用开展了全方位的无损检测技术研究。
20世纪80年代后,许多适应复合材料特点的无损检测新技术、新方法相继诞生,为解决复合材料的无损检测、促进复合材料的推广应用发挥了重要作用[2]。
1 复合材料复合材料(Composite Materials)一词,国外20世纪50年代开始使用,国内使用大约开始于60年代,复合材料是一类成分复杂的多元多相体系,很难准确地予以定义。
比较简明的说法是,复合材料是由两种或两种以上的不同性能、不同形态的组分材料通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点,又显示了原组分材料所没有的新性能。
《材料大词典》对复合材料给出了比较全面完整的定义:复合材料是由有机高分子、无机非金属、活金属等几类不同材料通过复合工艺组合而成的新型材料,它既能保留原组分材料的主要特色,又通过复合效应获得原组分所不具备的性能。
复合材料的无损检测

复合材料的无损检测作者:周胜兰来源:《大飞机》2019年第03期在对飞机的检测中,无损检测是一种非常重要的手段。
所谓无损检测,是指以不损坏目前及将来使用功能和使用可靠性的方式,对材料、制件进行宏观缺陷检测、几何特性测量、化学成分分析、组织结构和力学性能变化表征,并进而就材料或制件对特定应用的适用性进行评价。
近年來,随着复合材料在商用飞机上的用量不断增加,复合材料的无损检测引起了业界的高度关注。
由于具有比强度和比刚度高、可设计性强等优点,先进复合材料正成为新一代民用飞机的主要结构材料,如波音787、空客A350等机型的复合材料设计用量已经达到或超过结构重量的50%。
从某种程度上说,复合材料用量已经成为现代商用飞机先进性的一个重要标志。
与传统的金属材料结构相比,复合材料结构是一种通过基体-增强物之间的物理结合和铺层设计,来达到预期性能的集材料和工艺于一体的新型材料结构。
因此,复合材料的无损检测不能简单沿用金属材料检测的方法,而必须根据复合材料的结构特点,采用新的无损检测技术和方法。
近年来,国内外对复合材料的无损检测主要采用了超声检测、空气耦合超声检测、激光超声检测、相控阵超声检测、红外热成像检测、激光全息(散斑)检测、声发射检测等方法。
作为行业龙头,美国波音公司在复合材料的无损检测方面积累了较为丰富的经验,其在787客机上的一些创新做法值得我们借鉴。
787在设计时采用了电子化结构,使得更多的系统处于电子监控之下,以电子监控取代过去的目视检查,并在复合结构中嵌入了先进的状态监控系统,这种结构上的优化大大减轻了运营商定期检修的负担。
787的无损检测除了通用部分外,几乎没有涉及具体位置的检测。
射线检测部分。
787无损检测的射线检测部分所涉及的检查方法与传统机型一致。
超声检测部分。
787无损检测的超声检测部分针对不同的检测要求和检测环境引入了新的检测技术。
例如,针对BMS 8-276材料的损伤检测及胶接修补检测,除了增加A扫描外,还增加了超声相控阵C扫描;针对BMS 8-276材料蒙皮与加强条的脱胶检测,引入了一种新的滚轮式探头,这种探头可以快速且高质量地完成扫查;针对BMS 8-276材料机身蒙皮、机翼或者尾部结构等大面积检测离层,波音引入了件号为MAUS V的检测系统,该检测系统为C 扫描系统,采用水作为耦合剂;针对BMS 8-276材料大面积检测离层及蒙皮与加强条脱胶,采用OMNISCAN系列仪器,搭配滚轮式超声相控阵探头,可以非常高效地完成大区域扫查;针对蜂窝结构蒙皮与芯的脱胶检测,引入了一种C扫描检测方法,这种检测方法相比传统方法具有更高的检测灵敏度;针对BMS 8-276检测离层及蒙皮与加强条脱胶的情况,波音还引入了一种超声相机检测技术,该检测技术可以采用多种显示方式,检测结果显示直观。
复合材料结构件无损检测技术分析

复合材料结构件⽆损检测技术分析复合材料结构件⽆损检测技术分析摘要:本⽂通过对复合材料结构件缺陷和损伤特点的分析,介绍可应⽤于复合材料结构缺陷包括⽬视检查法、声阻法、射线检测技术、超声检测技术、声- 超声技术、涡流检测技术、微波检测技术在内的⽆损检测技术。
并对⽆损检测技术的技术关键进⾏剖析,展望了⽆损检测技术的未来发展。
关键词:复合材料⽆损检测缺陷随着航空制造技术的不断发展,复合材料以其⾼的⽐强度、⽐刚度及良好的抗疲劳性和耐腐蚀性获得⼴泛应⽤。
由于纤维增强复合材料具有导电性差、热导率低、声衰减⾼的特点,在物理性能⽅⾯呈显著的各向异性,使得它对波传播所引起的作⽤与普通⾦属材料相⽐具有很⼤的差异,因⽽其⽆损检测技术与⾦属的检测⼤不相同,复合材料检测⽇益成为该领域的重点和难点。
在这种情况下,航空航天检测迫切需要有⼀种更有效的⼿段来提⾼复合材料构件的⽣产质量或修理⽔平。
复合材料构件的成型过程是极其复杂的,其间既有化学反应,⼜有物理变化,影响性能的因素甚多,许多⼯艺参数的微⼩差异会导致其产⽣诸多缺陷,使产品质量呈现明显的离散性,这些缺陷严重影响构件的机械性能和完整性。
由于复合材料结构制造质量的离散性,必须通过⽆损检测来鉴别产品的内部质量状况,以确保产品质量,满⾜设计和使⽤要求。
随着先进复合材料技术研究与应⽤的⾼速增长,复合材料⽆损检测技术也迅速发展起来,已成为新材料结构能否有效和扩⼤应⽤的关键。
⼀、复合材料结构件缺陷的产⽣与特点先进复合材料中的缺陷类型⼀般包括: 孔隙、夹杂、裂纹、疏松、纤维分层与断裂、纤维与基体界⾯开裂、纤维卷曲、富胶或贫胶、纤维体积百分⽐超差、铺层或纤维⽅向误差、缺层、铺层搭接过多、厚度偏离、磨损、划伤等, 其中孔隙、分层与夹杂是最主要的缺陷。
材料中的缺陷可能只是⼀种类型, 也可能是好⼏种类型的缺陷同时存在。
缺陷产⽣的原因是多种多样的, 有环境控制⽅⾯的原因, 有制造⼯艺⽅⾯的原因, 也有运输、操作以及使⽤不当的原因, 如外⼒冲击、与其他物体碰撞和刮擦等。
复合材料无损检测方法

AU 技术的基本原理为 ,采用压电换能器或激 光照射等手段在材料 (复合材料或各向同性材料) 表 面激发脉冲应力波 ,应力波在内部与材料的微结构 (包括纤维增强层合板中的纤维基体 ,各种内在的或 外部环境作用产生的缺陷和损伤区) 相互作用 ,并经 过界面的多次反射与波型转换后到达置于结构同一 或另一表面的接收传感器 (压电传感器或激光干涉 仪) ,然后对接收到的波形信号进行分析 ,提取一个 能反映材料 (结构) 力学性能 (强度和刚度) 的参量 , 称为应力波因子 。
声2超声 (Acoustic2Ultrasonic ,简称 AU) 技术又 称应力波因子 ( Stress Wave Factor , 简称 SWF) 技 术 。与通常的无损检测方法不同 ,AU 技术主要用 于检测和研究材料中分布的细微缺陷群及其对结构 力学性能 (强度或刚度) 的整体影响 ,属于材料完整 性评估技术[9 ,10 ] 。
复合材料缺陷及无损检测技术

常见的复合材料缺陷
夹芯结构以及蜂窝芯子
面板 胶接层 蜂窝芯子
常见的复合材料缺陷
纤维断裂、树脂富集和孔洞
常见的复合材料缺陷
面芯脱胶
常见的复合材料缺陷
芯间脱胶
常见的无损检测方法
1. 无损检测(NDT):应用于制造过程、成品检验
和在役检测等各个阶段
2. 无损检测:在不破坏的前提下,检查工件宏观缺陷
复合材料缺陷、无损检测 及性能测试
常见的复合材料缺陷
1. 针对纤维增强层合板和夹芯板而言 2. 产生领域:生产、运输和使用过程 3. 类型:孔洞(voids, porosity)
脱胶 (debonds) 分层 (delaminatioБайду номын сангаасs) 撞击 (impact damage) 纤维断裂 (broken fibres) 树脂裂纹 (resin cracks)
状况的无损检测方法称为涡流检测
2. 原理:
常见的无损检测方法
涡流检测
常见的无损检测方法
涡流检测
常见的无损检测方法
非常规检测方法
声发射 光全息成像 红外热成像 微波检测 机械阻抗 泄漏检测 Acoustic Emission (AE) Optical Holography Infrared Thermography Microwave Testing Mechanical Impedance Leak Testing (LT)
激光全息成像
常见的无损检测方法
红外热成像:借助物体热辐射得到热气像的检测技术 特点:非接触
实时 高效 直观
常见的无损检测方法
红外热成像
常见的无损检测方法
红外热成像
铝蜂窝芯子