导数与函数的极值、最值-高考理科数学试题

合集下载

高中数学导数的应用极值与最值专项训练题(全)

高中数学导数的应用极值与最值专项训练题(全)

高中数学专题训练 导数的应用——极值与最值一、选择题1.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( ) A .a -2b =0 B .2a -b =0 C .2a +b =0 D .a +2b =0 答案 D解析 y ′=3ax 2+2bx ,据题意,0、13是方程3ax 2+2bx =0的两根∴-2b 3a =13, ∴a +2b =0. 2.当函数y =x ·2x 取极小值时,x =( ) A.1ln2 B .-1ln2 C .-ln2 D .ln2 答案 B解析 由y =x ·2x 得y ′=2x +x ·2x ·ln2令y ′=0得2x (1+x ·ln2)=0∵2x >0,∴x =-1ln23.函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( ) A .0<b <1 B .b <1C .b >0D .b <12 答案 A解析 f (x )在(0,1)内有极小值,则f ′(x )=3x 2-3b 在(0,1)上先负后正,∴f ′(0)=-3b <0,∴b >0,f ′(1)=3-3b >0,∴b <1综上,b 的范围为0<b <14.连续函数f (x )的导函数为f ′(x ),若(x +1)·f ′(x )>0,则下列结论中正确的是( )A .x =-1一定是函数f (x )的极大值点B .x =-1一定是函数f (x )的极小值点C .x =-1不是函数f (x )的极值点D .x =-1不一定是函数f (x )的极值点 答案 B解析 x >-1时,f ′(x )>0 x <-1时,f ′(x )<0∴连续函数f (x )在(-∞,-1)单减,在(-1,+∞)单增,∴x =-1为极小值点.5.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( )A .-173B .-103C .-4D .-643 答案 A解析 y ′=x 2+2x -3.令y ′=x 2+2x -3=0,x =-3或x =1为极值点.当x ∈[0,1]时,y ′<0.当x ∈[1,2]时,y ′>0,所以当x =1时,函数取得极小值,也为最小值.∴当x =1时,y min =-173.6.函数f (x )的导函数f ′(x )的图象,如右图所示,则( )A .x =1是最小值点B .x =0是极小值点C .x =2是极小值点D .函数f (x )在(1,2)上单增 答案 C 解析 由导数图象可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C.7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( ) A .f (-a 2)≤f (-1) B .f (-a 2)<f (-1) C .f (-a 2)≥f (-1)D .f (-a 2)与f (-1)的大小关系不确定 答案 A解析 由题意可得f ′(x )=32x 2-2x -72.由f ′(x )=12(3x -7)(x +1)=0,得x =-1或x =73.当x <-1时,f (x )为增函数;当-1<x <73时,f (x )为减函数.所以f (-1)是函数f (x )在(-∞,0]上的最大值,又因为-a 2≤0,故f (-a 2)≤f (-1).8.函数f (x )=e -x ·x ,则( )A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确 答案 B 解析f ′(x )=-e -x ·x +12x·e -x =e -x (-x +12x)=e -x ·1-2x2x. 令f ′(x )=0,得x =12. 当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f (12)=1e ·12=12e.二、填空题9.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________.答案 -23 -16解析 y ′=ax+2bx +1.由已知⎩⎨⎧a +2b +1=0a 2+4b +1=0,解得⎩⎪⎨⎪⎧a =-23b =-1610.已知函数f (x )=13x 3-bx 2+c (b ,c 为常数).当x =2时,函数f (x )取得极值,若函数f (x )只有三个零点,则实数c 的取值范围为________答案 0<c <43解析 ∵f (x )=13x 3-bx 2+c ,∴f ′(x )=x 2-2bx ,∵x =2时,f (x )取得极值,∴22-2b ×2=0,解得b =1.∴当x ∈(0,2)时,f (x )单调递减,当x ∈(-∞,0) 或x ∈(2,+∞)时,f (x )单调递增.若f (x )=0有3个实根,则⎩⎨⎧f (0)=c >0f (2)=13×23-22+c <0,,解得0<c <4311.设m ∈R ,若函数y =e x +2mx (x ∈R )有大于零的极值点,则m 的取值范围是________.答案 m <-12解析 因为函数y =e x +2mx (x ∈R )有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图象可得-2m >1,即m <-12.12.已知函数f (x )=x 3-px 2-qx 的图象与x 轴相切于(1,0),则极小值为________.答案 0解析 f ′(x )=3x 2-2px -q , 由题知f ′(1)=3-2p -q =0. 又f (1)=1-p -q =0,联立方程组,解得p =2,q =-1. ∴f (x )=x 3-2x 2+x ,f ′(x )=3x 2-4x +1. 由f ′(x )=3x 2-4x +1=0,解得x =1或x =13,经检验知x =1是函数的极小值点,∴f (x )极小值=f (1)=0. 三、解答题 13.设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值. 解析 由f (x )=sin x -cos x +x +1,0<x <2π,知f ′(x )=cos x +sin x +1,于是f ′(x )=1+2sin(x +π4).令f ′(x )=0,从而sin(x +π4)=-22,得x =π,或x =3π2. 当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,由上表知f (x )的单调递增区间是(0,π)与(3π2,2π),单调递减区间是(π,3π2),极小值为f (3π2)=3π2,极大值为f (π)=π+2.14.设函数f (x )=6x 3+3(a +2)x 2+2ax .(1)若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,求实数a 的值;(2)是否存在实数a,使得f(x)是(-∞,+∞)上的单调函数?若存在,求出a 的值;若不存在,说明理由.解析f′(x)=18x2+6(a+2)x+2a.(1)由已知有f′(x1)=f′(x2)=0,从而x1x2=2a18=1,所以a=9;(2)由于Δ=36(a+2)2-4×18×2a=36(a2+4)>0,所以不存在实数a,使得f(x)是(-∞,+∞)上的单调函数.15.已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.(1)若x=1是函数f(x)的一个极值点,求a的值;(2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围.解析(1)f(x)=ax3-3x2,f′(x)=3ax2-6x=3x(ax-2).∵x=1是f(x)的一个极值点,∴f′(1)=0,∴a=2.(2)解法一①当a=0时,f(x)=-3x2在区间(-1,0)上是增函数,∴a=0符合题意;②当a≠0时,f′(x)=3ax(x-2a),令f′(x)=0得:x1=0,x2=2a.当a>0时,对任意x∈(-1,0),f′(x)>0,∴a>0符合题意;当a<0时,当x∈(2a,0)时,f′(x)>0,∴2a≤-1,∴-2≤a<0符合题意;综上所述,a≥-2.解法二f′(x)=3ax2-6x≥0在区间(-1,0)上恒成立,∴3ax-6≤0,∴a≥2 x在区间(-1,0)上恒成立,又2x<2-1=-2,∴a≥-2.16.已知函数f(x)=-x2+ax+1-ln x.(1)若f(x)在(0,12)上是减函数,求a的取值范围;(2)函数f(x)是否既有极大值又有极小值?若存在,求出a的取值范围;若不存在,请说明理由.解析(1)f′(x)=-2x+a-1x,∵f(x)在(0,12)上为减函数,∴x∈(0,12)时-2x+a-1x<0恒成立,即a<2x+1x恒成立.设g(x)=2x+1x,则g′(x)=2-1x2.∵x∈(0,12)时1x2>4,∴g′(x)<0,∴g(x)在(0,12)上单调递减,g(x)>g(12)=3,∴a≤3.(2)若f(x)既有极大值又有极小值,则f′(x)=0必须有两个不等的正实数根x1,x2,即2x2-ax+1=0有两个不等的正实数根.故a 应满足⎩⎪⎨⎪⎧Δ>0a 2>0⇒⎩⎨⎧a 2-8>0a >0⇒a >22,∴当a >22时,f ′(x )=0有两个不等的实数根,不妨设x 1<x 2, 由f ′(x )=-1x (2x 2-ax +1)=-2x (x -x 1)(x -x 2)知,0<x <x 1时f ′(x )<0,x 1<x <x 2时f ′(x )>0,x >x 2时f ′(x )<0,∴当a >22时f (x )既有极大值f (x 2)又有极小值f (x 1).1. 已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为 1,则a 的值等于________.答案 1解析 ∵f (x )是奇函数,∴f (x )在(0,2)上的最大值为-1,当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2.令f ′(x )>0,则x <1a ,∴f (x )在(0,1a )上递增;令f ′(x )<0,则x >1a ,∴f (x )在(1a ,2)上递减,∴f (x )max =f (1a )=ln 1a -a ·1a =-1,∴ln1a =0,得a =1.2.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (1)求a 、b 的值;(2)若对任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2时取得极值, 则有f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4. (2)由(1)可知,f (x )=2x 3-9x 2+12x +8c , f ′(x )=6x 2-18x +12=6(x -1)(x -2).当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0; 当x ∈(2,3)时,f ′(x )>0.所以,当x =1时,f (x )取得极大值f (1)=5+8c . 又f (0)=8c ,f (3)=9+8c ,则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c .因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9.因此c 的取值范围为(-∞,-1)∪(9,+∞). 3.已知函数f (x )=x 3-3ax 2+3x +1. (1)设a =2,求f (x )的单调区间;(2)设f (x )在区间(2,3)中至少有一个极值点,求a 的取值范围.解析 (1)当a =2时,f (x )=x 3-6x 2+3x +1,f ′(x )=3(x -2+3)(x -2-3). 当x ∈(-∞,2-3)时f ′(x )>0,f (x )在(-∞,2-3)上单调增加; 当x ∈(2-3,2+3)时f ′(x )<0,f (x )在(2-3,2+3)上单调减少; 当x ∈(2+3,+∞)时f ′(x )>0,f (x )在(2+3,+∞)上单调增加. 综上,f (x )的单调增区间是(-∞,2-3)和(2+3,+∞),f (x )的单调减区间是(2-3,2+3).(2)f ′(x )=3[(x -a )2+1-a 2].当1-a 2≥0时,f ′(x )≥0,f (x )为增函数,故f (x )无极值点; 当1-a 2<0时,f ′(x )=0有两个根, x 1=a -a 2-1,x 2=a +a 2-1.由题意知,2<a -a 2-1<3,①或2<a +a 2-1<3.②①式无解.②式的解为54<a <53.因此a 的取值范围是(54,53).1.“我们称使f (x )=0的x 为函数y =f (x )的零点.若函数y =f (x )在区间[a ,b ]上是连续的,单调的函数,且满足f (a )·f (b )<0,则函数y =f (x )在区间[a ,b ]上有唯一的零点”.对于函数f (x )=6ln(x +1)-x 2+2x -1,(1)讨论函数f (x )在其定义域内的单调性,并求出函数极值. (2)证明连续函数f (x )在[2,+∞)内只有一个零点.解析 (1)解:f (x )=6ln(x +1)-x 2+2x -1定义域为(-1,+∞), 且f ′(x )=6x +1-2x +2=8-2x 2x +1,f ′(x )=0⇒x =2(-2舍去).由表可知,f (x )值在区间(-1,2]上单调递增,在[2,+∞)上单调递减. ∴当x =2时,f (x )的极大值为f (2)=6ln3-1.(2)证明:由(1)知f(2)=6ln3-1>0,f(x)在[2,7]上单调递减,又f(7)=6ln8-36=18(ln2-2)<0,∴f(2)·f(7)<0.∴f(x)在[2,7]上有唯一零点.当x∈[7,+∞)时,f(x)≤f(7)<0,故x∈[7,+∞)时,f(x)不为零.∴y=f(x)在[7,+∞)上无零点.∴函数f(x)=6ln(x+1)-x2+2x-1在定义域内只有一个零点.2.(2010·江西高考)设函数f(x)=ln x+ln (2-x)+ax(a>0).(1)当a=1时,求f(x)的单调区间;(2)若f(x)在(0,1]上的最大值为12,求a的值.解析函数f(x)的定义域为(0,2),f′(x)=1x-12-x+a.(1)当a=1时,f′(x)=-x2+2x(2-x),所以f(x)的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x∈(0,1]时,f′(x)=2-2xx(2-x)+a>0,即f(x)在(0,1]上单调递增,故f(x)在(0,1]上的最大值为f(1)=a,因此a=1 2.3.已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.分析本题考查多项式的导数公式及运用导数求函数的单调区间和函数的最值,题目中需注意应先比较f(2)和f(-2)的大小,然后判定哪个是最大值从而求出a.解(1)f′(x)=-3x2+6x+9.令f′(x)<0,解得x<-1,或x>3,∴函数f(x)的单调递减区间为(-∞,-1),(3,+∞).(2)∵f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,∴f(2)>f(-2).∵在(-1,3)上f′(x)>0,∴f(x)在(-1,2]上单调递增.又由于f(x)在[-2,-1)上单调递减,∴f(-1)是f(x)的极小值,且f(-1)=a-5.∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a =20,解得a=-2.∴f(x)=-x3+3x2+9x-2.∴f(-1)=a-5=-7,即函数f(x)在区间[-2,2]上的最小值为-7.4.已知函数f(x)=xe-x(x∈R).(1)求函数f(x)的单调区间和极值;(2)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称.证明当x>1时,f(x)>g(x);(3)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.解析(1)f′(x)=(1-x)e-x.令f′(x)=0,解得x=1.当x变化时,f′(x),f(x)的变化情况如下表:所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数.函数f(x)在x=1处取得极大值f(1),且f(1)=1 e.(2)由题意可知g(x)=f(2-x),得g(x)=(2-x)e x-2.令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)e x-2,于是F′(x)=(x-1)(e2x-2-1)e-x.当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0.所以F′(x)>0.从而函数F(x)在[1,+∞)上是增函数.又F(1)=e-1-e-1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(3)①若(x1-1)(x2-1)=0,由(1)及f(x1)=f(x2),得x1=x2=1,与x1≠x2矛盾.②若(x1-1)(x2-1)>0,由(1)及f(x1)=f(x2),得x1=x2,与x1≠x2矛盾.根据①②得(x1-1)(x2-1)<0,不妨设x1<1,x2>1.由(2)可知,f(x2)>g(x2),g(x2)=f(2-x2),所以f(x2)>f(2-x2),从而f(x1)>f(2-x2),因为x2>1,所以2-x2<1,又由(1)可知函数f(x)在区间(-∞,1)内是增函数,所以x1>2-x2,即x1+x2>2.5.已知函数f(x)=ax3-32ax2,函数g(x)=3(x-1)2.(1)当a>0时,求f(x)和g(x)的公共单调区间;(2)当a>2时,求函数h(x)=f(x)-g(x)的极小值;(3)讨论方程f(x)=g(x)的解的个数.解(1)f′(x)=3ax2-3ax=3ax(x-1),又a>0,由f′(x)>0得x<0或x>1,由f′(x)<0得0<x<1,即函数f(x)的单调递增区间是(-∞,0)与(1,+∞),单调递减区间是(0,1),而函数g(x)的单调递减区间是(-∞,1),单调递增区间是(1,+∞),故两个函数的公共单调递减区间是(0,1),公共单调递增区间是(1,+∞).(2)h(x)=ax3-32ax2-3(x-1)2,h′(x)=3ax2-3(a+2)x+6=3a(x-2a)(x-1),令h′(x)=0,得x=2a或x=1,由于2a<1,易知x=1为函数h(x)的极小值点,∴h(x)的极小值为h(1)=-a 2.(3)令φ(x)=f(x)-g(x)=ax3-32(a+2)x2+6x-3,φ′(x)=3ax2-3(a+2)x+6=3a(x-2a)(x-1),①若a=0,则φ(x)=-3(x-1)2,∴φ(x)的图象与x轴只有一个交点,即方程f(x)=g(x)只有一个解;②若a<0,则φ(x)的极大值为φ(1)=-a2>0,φ(x)的极小值为φ(2a)=-4a2+6a-3<0,∴φ(x)的图象与x轴有三个交点,即方程f(x)=g(x)有三个解;③若0<a<2,则φ(x)的极大值为φ(1)=-a2<0,∴φ(x)的图象与x轴只有一个交点,即方程f(x)=g(x)只有一个解;④若a=2,则φ′(x)=6(x-1)2≥0,φ(x)单调递增,∴φ(x)的图象与x轴只有一个交点,即方程f(x)=g(x)只有一个解;⑤若a>2,由(2)知φ(x)的极大值为φ(2a)=-4(1a-34)2-34<0,∴φ(x)的图象与x轴只有一个交点,即方程f(x)=g(x)只有一个解.综上知,若a≥0,方程f(x)=g(x)只有一个解;若a<0,方程f(x)=g(x)有三个解.。

高三复习:导数与函数的单调性、极值最值(含解析答案)

高三复习:导数与函数的单调性、极值最值(含解析答案)

3.2导数与函数的单调性、极值、最值知识梳理:1.函数的单调性在某个区间(a,b)内,如果f′(x) _____0,那么函数y=f(x)在这个区间内单调递增;如果f′(x) _____0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法:一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤:3.函数的最值试一试:1.函数f(x)=x2-2ln x的单调减区间是________.2.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为________.考点一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.考点二 利用导数求函数的极值例2 设f (x )=e x 1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点; (2)若f (x )为R 上的单调函数,求a 的取值范围.考点三 利用导数求函数的最值例3已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.变式1 已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.考点4 含有参数的分类讨论例4:已知函数f (x )=ln x -ax (a ∈R ).(1)求函数f (x )的单调区间; (2)当a >0时,求函数f (x )在[1,2]上的最小值.课堂练习:1.函数f (x )=e x -x 的单调递增区间是________.2.(2014·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.3.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 4.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23.(1)求a 的值;(2)求函数f (x )的单调区间; (3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.导数与函数的单调性、极值、最值后作业1.函数y =(3-x 2)e x 的单调递增区间是________.2.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.3.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.4.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________.5.函数y =12x 2-ln x 的单调递减区间为________.6.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间.7.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________.8.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.9.已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.10.设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.导数与函数的单调性、极值、最值教师版知识梳理 1.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 2.函数的极值(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤: ①求f ′(x );②求方程f ′(x )=0的根;③检查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值. 试一试1.函数f (x )=x 2-2ln x 的单调减区间是________. 答案 (0,1)解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x (x >0).∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.答案(-1,+∞)解析设m(x)=f(x)-(2x+4),∵m′(x)=f′(x)-2>0,∴m(x)在R上是增函数.∵m(-1)=f(-1)-(-2+4)=0,∴m(x)>0的解集为{x|x>-1},即f(x)>2x+4的解集为(-1,+∞).考点一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.思维点拨函数的单调性和函数中的参数有关,要注意对参数的讨论.解f′(x)=e x-a,(1)若a≤0,则f′(x)=e x-a≥0,即f(x)在R上单调递增,若a>0,令e x-a≥0,则e x≥a,x≥ln a.因此当a≤0时,f(x)的单调增区间为R,当a>0时,f(x)的单调增区间为[ln a,+∞).(2)∵f′(x)=e x-a≤0在(-2,3)上恒成立.∴a≥e x在x∈(-2,3)上恒成立.∴e-2<e x<e3,只需a≥e3.当a=e3时,f′(x)=e x-e3<0在x∈(-2,3)上恒成立,即f(x)在(-2,3)上为减函数,∴a≥e3.故存在实数a ≥e 3,使f (x )在(-2,3)上为减函数. 思维升华 (1)利用导数的符号来判断函数的单调性;(2)已知函数的单调性求参数范围可以转化为不等式恒成立问题;(3)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零.应注意此时式子中的等号不能省略,否则漏解. 考点二 利用导数求函数的极值 例2设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解 对f (x )求导得f ′(x )=e x ·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.(2014·福建三 利用导数求函数的最值例3已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.解 由f (x )=e x -ax 2-bx -1, 有g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ]. 当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减, 在区间[ln(2a ),1]上单调递增. 于是,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .思维升华 (1)求解函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算(2)可以利用列表法研究函数在一个区间上的变化情况.变式已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.解(1)由题意知f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,f(x)在[0,k-1]上单调递减,在[k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.综上,当k≤1时,f(x)在[0,1]上的最小值为f(0)=-k;当1<k<2时,f(x)在[0,1]上的最小值为f(k-1)=-e k-1;当k≥2时,f(x)在[0,1]上的最小值为f(1)=(1-k)e.例4:已知函数f(x)=ln x-ax (a∈R).(2)当a >0时,求函数f (x )在[1,2]上的最小值.思维点拨 (1)已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.(2)先研究f (x )在[1,2]上的单调性,再确定最值是端点值还是极值.(3)由于解析式中含有参数a ,要对参数a 进行分类讨论. 规范解答解 (1)f ′(x )=1x-a (x >0),[2分]①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).[4分]②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a , 单调递减区间为⎣⎡⎭⎫1a ,+∞.[6分] (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln2-2a .[8分]②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .[10分]③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.[12分] 又f (2)-f (1)=ln2-a ,所以当12<a <ln2时,最小值是f (1)=-a ;当ln2≤a <1时,最小值为f (2)=ln2-2a .[14分] 综上可知,当0<a <ln2时,函数f (x )的最小值是-a ;当a ≥ln2时,函数f (x )的最小值是ln2-2a .[16分]1.函数f (x )=e x -x 的单调递增区间是________. 解析:∵f (x )=e x -x ,∴f ′(x )=e x -1, 由f ′(x )>0,得e x -1>0,即x >0. 答案:(0,+∞)2.(2014·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.解析:因为f (x )在区间[1,e]上取得最小值4,所以至少满足f (1)≥4,f (e)≥4,解得m ≤-3e.又f ′(x )=x +mx 2,且x ∈[1,e],所以f ′(x )<0, 即f (x )在[1,e]上单调递减,所以f (x )min =f (e)=1-me=4,即m =-3e. 答案:-3e3.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数, ∴Δ=4-12 m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 4.(创新题)已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23. (1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围. 解:(1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×⎝⎛⎭⎫23-1,解之,得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c . 则f ′(x )=3x 2-2x -1=3⎝⎛⎭⎫x +13(x -1), 列表如下:所以f (x )的单调递增区间是⎝⎛⎭⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝⎛⎭⎫-13,1. (3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立. 只要h (2)≥0,解得c ≥11,所以c 的取值范围是[11,+∞). 作业1.函数y =(3-x 2)e x 的单调递增区间是________. 答案 (-3,1)解析 y ′=-2x e x +(3-x 2)e x =e x (-x 2-2x +3), 由y ′>0⇒x 2+2x -3<0⇒-3<x <1,故函数y =(3-x 2)e x 的单调递增区间是(-3,1).2.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.答案 3解析 因为f ′(x )=2x (x +1)-(x 2+a )(x +1)2,因为函数f (x )在x =1处取得极大值,所以f ′(1)=3-a4=0,所以a =3.3.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案 1<a ≤2解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x(x >0),当x -9x ≤0时,有0<x ≤3,即在(0,3]上原函数是减函数,∴a -1>0且a +1≤3,解得1<a ≤2.4.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________. 答案 -13解析 对函数f (x )求导得f ′(x )=-3x 2+2ax , 由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x , 易知f (x )在[-1,0)上单调递减,在(0,1]上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 又∵f ′(x )=-3x 2+6x 的图象开口向下, 且对称轴为x =1,∴当n ∈[-1,1]时, f ′(n )min =f ′(-1)=-9. 故f (m )+f ′(n )的最小值为-13.5.函数y =12x 2-ln x 的单调递减区间为________.答案 (0,1]解析 y ′=x -1x =x 2-1x =(x -1)(x +1)x(x >0).令y ′≤0,得0<x ≤1.∴函数的单调递减区间为(0,1].6.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间.解 因为f ′(x )=-1x 2+1x =x -1x2,令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞), f ′(x ),f (x )随x 的变化情况如下表:所以x =1时,f (x )的极小值为1,无极大值. f (x )的单调递增区间为(1,+∞), 单调递减区间为(0,1).7.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________. 答案 {x |x >0}解析 构造函数g (x )=e x ·f (x )-e x -1,求导得到g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1]. 由已知f (x )+f ′(x )>1,可得到g ′(x )>0, 所以g (x )为R 上的增函数; 又g (0)=e 0·f (0)-e 0-1=0, 所以e x ·f (x )>e x +1, 即g (x )>0的解集为{x |x >0}.8.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x ). 若x <0,则1-e x >0,∴f ′(x )<0; 若x >0,则1-e x <0,∴f ′(x )<0; 若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数, 即f (x )的单调减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴[f (x )]min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立. 即实数m 的取值范围为(-∞,2-e 2).)9.(2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为 y -1=-(x -1), 即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a . 又当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.10.(2014·山东)设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 解 (1)函数y =f (x )的定义域为(0,+∞). f ′(x )=x 2e x -2x e x x 4-k (-2x 2+1x ) =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减, 故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 所以g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增. 故f (x )在(0,2)内不存在两个极值点. 当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点,当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2.解得e<k <e 22.。

导数与函数的极值、最值-2023届高三数学一轮复习

导数与函数的极值、最值-2023届高三数学一轮复习

新高考复习作业15 导数与函数的极值、最值班级:__________ 姓名:__________ 实际用时:_____分钟 得分:__________ 一、选择题1.函数f (x )=x 3-3x 2+3x 的极值点的个数是( ) A .0 B .1 C .2D .32.已知函数f (x )=(x 2-a )e x ,则“a ≥-1”是“f (x )有极值”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.设函数f (x )=e xx +a ,若f (x )的极小值为e ,则a =( )A .-12B .12C .32D .24.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22=( )A .23B .43C .83D .1635.设函数f (x )=⎩⎪⎨⎪⎧x e x ,x ≥a ,x ,x <a ,若函数存在最大值,则实数a 的取值范围是( )A .a ≤1B .a <1C .a ≤1eD .a <1e6.(多选)若函数f (x )=2x 3-ax 2(a <0)在⎝⎛⎭⎫a 2,a +63上有最大值,则a 的取值可能为( )A .-6B .-5C .-4D .-37.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( ) A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点8.关于x 的不等式2sin 3x cos x -a ≤0在x ∈(0,π)恒成立,则实数a 的最小值为( ) A .-338B .0C .1D .338二、填空题9.已知函数f (x )=e -x -e x ,x ∈[0,a ],a 为正实数,则函数f (x )的最小值为________,最大值为________. 10.已知函数f (x )=ax 3-12x 2+x -x ln x 存在两个极值点,则实数a 的取值范围是________.三、解答题11.已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.12.设函数f (x )=ln x +x 2+2ax +1. (1)当a =-32时,求f (x )的极值;(2)判断函数f (x )在(a +2,+∞)上是否存在极值.若存在,试求a 的取值范围;若不存在,请说明理由.新高考复习作业15 导数与函数的极值、最值班级:__________ 姓名:__________ 实际用时:_____分钟 得分:__________ 一、选择题1.函数f (x )=x 3-3x 2+3x 的极值点的个数是( ) A .0 B .1 C .2D .3解析:A f ′(x )=3x 2-6x +3=3(x -1)2,当x =1时导函数值为0,但在此零点两侧导函数均大于0,所以此处不是函数的极值点,所以函数极值点个数为0.2.已知函数f (x )=(x 2-a )e x ,则“a ≥-1”是“f (x )有极值”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:B f ′(x )=(x 2+2x -a )e x =0,x 2+2x -a =0,Δ=4+4a .若Δ=4+4a ≤0,a ≤-1,则f ′(x )=(x 2+2x -a )e x ≥0恒成立,f (x )为增函数,无极值;若Δ=4+4a >0,即a >-1,则f (x )有两个极值.所以“a ≥-1”是“f (x )有极值”的必要不充分条件.故选B .3.设函数f (x )=e xx +a ,若f (x )的极小值为e ,则a =( )A .-12B .12C .32D .2解析:B 由已知得f ′(x )=e x (x +a -1)(x +a )2(x ≠-a ),令f ′(x )=0,有x =1-a ,且当x <1-a 时函数f (x )单调递减,当x >1-a 时函数f (x )单调递增,∴f (x )的极小值为f (1-a )=e 1-a =e ,即1-a =12,得a =12.故选B .4.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22=( )A .23B .43C .83D .163解析:C 由题中图象可知f (x )的图象经过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,所以1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2,x 1,x 2是方程3x 2-6x +2=0的两根,所以x 1+x 2=2,x 1·x 2=23,∴x 21+x 22=(x 1+x 2)2-2x 1x 2=4-2×23=83.5.设函数f (x )=⎩⎪⎨⎪⎧x e x ,x ≥a ,x ,x <a ,若函数存在最大值,则实数a 的取值范围是( )A .a ≤1B .a <1C .a ≤1eD .a <1e解析:C 显然x <a 时,f (x )<a 无最大值,x ≥a 时,f (x )=xe x 存在最大值,f ′(x )=1-x e x ,当x <1时,f ′(x )>0,f (x )递增,当x >1时,f ′(x )<0,f (x )递减,所以x =1时,f (x )取得极大值也是最大值.f (1)=1e ,因此f (x )要有最大值,必须满足⎩⎪⎨⎪⎧a ≤1,a ≤1e ,所以a ≤1e.故选C .6.(多选)若函数f (x )=2x 3-ax 2(a <0)在⎝⎛⎭⎫a 2,a +63上有最大值,则a 的取值可能为( )A .-6B .-5C .-4D .-3解析:ABC 令f ′(x )=2x (3x -a )=0,得x 1=0,x 2=a 3(a <0),当a 3<x <0时,f ′(x )<0;当x <a3或x >0时,f ′(x )>0,则f (x )的增区间为⎝⎛⎭⎫-∞,a 3,(0,+∞),减区间为⎝⎛⎭⎫a 3,0, 从而f (x )在x =a3处取得极大值f ⎝⎛⎭⎫a 3=-a 327,由f (x )=-a 327,得⎝⎛⎭⎫x -a 32⎝⎛⎭⎫2x +a 3=0,解得x =a 3或x =-a 6,又f (x )在⎝⎛⎭⎫a 2,a +63上有最大值,所以a 3<a +63≤-a6,即a ≤-4,故选A 、B 、C .7.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( ) A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点解析:BD 因为f (x )的定义域为[-2π,2π),所以f (x )是非奇非偶函数.f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x ,在同一坐标系中分别作出y =sin x ,y =-1x 在区间[-2π,2π)上的图象如图所示,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故选B 、D .8.关于x 的不等式2sin 3x cos x -a ≤0在x ∈(0,π)恒成立,则实数a 的最小值为( ) A .-338B .0C .1D .338解析:D 依题意,令f (x )=2sin 3x cos x ,所以f ′(x )=6sin 2x cos 2x -2sin 4x =2sin 2x (3cos 2x -sin 2x )=2sin 2x (4cos 2x -1),又x ∈(0,π),令f ′(x )=0,可得cos x =±12,所以x =π3或x =2π3,当x ∈⎝⎛⎭⎫0,π3时,f ′(x )>0,所以f (x )=2sin 3x cos x 在x ∈⎝⎛⎭⎫0,π3单调递增;当x ∈⎝⎛⎭⎫π3,2π3时,f ′(x )<0,所以f (x )=2sin 3x cos x 在x ∈⎝⎛⎭⎫π3,2π3单调递减;当x ∈⎝⎛⎭⎫2π3,π时,f ′(x )>0,所以f (x )=2sin 3x cos x 在x ∈⎝⎛⎭⎫2π3,π单调递增,所以当x =π3时,函数取最大值为f ⎝⎛⎭⎫π3=338,所以实数a 的最小值为338.故选D .二、填空题9.已知函数f (x )=e -x -e x ,x ∈[0,a ],a 为正实数,则函数f (x )的最小值为________,最大值为________. 解析:f ′(x )=-e -x -e x=-e 2x +1ex .当x ∈[0,a ]时,f ′(x )<0恒成立,即f (x )在[0,a ]上单调递减.故当x =a 时,f (x )有最小值f (a )=e -a -e a ;当x =0时,f (x )有最大值f (0)=e -0-e 0=0.即f (x )的最小值为e -a-e a ,最大值为0.答案:e -a -e a 010.已知函数f (x )=ax 3-12x 2+x -x ln x 存在两个极值点,则实数a 的取值范围是________.解析:函数的定义域为(0,+∞),由题意得f ′(x )=3ax 2-x -ln x ,因为函数f (x )有两个极值点,所以f ′(x )有两个变号零点.由f ′(x )=0得3ax 2=x +ln x ,即3a =x +ln x x 2,令g (x )=x +ln x x 2,则g ′(x )=-x +1-2ln xx 3,易知函数y =-x +1-2ln x 是减函数,且当x =1时,y =0,所以当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减.故g (x )max =g (1)=1,又当0<x <1e 时,g (x )<0,当x >1时,g (x )>0,所以要使f ′(x )有两个零点,需0<3a <1,即0<a <13.答案:⎝⎛⎭⎫0,13 三、解答题11.已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x ,令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞), f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则f ′(x )>0, 若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0, 故函数在x =1a处有极大值.综上可知,当a ≤0时,函数f (x )无极值点;当a >0时,函数y =f (x )有一个极大值点,且为x =1a .12.设函数f (x )=ln x +x 2+2ax +1. (1)当a =-32时,求f (x )的极值;(2)判断函数f (x )在(a +2,+∞)上是否存在极值.若存在,试求a 的取值范围;若不存在,请说明理由. 解:(1)依题意知f (x )的定义域为(0,+∞), 当a =-32时,函数f (x )=ln x +x 2-3x +1(x >0).对f (x )求导,得f ′(x )=1x +2x -3=2x 2-3x +1x =2(x -1)⎝⎛⎭⎫x -12x,令f ′(x )=0,解得x =1或x =12.当x ∈⎝⎛⎭⎫0,12时,f ′(x )>0;当x ∈⎝⎛⎭⎫12,1时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. 所以函数f (x )在⎝⎛⎭⎫0,12,(1,+∞)上单调递增,在⎝⎛⎭⎫12,1上单调递减. 于是f (x )在x =1处取得极小值,且极小值为f (1)=-1,在x =12处取得极大值,且极大值为f ⎝⎛⎭⎫12=ln 12-14, 所以函数f (x )的极大值为ln 12-14,极小值为-1.(2)存在.对f (x )求导,得f ′(x )=1x +2x +2a =2x 2+2ax +1x(x >0).令f ′(x )=0,即2x 2+2ax +1=0,令g (x )=2x 2+2ax +1,则函数g (x )的图象的对称轴为直线x =-a2.因为a +2≥0,所以a ≥-2. ①当-a 2≤a +2,即a ≥-43时,g (a +2)=2(a +2)2+2a (a +2)+1=4a 2+12a +9>0恒成立, 所以f (x )在(a +2,+∞)上无极值.②当-a 2>a +2,即a <-43时,则-2≤a <-43,g ⎝⎛⎭⎫-a 2=2×a 24+2a ⎝⎛⎭⎫-a 2+1=-a 22+1. 当-a 22+1≥0时,有-2≤a ≤2,即-2≤a <-43时,f ′(x )≥0恒成立,所以f (x )在(a +2,+∞)上无极值.当-a 22+1<0时,有a <-2或a >2,又-2≤a <-43,所以-2≤a <-2,因为g (a +2)=4a 2+12a+9≥0,g ⎝⎛⎭⎫-a 2=-a22+1<0,当x →+∞时,g (x )>0, 所以存在x 1∈⎝⎛⎭⎫a +2,-a 2,使得f ′(x 1)=0,存在x 2∈⎝⎛⎭⎫-a2,+∞,使得f ′(x 2)=0. 所以当x ∈(a +2,x 1)时,f ′(x )>0;当x ∈(x 1,x 2)时,f ′(x )<0;当x ∈(x 2,+∞)时,f ′(x )>0. 由此可知,当-2≤a <-2时,f (x )有极值.综上所述,函数f (x )在(a +2,+∞)上存在极值,且实数a 的取值范围为[-2,-2).。

2024高考数学习题 导数与函数的单调性、极值和最值

2024高考数学习题 导数与函数的单调性、极值和最值

4.2导数与函数的单调性、极值和最值五年高考考点1导数与函数的单调性1.(2014课标Ⅱ文,11,5分,易)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是() A.(-∞,-2] B.(-∞,-1]C.[2,+∞)D.[1,+∞)答案D2.(2023新课标Ⅱ,6,5分,中)已知函数f(x)=a e x-ln x在区间(1,2)单调递增,则a的最小值为() A.e2 B.e C.e-1 D.e-2答案C3.(2023新课标Ⅰ,19,12分,中)已知函数f(x)=a(e x+a)-x.(1)讨论f(x)的单调性;(2)证明:当a>0时,f(x)>2ln a+32.解析(1)由已知得函数f(x)的定义域为R,f'(x)=a e x-1.①当a≤0时,f'(x)<0,f(x)在R上单调递减;②当a>0时,令f'(x)=0,则x=ln1,当x<ln1时,f'(x)<0,f(x)单调递减;当x>ln1时,f'(x)>0,f(x)单调递增.综上所述,当a≤0时,f(x)在R上单调递减;当a>0时,f(x)在−∞,,在ln1,+∞上单调递增.(2)证明:由(1)知,当a>0时,f(x)在−∞,,在ln1,+∞上单调递增,则f(x)min=f=+−ln1=1+a2+ln a.要证明f(x)>2ln a+32,只需证明1+a2+ln a>2ln a+32,即证a2-ln a-12>0.令g(x)=x2-ln x-12(x>0),则g'(x)=2x-1=22−1.当0<x,g'(x)<0,g(x)单调递减;当x>22时,g'(x)>0,g(x)单调递增,∴g(x)min==12−12=−=ln2>0,∴g(x)>0在(0,+∞)上恒成立,即a2-ln a-12>0,∴f(x)>2ln a+32.4.(2023全国甲文,20,12分,中)已知函数f(x)=ax-sin cos2,x∈0,(1)当a=1时,讨论f(x)的单调性;(2)若f(x)+sin x<0,求a的取值范围.解析(1)当a=1时,f(x)=x-sin cos2,x∈0,f'(x)=1-cos3r2sin2voscos3cos4=cos3Kcos2K2sin2=cos3rcos2K2cos3<0,所以函数f(x)在.(2)令g(x)=sin cos2−sin=sinKsinvos2cos2=sinKsino1−sin2pcos2=sin3cos2,则g'(x)=3cos3Lin2r2sin4voscos3,cos4=3cos2Lin2r2sin4因为x∈0,所以3cos2x sin2x+2sin4x>0,cos3x>0,则g'(x)>0,所以函数g(x)在,g(0)=0,当x→π2时,g(x)→+∞,因为f(x)+sin x<0恒成立,所以sin cos2−sin>B在0,,即直线y=ax在0<x<π2时恒在g(x)的图象下方,如图所示,由图及g'(0)=0可得a≤0,即a的取值范围为(-∞,0].5.(2015课标Ⅱ文,21,12分,中)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解析(1)f(x)的定义域为(0,+∞),f'(x)=1-a.若a≤0,则f'(x)>0,所以f(x)在(0,+∞)上单调递增.若a>0,则当x∈,f'(x)>0;当x+∞时,f'(x)<0.所以f(x)在,+∞上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=1处取得最大值,最大值为f ln1+1−a+a-1.因此f a-2等价于ln a+a-1<0.令g(a)=ln a+a-1,a>0,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).考点2导数与函数的极(最)值1.(多选)(2023新课标Ⅱ,11,5分,中)若函数f(x)=a ln x++2(a≠0)既有极大值也有极小值,则() A.bc>0 B.ab>0C.b2+8ac>0D.ac<0答案BCD2.(多选)(2022新高考Ⅰ,10,5分,中)已知函数f(x)=x3-x+1,则()A.f(x)有两个极值点B.f(x)有三个零点C.点(0,1)是曲线y=f(x)的对称中心D.直线y=2x是曲线y=f(x)的切线答案AC3.(2021新高考Ⅰ,15,5分,中)函数f(x)=|2x-1|-2ln x的最小值为.答案14.(2022全国乙理,16,5分,难)已知x=x1和x=x2分别是函数f(x)=2a x-e x2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是.答案15.(2021北京,19,15分,中)已知函数f(x)=3−22+.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)在x=-1处取得极值,求f(x)的单调区间,并求其最大值与最小值.解析(1)当a=0时,f(x)=3−22,∴f(1)=1,f'(x)=2K63,故f'(1)=-4,故曲线y=f(x)在点(1,f(1))处的切线方程为y=-4(x-1)+1,即4x+y-5=0.(2)由题意得f'(x)=22−6K2(2+p2,且f'(-1)=0,故8-2a=0,解得a=4,故f(x)=3−22+4,x∈R,则f'(x)=22−6K8(2+4)2=2(r1)(K4)(2+4)2,令f'(x)>0,得x>4或x<-1;令f'(x)<0,得-1<x<4,故函数f(x)的单调增区间为(-∞,-1)和(4,+∞),单调减区间为(-1,4).所以f(x)的极大值为f(-1)=1,f(x)的极小值为f(4)=-14.又当x∈(-∞,-1)时,3-2x>0,故f(x)>0;当x∈(4,+∞)时,3-2x<0,故f(x)<0,∴f(x)max=f(-1)=1,f(x)min=f(4)=-14.6.(2019课标Ⅲ文,20,12分,中)已知函数f(x)=2x3-ax2+2.(1)讨论f(x)的单调性;(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M-m的取值范围.解析(1)第一步:求函数的定义域和导函数,并因式分解求出导函数的零点.由题意知x∈R,f'(x)=6x2-2ax=2x(3x-a).令f'(x)=0,得x=0或x=3.第二步:讨论a的取值,比较根的大小关系,写出单调区间.①若a>0,则当x∈(-∞,0)+∞时,f'(x)>0;当x∈,f'(x)<0.故f(x)在(-∞,0+∞单调递增,在;②若a=0,f(x)在(-∞,+∞)单调递增;③若a<0,则当x∈−∞,(0,+∞)时,f'(x)>0;当x,0'(x)<0.故f(x)在−∞,0,+∞)单调递增,0.(2)当0<a<3时,由(1)知,f(x)在0,,1单调递增,所以f(x)在[0,1]的最小值为f=−327+2,最大值为f(0)=2或f(1)=4-a.当0<a<2时,f(1)>f(0),最大值为f(1)=4-a.所以M-m=2-a+327,0<a<2,对于函数y=327-a+2,y'=2-1,当0<a<2时,y'<0,从而y=327-a+2单调递减,此时827<327-a+2<2,即M-m2.(构造函数,利用函数单调性求值域)当2≤a<3时,f(1)<f(0),最大值为f(0)=2,所以M-m=327,而函数y=327单调递增,所以M-m的取1.综上,M-m2.易错警示解题时,易犯以下两个错误:①对参数a未讨论或对a分类讨论不全面,尤其易忽略a=0的情形而导致失分;②当a>0时,f(x)在(-∞,0+∞单调递增,将这两个区间合并表示为f(x)在(-∞,0)+∞单调递增导致错误,从而失分.7.(2023新课标Ⅱ,22,12分,难)(1)证明:当0<x<1时,x-x2<sin x<x;(2)已知函数f(x)=cos ax-ln(1-x2),若x=0是f(x)的极大值点,求a的取值范围.解析(1)证明:令g(x)=x-x2-sin x,0<x<1,则g'(x)=1-2x-cos x,令G(x)=g'(x),得G'(x)=-2+sin x<0在区间(0,1)上恒成立,所以g'(x)在区间(0,1)上单调递减,因为g'(0)=0,所以g'(x)<0在区间(0,1)上恒成立,所以g(x)在区间(0,1)上单调递减,所以g(x)<g(0)=0,即当0<x<1时,x-x2<sin x.令h(x)=sin x-x,0<x<1,则h'(x)=cos x-1<0在区间(0,1)上恒成立,所以h(x)在区间(0,1)上单调递减,所以h(x)<h(0)=0,即当0<x<1时,sin x<x.综上,当0<x<1时,x-x2<sin x<x.(2)函数f(x)的定义域为(-1,1).当a=0时,f(x)=1-ln(1-x2),f(x)在(-1,0)上单调递减,在(0,1)上单调递增,x=0不是f(x)的极大值点,所以a≠0.当a>0时,f'(x)=-a sin ax+21−2,x∈(-1,1).(i)当0<a≤2时,取m,1,x∈(0,m),则ax∈(0,1),由(1)可得f'(x)=-a sin ax+21−2>−y+21−2=o22+2−2)1−2,因为a2x2>0,2-a2≥0,1-x2>0,所以f'(x)>0,所以f(x)在(0,m)上单调递增,不合题意.(ii)当a>2时,取x∈0,⊆(0,1),则ax∈(0,1),由(1)可得f'(x)=-a sin ax+21−2<-a(ax-a2x2)+21−2=1−2(-a3x3+a2x2+a3x+2-a2),设h(x)=-a3x3+a2x2+a3x+2-a2,x∈则h'(x)=-3a3x2+2a2x+a3,因为h'(0)=a3>0,a3-a>0,且h'(x)的图象是开口向下的抛物线,所以∀x∈0,均有h'(x)>0,所以h(x)在0,.因为h(0)=2-a2<0,,所以h(x)在0,n.当x∈(0,n)时,h(x)<0,又因为x>0,1-x2>0.则f'(x)<1−2(-a3x3+a2x2+a3x+2-a2)<0.即当x∈(0,n)⊆(0,1)时,f'(x)<0,则f(x)在(0,n)上单调递减.又因为f(x)是偶函数,所以f(x)在(-n,0)上单调递增,所以x=0是f(x)的极大值点.综合(i)(ii)知a>2.当a<0时,由于将f(x)中的a换为-a所得解析式不变,所以a<-2符合要求.故a的取值范围为(-∞,-2)∪(2,+∞).三年模拟综合基础练1.(2023山东烟台开学考,3)函数f(x)=-2ln x-x-3的单调递增区间是()A.(0,+∞)B.(-3,1)C.(1,+∞)D.(0,1)答案D2.(2023吉林长春六中月考,9)函数f(x)=cos x+(x+1)sin x+1在区间[0,2π]上的最小值、最大值分别为() A.-π2,π2 B.−3π2,π2C.-π2,π2+2D.−3π2,π2+2答案D3.(2024届江苏无锡期中,5)当x=2时,函数f(x)=x3+bx2-12x取得极值,则f(x)在区间[-4,4]上的最大值为() A.8 B.12 C.16 D.32答案C4.(2024届湖南师大附中第4次月考,6)已知x=0是函数f(x)=x2e x-2x e x+2e x-3x3的一个极值点,则a的取值集合为() A.{a|a≥-1} B.{0}C.{1}D.R答案C5.(2024届河北石家庄二中月考,5)已知函数f(x)=x3-3mx2+9mx+1在(1,+∞)上为单调递增函数,则实数m的取值范围为() A.(-∞,-1) B.[-1,1]C.[1,3]D.[-1,3]答案D6.(2024届重庆长寿中学期中,7)已知函数f(x)=2x-2-a ln x,则“a>5”是“函数f(x)在(1,2)上单调递减”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A7.(多选)(2024届福建福州联考,10)设函数f (x )=x 3-12x +b ,则下列结论错误的是()A.函数f (x )在(-∞,-1)上单调递增B.函数f (x )在(-∞,-1)上单调递减C.若b =-6,则函数f (x )的图象在点(-2,f (-2))处的切线方程为y =10D.若b =0,则函数f (x )的图象与直线y =10只有一个公共点答案ABD8.(2024届江苏苏州中学模拟,14)已知函数g (x )=2x +ln x -在区间[1,2]上不单调,则实数a 的取值范围是.答案(-10,-3)9.(2024届河南省实验中学月考,15)若函数f (x )=x 3-12x 在区间(a ,a +4)上存在最大值,则实数a 的取值范围是.答案(-6,-2)10.(2024届湖北武汉二中测试,15)已知函数f (x )=ax 4-4ax 3+b ,x ∈[1,4],f (x )的最大值为3,最小值为-6,则a +b 的值是.答案103或−19311.(2023重庆八中入学考,18)已知函数f (x )=ax +b +cos x (a ,b ∈R ),若曲线f (x )在点(0,f (0))处的切线方程为y =12x +2.(1)求f (x )的解析式;(2)求函数f (x )在[0,2π]上的值域.解析(1)因为f (x )=ax +b +cos x (a ,b ∈R ),所以f '(x )=a -sin x ,由题意得o0)=+cos0=2,'(0)=−sin0=12,即+1=2,=12,所以=12,b =1,则f (x )=12x +1+cos x.(2)由(1)得f (x )=12x +1+cos x ,f '(x )=12-sin x ,由f '(x )≥0且x ∈[0,2π]可得0≤x ≤π6或5π6≤x ≤2π,函数f (x )在区间和2π上单调递增,由f'(x)<0且x∈[0,2π]可得π6<5π6,函数f(x).因此当x=π6时,函数取得极大值f=12×π6+1π6=1+π12当x=5π6时,函数取得极小值f=12×5π6+1+cos5π6=1+5π12又f(0)=2,f(2π)=12×2π+1+cos2π=1+π+1=2+π,1+5π12<2<1+π12+,所以函数f(x)在[0,2π]上的最大值为2+π,最小值为1+5π12所以f(x)在[0,2π]上的值域为1+5π12−2+π.综合拔高练11.(2024届湖南长沙长郡中学月考,4)若0<x1<x2<1,则()A.e2−e1>l y−ln xB.e2−e1<ln x2-ln x1C.x2e1>xe2D.ye1<xe2答案C2.(多选)(2024届广东东莞月考,11)已知函数f(x)=ax2-2x+ln x存在极值点,则实数a的值可以是() A.0 B.-e C.12 D.1e答案ABD3.(2024届山东泰安月考,15)设a∈R,若函数y=e x+ax,x∈R有大于零的极值点,则a的取值范围是.答案(-∞,-1)4.(2024届辽宁辽东教学共同体期中,19)已知函数f(x)=e x,g(x)=e.(1)直接写出曲线y=f(x)与曲线y=g(x)的公共点坐标,并求曲线y=f(x)在公共点处的切线方程;(2)已知直线y=a分别交曲线y=f(x)和y=g(x)于点A,B,当a∈(0,e)时,设△OAB的面积为S(a),其中O是坐标原点,求S(a)的最大值.解析(1)易得曲线y=f(x)与曲线y=g(x)的公共点坐标为(1,e).因为f'(x)=e x,所以f'(1)=e,所以曲线y=f(x)在公共点处的切线方程为y-e=e(x-1),即y=e x.(2)因为直线y=a分别交曲线y=f(x)和y=g(x)于点A,B,所以A(ln a,a),.S(a)=12b|A|=12ln,a∈(0,e).因为a∈(0,e)时,e>1,ln a<1,所以e>ln a,所以S(a)=e2−12a ln a,a∈(0,e),求导得S'(a)=-12(1+ln a),令S'(a)=0,得a=1e,所以S'(a),S(a)的变化情况如表:因此,S(a)5.(2024届湖南长沙南雅中学开学考,21)已知函数f(x)=ax-1-(a+1)ln x(a≠0).(1)讨论函数f(x)的单调性;(2)若f(x)既有极大值又有极小值,且极大值和极小值的和为g(a),解不等式g(a)<2a-2.解析(1)函数f(x)的定义域为(0,+∞),对f(x)求导得f'(x)=a+12−r1=B2−(r1)r12=(B−1)(K1)2,令f'(x)=0,则x1=1,x2=1.当a<0时,ax-1<0,令f'(x)>0,解得0<x<1,令f'(x)<0,解得x>1,所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当a>0时,①当1=1,即a=1时,f'(x)≥0恒成立,所以f(x)在(0,+∞)上单调递增;②当1>1,即0<a<1时,令f'(x)>0,解得0<x<1或x>1,令f'(x)<0,解得1<x<1,所以f(x)在(0,1)上单调递增,在1,,+∞上单调递增;③当1<1,即a>1时,令f'(x)>0,解得0<x<1或x>1,令f'(x)<0,解得1<x<1,所以f(x)在,1上单调递减,在(1,+∞)上单调递增.综上所述:当a<0时,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a<1时,f(x)在(0,1)上单调递增,在1,,+∞上单调递增;当a=1时,f(x)在(0,+∞)上单调递增;当a>1时,f(x)在0,,1上单调递减,在(1,+∞)上单调递增.(2)由(1)知:a>0且a≠1,且g(a)=f f(1)=1-a+(a+1)ln a+a-1=(a+1)ln a.g(a)<2a-2等价于(a+1)ln a<2a-2(a>0且a≠1),等价于解不等式ln a-2(K1)r1<0,令m(a)=ln a-2(K1)r1(a>0),(构造函数m(a),结合函数的单调性以及特殊值m(1)=0,从而解得不等式的解集)m'(a)=1−4(r1)2=(K1)2or1)2>0,所以m(a)在(0,+∞)上单调递增,且m(1)=0,所以m(a)<0=m(1),即不等式的解集为{a|0<a<1}.6.(2024届北京一零一中学测试,18)已知函数f(x)=ax3+bx+2在x=2处取得极值-14.(1)求a,b的值;(2)求曲线y=f(x)在点(1,f(1))处的切线方程;(3)求函数f(x)在[-3,3]上的最值.解析(1)因为f(x)=ax3+bx+2,所以f'(x)=3ax2+b,又函数f(x)在x=2处取得极值-14,所以'(2)=12+=0,4+=−8,解得=1,=−12,o2)=8+2+2=−14,即12+=0,经检验,a=1,b=-12符合题意,故a=1,b=-12.(2)由(1)知:f(x)=x3-12x+2,f'(x)=3x2-12,故f(1)=-9,f'(1)=-9.所以曲线y=f(x)在点(1,f(1))处的切线方程为y-(-9)=-9(x-1),即9x+y=0.(3)由(1)知:f(x)=x3-12x+2,f'(x)=3x2-12,令f'(x)=0,解得x1=-2,x2=2,x∈[-3,3]时,随x的变化f'(x),f(x)的变化情况如表:x-3(-3,-2)-2(-2,2)2(2,3)3f'(x)+0-0+f(x)11↗18↘-14↗-7由表可知:当x=-2时,函数f(x)有极大值f(-2)=18;当x=2时,函数f(x)有极小值f(2)=-14;因为f(-2)=18>f(3)=-7,f(2)=-14<f(-3)=11,故函数f(x)在[-3,3]上的最小值为f(2)=-14,最大值为f(-2)=18.综合拔高练21.(多选)(2024届湖北宜昌中学阶段练,12)已知函数f(x)=ax+e+En1在∈2上有三个单调区间,则实数a的取值可以是() A.-e B.-2e C.−e22 D.−72答案BD2.(多选)(2024届安徽池州一中阶段练,10)已知函数f(x)=x3-2x2+ax,则下列说法正确的是()A.函数f(x)的极值点个数可能为0,1,2B.若函数f(x)有两个极值点,则a<43C.若a=1,则函数f(x)2上的最小值为18D.若a=1,则函数f(x)2上的最大值为2答案BD3.(2024届湖北黄冈中学月考,14)定义在R上的函数f(x)=13x3-x+3.①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数.②y='(p在(0,+∞)上存在极小值.③f(x)的图象在x=0处的切线与直线y=2x+2垂直.④设g(x)=4ln x-m,若存在x∈[1,e],使得g(x)<f'(x),则m>5-e2.以上描述中正确的是.(填序号)答案①④4.(2024届北京海淀北大附中校考,20)已知函数f(x)=e ax(x-1)2.(1)若a=1,求曲线f(x)在(0,f(0))处的切线方程;(2)求f(x)的极大值与极小值.解析(1)当a=1时,f(x)=e x(x-1)2,f'(x)=e x(x2-1),所以f'(0)=e0(02-1)=-1,又f(0)=e0(0-1)2=1,所以切线方程为y-1=-(x-0),即x+y-1=0.(2)f'(x)=a e ax(x-1)2+2e ax(x-1)=e ax(x-1)(ax-a+2),当a=0时,令f'(x)=2(x-1)=0,解得x=1,故x<1时,f'(x)<0,f(x)单调递减;x>1时,f'(x)>0,f(x)单调递增,故x=1时,f(x)的极小值为f(1)=0,无极大值.当a>0时,令f'(x)=0,解得x1=1,x2=1-2,故当x<1-2或x>1时,f'(x)>0,f(x)单调递增,当1-2<x<1时,f'(x)<0,f(x)单调递减,故f(x)的极大值为f1−=4e K22,极小值为f(1)=0.当a<0时,令f'(x)=0,解得x1=1,x2=1-2,故当x<1或x>1-2时,f'(x)<0,f(x)单调递减,当1<x<1-2时,f'(x)>0,f(x)单调递增,故f(x)的极大值为f1−=4e K22,极小值为f(1)=0.综上,当a=0时,f(x)的极小值为f(1)=0,无极大值;当a≠0时,f(x)的极大值为f1=4e K22,极小值为f(1)=0.5.(2024届江苏镇江一中校考,19)已知函数f(x)=e x-x2-1.(1)判断f(x)在定义域上是否存在极值,若存在,求出其极值;若不存在,说明理由.(2)若f(x)≥ax在x∈[0,+∞)上恒成立,求a的取值范围.解析(1)∵f(x)=e x-x2-1,∴f'(x)=e x-2x,记h(x)=e x-2x,∴h'(x)=e x-2,当x>ln2时,h'(x)>0;当x<ln2时,h'(x)<0,则f'(x)在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增,∴f'(x)min=f'(ln2)=2-2ln2>0,∴f(x)在R上单调递增,即在定义域R上不存在极值.(2)因为f(x)=e x-x2-1≥ax在x∈[0,+∞)上恒成立,所以e x-x2-ax-1≥0在x∈[0,+∞)上恒成立.显然当x=0时不等式成立,当x>0时,a≤e−2−1恒成立,令g(x)=e−2−1,x>0,则g'(x)=(K1)(e−K1)2,记F(x)=e x-x-1,x>0,∴F'(x)=e x-1,当x>0时,F'(x)>0,F(x)单调递增,故F(x)>F(0)=0,故当x>0时,e x-x-1>0,当0<x<1时,g'(x)<0;当x>1时,g'(x)>0,所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以当x=1时,g(x)min=e-2,所以a≤e-2.故实数a的取值范围是(-∞,e-2].。

导数与函数的极值、最值 最新习题(含解析)

导数与函数的极值、最值 最新习题(含解析)

导数与函数的极值、最值课时作业一、选择题1.如图2是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:图2①-2是函数y=f(x)的极值点;②1是函数y=f(x)的极值点;③y=f(x)的图象在x=0处切线的斜率小于零;④函数y=f(x)在区间(-2,2)上单调递增.则正确命题的序号是()A.①③B.②④C.②③D.①④解析:根据导函数图象可知,-2是导函数的零点且-2的左右两侧导函数符号异号,故-2是极值点;1不是极值点,因为1的左右两侧导函数符号一致;0处的导函数值即为此点的切线斜率,显然为正值,导函数在(-2,2)上恒大于或等于零,故为函数的增区间,所以选D.答案:D2.设f(x)=12x2-x+cos(1-x),则函数f(x)()A.仅有一个极小值B.仅有一个极大值C.有无数个极值D.没有极值解析:由f(x)=12x2-x+cos(1-x),得f′(x)=x-1+sin(1-x).设g(x)=x-1+sin(1-x),则g′(x)=1-cos(1-x)≥0.所以g(x)为增函数,且g(1)=0.所以当x∈(-∞,1)时,g(x)<0,f′(x)<0,则f(x)单调递减;当x∈(1,+∞)时,g(x)>0,f′(x)>0,则f(x)单调递增.又f′(1)=0,所以函数f(x)仅有一个极小值f(1).故选A.答案:A3.已知函数f(x)=x3+ax2+bx+a2在x=1处取极值10,则a=()A .4或-3B .4或-11C .4D .-3 解析:∵f (x )=x 3+ax 2+bx +a 2, ∴f ′(x )=3x 2+2ax +b .由题意得⎩⎨⎧f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 即⎩⎨⎧2a +b =-3,a +b +a 2=9,解得⎩⎨⎧a =-3,b =3或⎩⎨⎧a =4,b =-11.当⎩⎨⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,故函数f (x )单调递增,无极值.不符合题意.∴a =4.故选C. 答案:C 4.函数f (x )=2+ln x x +1在[1e ,e]上的最小值为 ( ) A .1 B.e 1+e C.21+e D.31+e解析:∵f ′(x )=x +1x -(2+ln x )(x +1)2=1x-1-ln x (x +1)2,∴当e ≥x >1时,f ′(x )<0;当1e ≤x <1时,f ′(x )>0. 所以f (x )的最小值为min ⎩⎨⎧⎭⎬⎫f (1e ),f (e )=min{e 1+e ,31+e }=e 1+e ,选B.答案:B5.若函数f (x )=(a +1)e 2x -2e x +(a -1)x 有两个极值点,则实数a 的取值范围是 ( )A .(0,62)B .(1,62)C .(-62,62)D .(63,1)∪(1,62) 解析:∵f (x )=(a +1)e 2x -2e x +(a -1)x , ∴f ′(x )=2(a +1)e 2x -2e x +a -1,∵f (x )=(a +1)e 2x -2e x +(a -1)x 有两个极值点, ∴f ′(x )=0有两个不等实根,设t =e x >0,则关于t 的方程2(a +1)t 2-2t +a -1=0有两个不等正根,可得⎩⎪⎨⎪⎧a -12(a +1)>0,22(a +1)>0,4-8(a -1)(a +1)>0⇒1<a <62,∴实数a 的取值范围是(1,62),故选B. 答案:B 6.图1如图1,可导函数y =f (x )在点P (x 0,f (x 0))处的切线为l :y =g (x ),设h (x )=f (x )-g (x ),则下列说法正确的是( )A .h ′(x 0)=0,x =x 0是h (x )的极大值点B .h ′(x 0)=0,x =x 0是h (x )的极小值点C .h ′(x 0)≠0,x =x 0不是h (x )的极值点D .h ′(x 0)≠0,x =x 0是h (x )的极值点解析:由题意可得函数f (x )在点(x 0,f (x 0))处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0), ∴h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), ∴h ′(x )=f ′(x )-f ′(x 0), ∴h ′(x 0)=f ′(x 0)-f ′(x 0)=0. 又当x <x 0时,f ′(x )<f ′(x 0), 故h ′(x )<0,h (x )单调递减; 当x >x 0时,f ′(x )>f ′(x 0), 故h ′(x )>0,h (x )单调递增.∴x =x 0是h (x )的极小值点.故选B. 答案:B7.若函数g (x )=mx +sin xe x 在区间(0,2π)内有一个极大值和一个极小值,则实数m 的取值范围是 ( )A .[-e -2π,e -π2)B .(-e -π,e -2π)C .(-e π,e -5π2) D .(-e -3π,e π) 解析:函数g (x )=mx +sin xe x , 求导得g ′(x )=m +cos x -sin xe x. 令f (x )=m +cos x -sin x e x,则f ′(x )=-2cos xe x .易知,当x ∈(0,π2)时,f ′(x )<0,f (x )单调递减; 当x ∈(π2,3π2)时,f ′(x )>0,f (x )单调递增; 当x ∈(3π2,2π)时,f ′(x )<0,f (x )单调递减. 且f (0)=m +1,f (π2)=m -e -π2,f (3π2)=m +e -3π2, f (2π)=m +e -2π,有f (π2)<f (2π),f (0)>f (3π2).根据题意可得⎩⎪⎨⎪⎧f (π2)=m -e -π2<0,f (2π)=m +e -2π≥0,解得-e-2π≤m <e -π2.故选A.答案:A8.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是 ( )A .-4,-15B .5,-15C .5,-4D .5,-16 解析:由题意知y ′=6x 2-6x -12, 令y ′>0,解得x >2或x <-1,故函数y=2x3-3x2-12x+5在[0,2]上递减,在[2,3]上递增,当x=0时,y=5;当x=3时,y=-4;当x=2时,y=-15.由此得函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是5,-15.故选B.答案:B9.若函数f(x)=13x3-⎝⎛⎭⎪⎫1+b2x2+2bx在区间[-3,1]上不是单调函数,则f(x)在R上的极小值为()A.2b-43 B.32b-23C.0 D.b2-16b3解析:由题意得f′(x)=(x-b)(x-2).因为f(x)在区间[-3,1]上不是单调函数,所以-3<b<1.由f′(x)>0,解得x>2或x<b;由f′(x)<0,解得b<x<2.所以f(x)的极小值为f(2)=2b-43.故选A.答案:A10.已知函数f(x)=ln x+a,g(x)=ax+b+1,若∀x>0,f(x)≤g(x),则ba的最小值是()A.1+e B.1-e C.e-1D.2e-1解析:由题意,∀x>0,f(x)≤g(x),即ln x+a≤ax+b+1,即ln x-ax+a≤b+1,设h(x)=ln x-ax+a,则h′(x)=1x-a,当a≤0时,h′(x)=1x-a>0,函数h(x)单调递增,无最大值,不合题意;当a>0时,令h′(x)=1x-a=0,解得x=1a,当x∈(0,1a)时,h′(x)>0,函数h(x)单调递增;当x∈(1a,+∞)时,h′(x)<0,函数h(x)单调递减,所以h(x)max=h(1a)=-ln a+a-1,故-ln a+a-1≤b+1,即-ln a+a-b-2≤0,令ba=k,则b=ak,所以-ln a+(1-k)a-2≤0,设φ(a)=-ln a+(1-k)a-2,则φ′(a)=-1a+(1-k),若1-k≤0,则φ′(a)<0,此时φ(a)单调递减,无最小值,所以k<1,由φ′(a)=0,得a=11-k,此时φ(a)min=ln(1-k)-1≤0,解得k≥1-e,所以k的小值为1-e,故选B.答案:B11.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f′(n)的最小值是()A.-13 B.-15 C.10 D.15解析:∵f′(x)=-3x2+2ax,函数f(x)=-x3+ax2-4在x=2处取得极值,∴-12+4a=0,解得a=3,∴f′(x)=-3x2+6x,f(x)=-3x3+3x2-4,∴n∈[-1,1]时,f′(n)=-3n2+6n,当n=-1时,f′(n)最小,最小为-9,当m∈[-1,1]时,f(m)=-m3+3m2-4,f′(m)=-3m2+6m,令f′(m)=0,得m=0或m=2,所以当m=0时,f(m)最小,最小为-4,故f(m)+f′(n)的最小值为-9+(-4)=-13.故选A.答案:A12.设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知当m≤2时,f(x)=16x3-12mx2+x在(-1,2)上是“凸函数”,则f(x)在(-1,2)上() A.既有极大值,也有极小值B.没有极大值,有极小值C.有极大值,没有极小值D.没有极大值,也没有极小值解析:由题设可知,f″(x)<0在(-1,2)上恒成立,由于f ′(x )=12x 2-mx +1,从而f ″(x )=x -m ,所以有x -m <0在(-1,2)上恒成立,故知m ≥2,又因为m ≤2,所以m =2,从而f (x )=16x 3-x 2+x ,f ′(x )=12x 2-2x +1=0,得x 1=2-2∈(-1,2),x 2=2+2∉(-1,2),且当x ∈(-1,2-2)时,f ′(x )>0,当x ∈(2-2,2)时,f ′(x )<0,所以f (x )在x =2-2处取得极大值,没有极小值.答案:C 二、填空题13.已知函数f (x )=1-x x +ln x ,则f (x )在[12,2]上的最大值等于________.解析:∵函数f (x )=1-xx +ln x , ∴f ′(x )=-1x 2+1x =x -1x 2.故f (x )在[12,1]上单调递减,在[1,2]上单调递增, 又∵f (12)=1-ln2,f (2)=ln2-12,f (1)=0, f (12)-f (2)=32-2ln2>0,∴f (x )max =1-ln2,故答案为1-ln2. 答案:1-ln214.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________.解析:求导得f ′(x )=3x 2+6ax +3b ,因为函数f (x )在x =2处取得极值,所以f ′(2)=3·22+6a ·2+3b =0,即4a +b +4=0 ①,又因为图象在x =1处的切线与直线6x +2y +5=0平行, 所以f ′(1)=3+6a +3b =-3,即2a +b +2=0 ②, 联立①②可得a =-1,b =0, 所以f ′(x )=3x 2-6x =3x (x -2), 当f ′(x )>0时,x <0或x >2; 当f ′(x )<0时,0<x <2,∴函数的单调增区间是(-∞,0)和(2,+∞),函数的单调减区间是(0,2), 因此求出函数的极大值为f (0)=c , 极小值为f (2)=c -4,故函数的极大值与极小值的差为c -(c -4)=4, 故答案为4. 答案:415.若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.解析:由f ′(x )=6x 2-2ax =0,得x =0或x =a3,因为函数f (x )在(0,+∞)上有且仅有一个零点且f (0)=1,所以a 3>0,f (a 3)=0,因此2(a 3)3-a (a3)2+1=0,a =3.从而函数f (x )在[-1,0]上单调递增,在[0,1]上单调递减,所以f (x )max =f (0),f (x )min =min{f (-1),f (1)}=f (-1),f (x )max +f (x )min =f (0)+f (-1)=1-4=-3.答案:-316.已知函数f (x )=x 3+ax 2+(a +6)x +1,(1)若函数f (x )的图象在点(1,f (1))处的切线斜率为6,则实数a =________;(2)若函数在(-1,3)内既有极大值又有极小值,则实数a 的取值范围是________.解析:∵f (x )=x 3+ax 2+(a +6)x +1, ∴f ′(x )=3x 2+2ax +(a +6), ∴f ′(1)=3a +9=6,∴a =-1.函数在(-1,3)内既有极大值又有极小值,则f ′(x )=3x 2+2ax +(a +6)=0在(-1,3)内有不同的实数根,则⎩⎪⎨⎪⎧Δ=4a 2-12(a +6)>0,f ′(-1)=-a +9>0,f ′(3)=7a +33>0,-1<-2a 6<3,∴-337<a <-3.答案:-1 (-337,-3) 三、解答题17.已知函数f (x )=x +ax ln x (a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数f (x )=x +ax ln x 存在极大值,且极大值点为1,证明:f (x )≤e -x +x 2. 解:(1)由题意x >0,f ′(x )=1+a +a ln x ,①当a =0时,f (x )=x ,函数f (x )在(0,+∞)上单调递增; ②当a >0时,函数f ′(x )=1+a +a ln x 单调递增,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )<0,当x ∈(e -1-1a ,+∞)时,f ′(x )>0,所以函数f (x )在(0,e -1-1a )上单调递减,函数f (x )在(e -1-1a ,+∞)上单调递增;③当a <0,函数f ′(x )=1+a +a ln x 单调递减,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫e -1-1a ,+∞时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,e -1-1a 上单调递增,函数f (x )在⎝ ⎛⎭⎪⎫e -1-1a ,+∞上单调递减. (2)由f ′(1)=0,得a =-1,令h (x )=e -x +x 2-x +x ln x ,则h ′(x )=-e -x +2x +ln x ,h ″(x )=e -x +2+1x >0,∴h ′(x )在(0,+∞)上单调递增,∵h ′⎝ ⎛⎭⎪⎫1e =-e -1e +2e -1<0,h ′(1)=-e -1+2>0, ∴∃x 0∈⎝ ⎛⎭⎪⎫1e ,1,使得h ′(x 0)=0,即-e -x 0+2x 0+ln x 0=0. ∴当x ∈(0,x 0)时,h ′(x )<0; 当x ∈(x 0,+∞)时,h ′(x )>0,∴h (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, ∴h (x )≥h (x 0).由-e -x 0+2x 0+ln x 0=0,得e -x 0=2x 0+ln x 0, ∴h (x 0)=e -x 0+x 20-x 0+x 0ln x 0 =(x 0+1)(x 0+ln x 0).当x 0+ln x 0<0时,ln x 0<-x 0⇒x 0<e -x 0 ⇒-e -x 0+x 0<0,所以-e -x 0+x 0+x 0+ln x 0<0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0>0时,ln x 0>-x 0⇒x 0>e -x 0⇒-e -x 0+x 0>0, 所以-e -x 0+x 0+x 0+ln x 0>0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0=0时,ln x 0=-x 0⇒x 0=e -x 0⇒-e -x 0+x 0=0, 得-e -x 0+2x 0+ln x 0=0,故x 0+ln x 0=0成立, 得h (x 0)=(x 0+1)(x 0+ln x 0)=0,所以h (x )≥0, 即f (x )≤e -x +x 2.18.已知函数f (x )=x ln x .(1)求函数y =f (x )的单调区间和最小值;(2)若函数F (x )=f (x )-a x 在[1,e]上的最小值为32,求a 的值; (3)若k ∈Z ,且f (x )+x -k (x -1)>0对任意x >1恒成立,求k 的最大值. 解:(1)f (x )的单调增区间为[1e ,+∞),单调减区间为⎝ ⎛⎦⎥⎤0,1e , f (x )min =f (1e )=-1e .(2)F (x )=ln x -ax ,F ′(x )=x +a x 2,(ⅰ)当a ≥0时,F ′(x )>0,F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32,所以a =-32∉[0,+∞),舍去.(ⅱ)当a <0时,F (x )在(0,-a )在上单调递减, 在(-a ,+∞)上单调递增,①若a ∈(-1,0),F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32,所以a =-32∉(-1,0),舍去;②若a ∈[-e ,-1],F (x )在[1,-a ]上单调递减,在[-a ,e]上单调递增,所以F (x )min =F (-a )=ln(-a )+1=32,解得a =-e ∈[-e ,-1];③若a ∈(-∞,-e), F (x )在[1,e]上单调递减, F (x )min =F (e)=1-a e =32,所以a =-e 2∉(-∞,-e),舍去.综上所述, a =- e.(3)由题意得,k (x -1)<x +x ln x 对任意x >1恒成立,即k <x ln x +x x -1对任意x >1恒成立. 令h (x )=x ln x +x x -1,则h ′(x )=x -ln x -2(x -1)2, 令φ(x )=x -ln x -2(x >1),则φ′(x )=1-1x =x -1x >0,所以函数φ(x )在(1,+∞)上单调递增,因为方程φ(x )=0在(1,+∞)上存在唯一的实根x 0,且x 0∈(3,4),当1<x <x 0时,φ(x )<0,即h ′(x )<0,当x >x 0时,φ(x )>0,即h ′(x )>0.所以函数h (x )在(1,x 0)上递减,在(x 0,+∞)上单调递增.所以h (x )min =h (x 0)=x 0(1+ln x 0)x 0-1=x 0(1+x 0-2)x 0-1=x 0∈(3,4),所以k <g (x )min =x 0, 又因为x 0∈(3,4),故整数k 的最大值为3.19.高三模拟考试)已知函数f (x )=-4x 3+ax ,x ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在[-1,1]上的最大值为1,求实数a 的取值集合.解:(1)f ′(x )=-12x 2+a .当a =0时,f (x )=-4x 3在R 上单调递减;当a <0时,f ′(x )=-12x 2+a <0,即f (x )=-4x 3+ax 在R 上单调递减;当a >0时,f ′(x )=-12x 2+a =0,解得x 1=36a ,x 2=-3a 6,∴当x ∈⎝⎛⎭⎪⎫-∞,-3a 6时,f ′(x )<0, f (x )在⎝⎛⎭⎪⎫-∞,-3a 6上递减;当x ∈⎝⎛⎭⎪⎫-3a 6,3a 6时,f ′(x )>0, f (x )在⎝⎛⎭⎪⎫-3a 6,3a 6上递增; 当x ∈⎝ ⎛⎭⎪⎫3a 6,+∞时,f ′(x )<0, f (x )在⎝ ⎛⎭⎪⎫3a 6,+∞上递减. 综上,当a ≤0时,f (x )在R 上单调递减;当a >0时,f (x )在⎝⎛⎭⎪⎫-∞,-3a 6上递减; 在⎝ ⎛⎭⎪⎫-3a 6,3a 6上递增;在⎝ ⎛⎭⎪⎫3a 6,+∞上递减. (2)∵函数f (x )在[-1,1]上的最大值为1,∴对任意x ∈[-1,1],f (x )≤1恒成立,即-4x 3+ax ≤1对任意x ∈[-1,1]恒成立,变形可得ax ≤1+4x 3.当x =0时,a ·0≤1+4·03,即0≤1,可得a ∈R ;当x ∈(0,1]时,a ≤1x +4x 2,则a ≤⎝ ⎛⎭⎪⎫1x +4x 2min, 令g (x )=1x +4x 2,则g ′(x )=-1x 2+8x =8x 3-1x 2.当x ∈⎝ ⎛⎭⎪⎫0,12时,g ′(x )<0,当x ∈⎝ ⎛⎦⎥⎤12,1时, g ′(x )>0. 因此,g (x )min =g ⎝ ⎛⎭⎪⎫12=3, ∴a ≤3.当x ∈[-1,0)时,a ≥1x +4x 2,则a ≥⎝ ⎛⎭⎪⎫1x +4x 2max, 令g (x )=1x +4x 2,则g ′(x )=-1x 2+8x =8x 3-1x 2,当x ∈[-1,0)时,g ′(x )<0,因此,g (x )max =g (-1)=3,∴a ≥3.综上,a=3.∴a的取值集合为{3}。

导数与函数的极值和最值考点及题型

导数与函数的极值和最值考点及题型

第三节导数与函数的极值、最值❖基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.❖常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](2018·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d =3,求f (x )的极小值点及极大值.[解] (1)由已知,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1.因此曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0. (2)由已知可得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3) =(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:[解题技法] 求函数的极值或极值点的步骤(1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (2018·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x ,得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).[解题技法]已知函数极值点或极值求参数的2个要领[题组训练]1.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x+ln x (x >0),∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(2019·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选Cf ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x-1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1;由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝⎛⎭⎫-∞,13和(1,+∞)上单调递增,在⎝⎛⎭⎫13,1上单调递减, 所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.故a 的取值范围为⎣⎡⎭⎫43,+∞. 考点二 利用导数解决函数的最值问题[典例] (2017·北京高考)已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝⎛⎭⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [题组训练]1.(2018·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝⎛⎭⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3). 答案:1442.已知函数f (x )=ln x -a x.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2,因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32,所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32,所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a , 当1<x <-a 时,f ′(x )<0, 所以f (x )在(1,-a )上单调递减; 当-a <x <e 时,f ′(x )>0, 所以f (x )在(-a ,e)上单调递增,所以f (x )min =f (-a )=ln(-a )+1=32,所以a =- e.综上,a =- e.[课时跟踪检测]A 级1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t ,设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t ,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y =2x -1x 2在x =-1处取得极值,因此a =2. 答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析:y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________. 解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R ),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值; (2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a (1-ln x )x 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x.令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________. 解析:因为f (x )的单调递减区间为(-1,1),所以a >0.由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t >0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝⎛⎭⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.贾老师数学解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x 2(a >0). (1)由f ′(x )>0,解得x >1a, 所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a, 所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a ,无极大值. (2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数, 故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1.②若1<1a <e ,即1e<a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎝⎛⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1. ③若1a ≥e ,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e=a +1e=0, 即a =-1e ,故不满足条件0<a ≤1e. 综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。

近五年高考函数的极值和最值真题版(理科复习)

近五年高考函数的极值和最值真题版(理科复习)

题型全归纳18——函数的极值和最值一 极值问题1求函数的极值1(2017新课标Ⅱ)若2x =-是函数21()(1)x f x x ax e-=+-的极值点,则21()(1)x f x x ax e -=+-的极小值为A .1-B .32e --C .35e - D .1 .A 【解析】∵21()[(2)1]x f x x a x a e-'=+++-,∵(2)0f '-=,∴1a =-,所以21()(1)x f x x x e-=--,21()(2)x f x x x e -'=+-,令()0f x '=,解得2x =-或1x =,所以当(,2)x ∈-∞-,()0f x '>,()f x 单调递增;当(2,1)x ∈-时,()0f x '<,()f x 单调递减;当(1,)x ∈+∞,()0f x '>,()f x 单调递增,所以()f x 的极小值为11(1)(111)1f e -=--=-,选A .2 极值点的个数问题。

1 (2015山东理21(1)) 设函数()()()2ln 1f x x a x x =++-,其中a ∈R . 讨论函数()f x 极值点的个数,并说明理由.解析 由题意知,函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+'=+-=++.令()221g x ax ax a =+-+,()1,x ∈-+∞.当0a =时,()1g x =,此时()0f x '>,函数()f x 在()1,-+∞上单调递增,无极值点; 当0a >时,()()28198a a a a a ∆=--=-.① 当809a <„时,0∆„,()0g x …,()0f x '…, ② 函数()f x 在()1,-+∞上单调递增,无极值点; ③ 当89a >时,0∆>,设方程2210ax ax a +-+=的两根为1x ,2x ()12x x <.因为1212x x +=-,所以114x <-,214x >-.由()110g -=>,可得1114x -<<-.所以当()11,x x ∈-时,()0g x >,()0f x '>,函数()f x 单调递增;当()12,x x x ∈时,()0g x <,()0f x '<,函数()f x 单调递减;当()2,x x ∈+∞时()0g x >,()0f x '>,函数()f x 单调递增.因此函数有两个极值点.当0a <时,0∆>.由()110g -=>,可得11x <-.当()21,x x ∈-时,()0g x >,()0f x '>,函数()f x 单调递增;当()2,x x ∈+∞时,()0g x <,()0f x '<,函数()f x 单调递减,所以函数有一个极值点. 综上所述,当0a <时,函数有()f x 一个极值点; 当809a剟时,函数()f x 无极值点;当89a >时,函数()f x 有两个极值点. 3 极值点的存在问题1(2014新课标Ⅱ)设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是A .()(),66,-∞-⋃+∞B .()(),44,-∞-⋃+∞C .()(),22,-∞-⋃+∞D .()(),11,-∞-⋃+∞C 【解析】由正弦型函数的图象可知:()f x 的极值点0x 满足0()f x =,则22x k m πππ=+()k Z ∈,从而得01()()2x k m k Z =+∈.所以不等式()22200[]x f x m +<,即为2221()32k m m ++<,变形得21[1()]32m k -+>,其中k Z ∈.由题意,存在整数k 使得不等式21[1()]32m k -+>成立.当1k ≠-且0k ≠时,必有21()12k +>,此时不等式显然不能成立,故1k =-或0k =,此时,不等式即为2334m >,解得2m <-或2m >.2 设函数,其中为常数.若函数的有极值点,求的取值范围及的极值点;思路:()()2'2221b x x bf x x x x -+=-+=,定义域为()0,+∞,若函数的有极值点,则()'0f x =有正根且无重根,进而转化为二次方程根分布问题,通过韦达定理刻画根的符号,进而确定b 的范围解:(1)()()2'2221b x x bf x x x x -+=-+=,令()'0f x =即2220x x b -+=()f x Q 有极值点∴2220x x b -+=有正的实数根,设方程的根为12,x x ① 有两个极值点,即12,0x x >,1212480110202b x x b bx x ⎧⎪∆=->⎪∴+=⇒<<⎨⎪⎪=>⎩② 有一个极值点,即12=002bx x b ≤⇒≤∴综上所述:1,2b ⎛⎫∈-∞ ⎪⎝⎭ (2)思路:利用第(1)问的结论根据极值点的个数进行分类讨论方程2220x x b -+=的两根为:1x ==±① 当102b <<时,1211x x ==()f x ∴的单调区间为:∴()f x 的极大值点为1x =-1x =+x b x x f ln )1()(2+-=b ()f x b ()f x ()f x② 当0b ≤时,1210,1x x =<=+()f x ∴的单调区间为:∴()f x 的极小值点为1x =+综上所述:当102b <<时,()f x 的极大值点为1x =-1x =+当0b ≤时,()f x 的极小值点为1x =+3 (2019.2.21)已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点; (1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x'<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.4 已知函数f (x )=x (lnx ﹣ax ),(a ∈R ).(2)若函数f (x )既有极大值又有极小值,求实数a 的取值范围. ②当a >0时,令h'(x )=0,可得,列表:xh'(x )+0 ﹣h(x)↗极大值↘若,即,,即f'(x)≤0,故函数f(x)在(0,+∞)上单调递减,函数f(x)在(0,+∞)上不存在极值,与题意不符,若,即时,由于,且=,故存在,使得h(x)=0,即f'(x)=0,且当x∈(0,x1)时,f'(x)<0,函数f(x)在(0,x1)上单调递减;当时,f'(x)>0,函数f(x)在(0,x1)上单调递增,函数f (x)在x=x1处取极小值.由于,且=(事实上,令,=,故μ(a)在(0,1)上单调递增,所以μ(a)<μ(1)=﹣1<0).故存在,使得h(x)=0,即f'(x)=0,且当时,f'(x)>0,函数f(x)在上单调递增;当x∈(x2,+∞)时,f'(x)<0,函数f(x)在(x2,+∞)上单调递减,函数f(x)在x=x2处取极大值.综上所述,当时,函数f(x)在(0,+∞)上既有极大值又有极小值.5 已知函数f(x)=e x﹣m﹣xlnx﹣(m﹣1)x,m∈R,f′(x)为函数f(x)的导函数.(1)若m=1,求证:对任意x∈(0,+∞),f′(x)≥0;(2)若f(x)有两个极值点,求实数m的取值范围.【解答】(2)f(x)有两个极值点,即f′(x)=e x﹣m﹣lnx﹣m有两个变号零点.①当m≤1时,f′(x)=e x﹣m﹣lnx﹣m≥e x﹣1﹣lnx﹣1,由(1)知f′(x)≥0,则f(x)在(0,+∞)上是增函数,无极值点;(6分)②当m >1时,令g (x )=f′(x ),则,∵g′(1)=e 1﹣m ﹣1<0>0,且g′(x )在(0,+∞)上单增,∴∃x 0∈(1,m ),使g′(x 0)=0.当x ∈(0,x 0)时,g′(x )<0;当x ∈(x 0,+∞)时,g′(x )>0. 所以,g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增. 则g (x )在x=x 0处取得极小值,也即最小值g (x 0)=.(8分)由g′(x 0)=0得m=x 0+lnx 0,则g (x 0)=(9分)令h (x )=(1<x <m )则,h (x )在(1,m )上单调递减,所以h (x )<h (1)=0.即g (x 0)<0,(10分)又x→0时,g (x )→+∞,x→+∞时,g (x )→+∞,故g (x )在(0,+∞)上有两个变号零点,从而f (x )有两个极值点.所以,m >1满足题意.(11分) 综上所述,f (x )有两个极值点时,m 的取值范围是(1,+∞).(12分)(其他解法酌情给分)【点评】题主要考查导数的综合应用,利用函数单调性极值和导数之间的关系是解决本题的关键.,对于参数要进行分类讨论,综合性较强,难度较大.4 极值和零点。

导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

专题3.5 导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【题型1 根据函数图象判断极值】【方法点拨】由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.【例1】(2022春•杨浦区校级期末)已知函数y=f(x)(a<x<b)的导函数是y=f'(x)(a<x<b),导函数y=f'(x)的图象如图所示,则函数y=f(x)在(a,b)内有()A.3个驻点B.4个极值点C.1个极小值点D.1个极大值点【解题思路】由题意结合导函数图像即可确定函数的性质.【解答过程】解:由导函数的图象可知,原函数存在4个驻点,函数有3个极值点,其中2个极大值点,1个极小值点.故选:C.【变式1-1】(2022春•纳雍县期末)已知函数f(x)的导函数的图像如图所示,则下列结论正确的是()A.﹣1是f(x)的极小值点B.曲线y=f(x)在x=2处的切线斜率小于零C.f(x)在区间(﹣∞,3)上单调递减D.﹣3是f(x)的极小值点【解题思路】根据题意,由函数导数与单调性的关系依次分析选项,即可得答案.【解答过程】解:根据题意,依次分析选项:对于A,在x=﹣1左右都有f′(x)<0,﹣1不是f(x)的极值,A错误;对于B,f′(x)的图象在(﹣3,3)上,f′(x)<0,f(x)为减函数,则曲线y=f(x)在x=2处的切线斜率即f′(2)小于零,B正确;对于C,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,f(x)为增函数,C错误;对于D,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,在(﹣3,3)上,f′(x)<0,则﹣3是f (x)的极大值点,D错误;故选:B.【变式1-2】(2022春•朝阳区校级月考)如图,可导函数y=f(x)在点P(x0,f(x0))处的切线方程为y=g(x),设h(x)=g(x)﹣f(x),h'(x)为h(x)的导函数,则下列结论中正确的是()A.h'(x0)=0,x0是h(x)的极大值点B.h'(x0)=0,x0是h(x)的极小值点C.h'(x0)≠0,x0不是h(x)的极大值点D.h'(x0)≠0,x0是h(x)的极值点【解题思路】由图判断函数h(x)的单调性,结合y=g(x)为y=f(x)在点P处的切线方程,则有h'(x0)=0,由此可判断极值情况.【解答过程】解:由题得,当x∈(﹣∞,x0)时,h(x)单调递减,当x∈(x0,+∞)时,h(x)单调递增,又h'(x0)=g'(x0)﹣f'(x0)=0,则有x0是h(x)的极小值点,故选:B.【变式1-3】(2022春•南阳期末)函数f(x)的导函数是f'(x),下图所示的是函数y=(x+1)•f'(x)(x∈R)的图像,下列说法正确的是()A.x=﹣1是f(x)的零点B.x=2是f(x)的极大值点C.f(x)在区间(﹣2,﹣1)上单调递增D.f(x)在区间[﹣2,2]上不存在极小值【解题思路】根据函数y=(x+1)•f'(x)(x∈R)的图像判断f′(x)的符号,进而判断f(x)的单调性和极值即可.【解答过程】解:由函数y=(x+1)•f'(x)(x∈R)的图像知,当﹣2<x<﹣1时,x+1<0,y>0,∴f'(x)<0,f(x)在(﹣2,﹣1)上减函数,当﹣1<x<2时,x+1>0,y>0,∴f'(x)>0,f(x)在(﹣1,2)上增函数,当x>2时,x+1>0,y<0,f'(x)<0,f(x)在(2,+∞)上减函数,∴x=﹣1、x=2分别是f(x)的极小值点、极大值点.∴选项A、C、D错误,选项B正确,故选:B.【题型2 求已知函数的极值(点)】【方法点拨】求函数f(x)极值的一般解题步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.【例2】(2022•扬中市校级开学)已知函数f(x)=12x−sinx在[0,π2]上的极小值为()A .π12−√32B .π12−12C .π6−12D .π6−√32【解题思路】根据极小值的定义,结合导数的性质进行求解即可. 【解答过程】解:由f(x)=12x −sinx ⇒f′(x)=12−cosx , 当x ∈(0,π3)时,f ′(x )<0,f (x )单调递减,当x ∈(π3,π2)时,f ′(x )>0,f (x )单调递增,所以π3是函数的极小值点,极小值为:f(π3)=π6−√32, 故选:D .【变式2-1】(2022春•资阳期末)函数f (x )=x 3﹣3x 的极大值为( ) A .﹣4B .﹣2C .1D .2【解题思路】求导,利用导数确定f (x )的单调区间,从而即可求极大值. 【解答过程】解:因为f (x )=x 3﹣3x ,x ∈R , 所以f ′(x )=3x 2﹣3=3(x +1)(x ﹣1), 令f ′(x )=0,得x =﹣1或x =1,所以当x <﹣1时,f ′(x )>0,f (x )单调递增;当﹣1<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增;所以f (x )的单调递增区间为:(﹣∞,﹣1),(1,∞);单调递减区间为(﹣1,1). 所以f (x )极大值=f (﹣1)=2. 故选:D .【变式2-2】(2022春•平谷区期末)函数f (x )=x +2cos x 在[0,π]上的极小值点为( ) A .π3B .π6C .5π6D .2π3【解题思路】分析函数导数的符号变化,由此可得函数的单调性,由单调性得出结论即可. 【解答过程】解:对于函数f (x )=x +2cos x ,f ′(x )=1﹣2sin x , 因为x ∈[0,π],当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,所以f (x )在区间[0,π6]上是增函数,在区间[π6,5π6]上是减函数,在[5π6,π]是增函数. 因此,函数f (x )=x +2cos x 在[0,π]上的极小值点为5π6.故选:C .【变式2-3】(2022春•新乡期末)已知函数f (x )=(x ﹣1)2(2﹣x )3,则f (x )的极大值点为( ) A .1B .75C .﹣1D .2【解题思路】解:因为f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ),所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【解答过程】解:f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ), 令f ′(x )=0得x =1或x =75,所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【题型3 由函数的极值(点)求参数】 【方法点拨】根据函数极值情况求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求出参数后,验证所求结果是否满足题意.【例3】(2022春•龙海市校级期末)函数f (x )=4x 3﹣ax 2﹣2bx +2在x =1处有极大值﹣3,则a ﹣b 的值等于( ) A .0B .6C .3D .2【解题思路】对函数求导,利用f (1)=﹣3以及f ′(1)=0解出a ,b ,进而得出答案. 【解答过程】解:由题意得f ′(x )=12x 2﹣2ax ﹣2b ,因为f (x )在x =1处有极大值﹣3, 所以f ′(1)=12﹣2a ﹣2b =0,f (1)=4﹣a ﹣2b +2=﹣3,解得a =3,b =3, 所以a ﹣b =0. 故选:A .【变式3-1】(2022春•哈尔滨期末)若函数f(x)=6alnx +12x 2−(a +6)x 有2个极值点,则实数a 的取值范围是()A.(﹣∞,6)∪(6,+∞)B.(0,6)∪(6,+∞)C.{6}D.(0,+∞)【解题思路】根据条件函数f(x)有两个极值点,转化为方程f′(x)=0有两个不等正实数根,得到求解.【解答过程】解:函数f(x)的定义域(0,+∞),f′(x)=6ax+x−(a+6)=(x−6)(x−a)x,令f′(x)=0得,x=6或x=a,∵函数f(x)有2个极值点,∴f'(x)=0有2个不同的正实数根,∴a>0且a≠6,故选:B.【变式3-2】(2022春•淄博期末)已知x=2是函数f(x)=ax3﹣3x2+a的极小值点,则f(x)的极大值为()A.﹣3B.0C.1D.2【解题思路】先对函数求导,然后结合极值存在条件可求a,进而可求函数的极大值.【解答过程】解:因为f′(x)=3ax2﹣6x,由题意可得,f′(2)=12a﹣12=0,故a=1,f′(x)=3x2﹣6x,当x>2或x<0时,f′(x)>0,函数单调递增,当0<x<2时,f′(x)<0,函数单调递减,故当x=0时,函数取得极大值f(0)=1.故选:C.【变式3-3】(2022春•赣州期末)已知函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)在x=1处取得极值,则a+b的最大值为()A.1B.√2C.2D.2√2【解题思路】根据题意,对函数求导,令f′(1)=0可求得a2+b2=2,利用基本不等式可求a+b的最大值.【解答过程】解:函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)的导数为f′(x)=3x2+2a2x+2b2﹣7,因为函数在x=1处取得极值,所以f′(1)=3+2a2+2b2﹣7=0,即a2+b2=2,因为a 2+b 2=(a +b )2﹣2ab =2,即(a +b )2﹣2=2ab , 因为ab ≤(a+b 2)2,所以(a +b)2−2≤2(a+b 2)2, 整理得(a +b )2≤4,所以a +b ≤2,当且仅当a =b =1时等号成立,此时f ′(x )=3x 2+2x ﹣5=(3x +5)(x ﹣1),满足函数在x =1处取得极值, 所以a +b 的最大值为2, 故选:C .【题型4 利用导数求函数的最值】 【方法点拨】(1)若函数f (x )在闭区间[a ,b ]上单调递增或单调递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值, 最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极大(或极小)值点,这个极值点就是最大(或最小)值点,此结论在导 数的实际应用中经常用到.【例4】(2022•河南开学)函数f(x)=x 2−2x +8x 在(0,+∞)上的最小值为( ) A .2B .3C .4D .5【解题思路】由题意求导,从而确定函数的单调性,从而求函数的最值.【解答过程】解:因为f ′(x)=2x −2−8x 2=(x 3−2x 2)+(x 3−8)x 2=(x−2)(2x 2+2x+4)x 2,所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 故f (x )min =f (2)=4. 故选:C .【变式4-1】(2022春•中山市校级月考)函数y =x ﹣2sin x 在区间[0,2]上的最小值是( ) A .π6−√3B .−π3−√3C .−π6−√3D .π3−√3【解题思路】利用导数研究函数区间单调性,进而求其最小值即可. 【解答过程】解:由y ′=1﹣2cos x , 当0≤x <π3时,y ′<0,即y 递减; 当π3<x ≤2时,y ′>0,即y 递增;所以y min =π3−2sin π3=π3−√3.【变式4-2】(2022春•乐山期末)已知函数f (x )=x 2﹣lnx ,则函数f (x )在[1,2]上的最小值为( ) A .1B .√22C .18+12ln2 D .12+12ln2【解题思路】求导确定函数在[1,2]上的单调性,求出最小值即可.【解答过程】解:因为f (x )=x 2﹣lnx (x >0),所以f ′(x )=2x −1x =2x 2−1x ,所以当x ∈[1,2]时,f ′(x )=2x 2−1x >0,则f (x )在[1,2]上单调递增,则f (x )在[1,2]上的最小值为f (1)=1. 故选:A .【变式4-3】(2022•绿园区校级开学)函数f (x )=lnx +1x −12与g (x )=xe x ﹣lnx ﹣x 的最小值分别为a ,b ,则( ) A .a =b B .a >bC .a <bD .a ,b 的大小不能确定【解题思路】根据函数的单调性分别求出函数f (x ),g (x )的最小值,比较a ,b 即可. 【解答过程】解:f (x )的定义域是(0,+∞), f ′(x)=1−1x =x−1x, 令f ′(x )<0,解得:0<x <1,令f ′(x )>0,解得:x >1, f (x )在(0,1)递减,在(1,+∞)递增, f (x )的最小值是f (1)=1,故a =1, g (x )=xe x ﹣lnx ﹣x ,定义域(0,+∞), g ′(x)=(x +1)e x −1x −1=x+1x (xe x −1),令h (x )=xe x ﹣1,则h ′(x )=(x +1)e x >0,x ∈(0,+∞),则可得h (x )在(0,+∞)上单调递增,且h (0)=﹣1<0,h (1)=e ﹣1>0, 故存在x 0∈(0,1)使得h (x )=0即x 0e x 0=1,即x 0+lnx 0=0, 当x ∈(0,x 0)时,h (x )<0,g ′(x )<0,函数g (x )单调递减, 当x ∈(x 0,+∞)时,g ′(x )>0,函数g (x )单调递增,故当x =x 0时,函数取得最小值g(x 0)=x 0e x 0−lnx 0−x 0=1−lnx 0−x 0=1,即b =1, 所以a =b ,【题型5 由函数的最值求参数】【例5】(2022春•烟台期末)若函数f(x)=x 3−3a 2x 2+4在区间[1,2]上的最小值为0,则实数a 的值为( ) A .﹣2B .﹣1C .2D .103【解题思路】对函数求导后,分a ≤0和a >0两种情况求出函数的单调区间,从而可求出函数的最小值,使最小值等于零,从而可出实数a 的值. 【解答过程】解:由f(x)=x 3−3a 2x 2+4,得f '(x )=3x 2﹣3ax =3x (x ﹣a ), 当a ≤0时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增,所以f(x)min =f(1)=1−3a2+4=0,解得a =103(舍去), 当a >0时,由f '(x )=0,得x =0或x =a , 当0<a ≤1时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增, 所以f(x)min =f(1)=1−3a 2+4=0,解得a =103(舍去), 当1<a <2时,当1<x <a 时,f '(x )<0,当a <x <2时,f '(x )>0, 所以f (x )在(1,a )上递减,在(a ,2)上递增,所以当x =a 时,f (x )取得最小值,所以f(a)=a 3−3a2a 2+4=0,解得a =2(舍去), 当a ≥2时,当1≤x ≤2时,f '(x )<0,所以f (x )在[1,2]上递减, 所以f(x)min =f(2)=23−3a2×4+4=0,解得a =2, 综上,a =2, 故选:C .【变式5-1】(2022春•贵阳期末)若函数f(x)=e x +lnx +x √x −1+a 在x ≤20222021上的最小值为e +1,则a 的值为( ) A .0B .1C .20202021D .20212020【解题思路】判断函数f (x )的定义域,可知函数f (x )在定义域上单调递增,由此可建立关于a 的方程,解出即可得到答案.【解答过程】解:函数的定义域为[1,20222021],而函数y =e x ,y =lnx ,y =x √x −1在[1,+∞)上均为增函数,∴函数f(x)=e x +lnx +x √x −1+a 在[1,20222021]单调递增, ∴f (x )min =f (1)=e +a =e +1,解得a =1. 故选:B .【变式5-2】(2022春•江北区校级期末)若函数f (x )=x 3﹣3x 在区间(2a ,a +3)上有最小值,则实数a 的取值范围是( ) A .(−2,12)B .(﹣2,1)C .[−1,12)D .(﹣2,﹣1]【解题思路】由导数性质得f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1),x =1时,f (x )min =﹣2.由此利用函数性质列不等式即可求解a 的范围. 【解答过程】解:∵f (x )=x 3﹣3x ,∴f ′(x )=3x 2﹣3, 由f ′(x )=0,得x =±1,x ∈(﹣∞,﹣1)时,f ′(x )>0;x ∈(﹣1,1)时,f ′(x )<0;x ∈(1,+∞)时,f ′(x )>0, ∴f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1), ∴x =1时,f (x )min =﹣2. f (x )=x 3﹣3x =﹣2时, x 3﹣3x +2=0,x 3﹣x ﹣2x +2=0, x (x 2﹣1)﹣2x +2=0,x (x +1)(x ﹣1)﹣2(x ﹣1)=0, (x 2+x )(x ﹣1)﹣2(x ﹣1)=0, (x ﹣1)(x 2+x ﹣2)=0, (x ﹣1)(x +2)(x ﹣1)=0, (x ﹣1)2(x +2)=0, 解得x =1,x =﹣2,∴﹣2≤2a <1<a +3,∴﹣1≤a <12. 即实数a 的取值范围是[﹣1,12),故选:C.【变式5-3】(2022春•公安县校级月考)已知函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,若f(x)的最小值为0对任意x>0恒成立,则实数a的最小值为()A.2√eB.−2e C.1√eD.√e【解题思路】把f(x)转化为f(x)=e2lnx+ax+1﹣(2lnx+ax+1)﹣1,证明e x﹣1≥x恒成立,得到f(x)≥0恒成立,从而得到a=−2lnx−1x,令g(x)=−2lnx−1x,利用导数求出函数g(x)的最小值即可求出结果.【解答过程】解:∵函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1,令t=lnx2+ax+1,则h(t)=e t﹣t﹣1,f′(t)=e t﹣1,当t∈(﹣∞,0)时h′(t)<0,h(t)单调递减,当t∈(0,+∞)时,h′(t)>0,h(t)单调递增,∴h(t)≥h(0)=0,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1≥0,等号成立的条件是lnx2+ax+1=0,即a=−1−2lnxx在(0,+∞)上有解,设g(x)=−2lnx+1x,则g′(x)=−2−(2lnx+1)x2=2lnx−1x2,令g′(x)=0,解得x=√e,∴当x∈(0,√e)时,g′(x)<0,g(x)单调递减,当x∈(√e,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)min=g(√e)=2√e,即a的最小值为2√e.故选:A.【题型6 极值和最值的综合问题】【方法点拨】解决函数极值、最值综合问题的策略:(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论.(3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例6】(2022春•城厢区校级期末)已知函数f(x)=x3−32(k+1)x2+3kx+1,其中k∈R.(1)当k=3时,求函数f(x)在(0,3)内的极值点;(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.【解题思路】(1)首先求得导函数,然后利用导函数研究函数的单调性,据此可求得函数的值域;(2)求得函数的解析式,然后结合导函数的符号确定函数的单调性,分类讨论即可求得实数k的取值范围.【解答过程】解:(1)k=3时,f(x)=x3﹣6x2+9x+1,则f'(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),令f'(x)=0得x1=1,x2=3,当x<1时,f′(x)>0,f(x)单调递增;当1<x<3时,f′(x)<0,f(x)单调递减;当x>3时,f′(x)>0,f(x)单调递增;所以f(x)的单调递增区间为(﹣∞,1),(3,+∞),单调递减区间为(1,3);所以f(x)在(0,1)上单调递增,在(1,3)上单调递减.故f(x)在(0,3)内的极大值点为x=1,无极小值点;(2)方法一:f'(x)=3x2﹣3(k+1)x+3k=3(x﹣1)(x﹣k),①当k≤1时,∀x∈[1,2],f'(x)≥0,函数f(x)在区间[1,2]单调递增,所以f(x)min=f(1)=1−32(k+1)+3k+1=3,即k=53(舍);②当k≥2时,∀x∈[1,2],f'(x)≤0,函数f(x)在区间[1,2]单调递减,所以f(x)min=f(2)=8﹣6(k+1)+3k⋅2+1=3,符合题意;③当1<k<2时,当x∈[1,k)时,f'(x)≤0,f(x)区间在[1,k)单调递减,当x∈(k,2]时,f'(x)>0,f(x)区间在(k,2]单调递减,所以f(x)min=f(k)=k3−32(k+1)k2+3k2+1=3,化简得:k3﹣3k2+4=0,即(k+1)(k﹣2)2=0,所以k=﹣1或k=2(都舍);综上所述:实数k取值范围为k≥2.【变式6-1】(2022春•德州期末)已知函数f(x)=x3−3ax+1(a>12 ).(1)若函数f(x)在x=﹣1处取得极值,求实数a的值;(2)当x∈[﹣2,1]时.求函数f(x)的最大值.【解题思路】(1)利用导数求得函数极值,代入计算即可得到a的值;(2)f'(x)=0的根分类讨论,然后列表表示f'(x)的正负,极值点,同时注意比较端点处函数值,从而得最大值.【解答过程】解:(1)由题意可知f'(x)=3x2﹣3a,因为函数f(x)在x=﹣1处取得极值,所以f'(﹣1)=0,即3﹣3a=0,解得a=1,经检验a=1,符合题意,所以a=1;(2)由(1)知f'(x)=3x2﹣3a,令f'(x)=0,x=±√a,当0<√a<1,即0<a<1时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,√a)√a(√a,1)1 f'(x)+0﹣0+f(x)﹣7+6a单调递增单调递减单调调增2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当1≤√a<2,即1≤a<4时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,1)1f'(x)+0﹣f(x)﹣7+6a单调递增单调递减2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当√a≥2即a≥4时,f'(x)=3x2﹣3a≤0恒成立,即f(x)在[﹣2,1]上单调递减,所以f(x)的最大值为f (﹣2)=﹣7+6a ,综上所述,当12<a <4时,f (x )的最大值为2a √a +1;当a ≥4时,f (x )的最大值为﹣7+6a .【变式6-2】(2022春•漳州期末)已知函数f(x)=(x −1)e x −t2x 2−2x ,f '(x )为f (x )的导函数,函数g (x )=f '(x ).(1)当t =1时,求函数g (x )的最小值;(2)已知f (x )有两个极值点x 1,x 2(x 1<x 2)且f(x 1)+52e −1<0,求实数t 的取值范围. 【解题思路】(1)当t =1时,根据题意可得g (x )=xe x ﹣tx ﹣2,求导得g '(x )=(x +1)e x ﹣1,分析g (x )的单调性,进而可得g (x )min .(2)问题可化为t =e x −2x,有两个根x 1,x 2,令ℎ(x)=e x −2x,则ℎ′(x)=e x +2x 2>0,求导分析单调性,又x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0,推出t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2),分析f (x 1)的单调性,又φ(−1)=−52e +1,推出﹣1<x 1<0,即可得出答案.【解答过程】解:g (x )=f '(x )=xe x ﹣tx ﹣2,(1)当t =1时,g (x )=xe x ﹣x ﹣2,g '(x )=(x +1)e x ﹣1, 当x ≤﹣1时,x +1≤0,e x >0, 所以g '(x )=(x +1)e x ﹣1≤0﹣1<0, 当﹣1<x <0时,0<x +1<1,0<e x <1, 所以g '(x )=(x +1)e x ﹣1<1×1﹣1=0, 当x >0时,x +1>1,e x >1,所以g '(x )=(x +1)e x ﹣1>1×1﹣1=0.综上g (x )在(﹣∞,0)上为减函数,在(0,+∞)上为增函数, 所以g (x )min =g (0)=﹣2.(2)依题有:方程g (x )=0有两个不同的根x 1,x 2, 方程g (x )=0可化为t =e x −2x , 令ℎ(x)=e x −2x ,则ℎ′(x)=e x +2x 2>0, 所以h (x )在(﹣∞,0)和(0,+∞)都是增函数,因为x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0, 所以t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2), 所以f(x 1)=(x 1−1)e x 1−t2x 12−2x 1 =(x 1−1)e x 1−12(e x 1−2x 1)x 12−2x 1=(−x 122+x 1−1)e x 1−x 1<−52e +1,令φ(x)=(−x 22+x −1)e x −x(x <0),则φ′(x)=−12x 2e x −1<0,所以φ(x )在(﹣∞,0)上为减函数,又因为φ(−1)=−52e +1, 所以﹣1<x 1<0, 所以t =e x 1−2x 1>1e+2. 【变式6-3】(2022春•潞州区校级期末)有三个条件: ①函数f (x )在x =1处取得极小值2; ②f (x )在x =﹣1处取得极大值6; ③函数f (x )的极大值为6,极小值为2.这三个条件中,请任意选择一个填在下面的横线上(只要填写序号),并解答本题. 题目:已知函数f (x )=x 3﹣3ax +b (a >0),并且 _____. (1)求f (x )的解析式;(2)当x ∈[﹣3,1]时,求函数f (x )的最值.【解题思路】(1)求出函数f (x )的导数f ′(x ),选择条件①,②,利用给定的极值点及对应的极值列式求解并验证作答;选择条件③,判断极大值与极小值列式求解并验证作答. (2)利用(1)的结论,利用导数求出给定区间上的最值作答. 【解答过程】解:(1)选条件①:求导得f ′(x )=3x 2﹣3a ,由{f ′(1)=0f(1)=2,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当﹣1<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 则f (x )在x =1处取得极小值2, 所以f (x )=x 3﹣3x +4;选条件②:求导得f ′(x )=3x 2﹣3a ,由{f ′(−1)=0f(−1)=6,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当x <﹣1时,f ′(x )>0,当﹣1<x <1时,f ′(x )=<0,则f(x)在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4.选条件③:求导得f′(x)=3x2﹣3a,令f′(x)=3x2﹣3a=0,得x=±√a,当x<−√a或x>√a时,f′(x)>0,当−√a<x<√a时时,f′(x)<0,因此,当x=−√a时,f(x)取得极大值f(−√a),当x=√a时,f(x)取得极小值f(√a),于是得{(−√a)3−3a(−√a)+b=6(√a)3−3a√a+b=2,解得{a=1b=4,此时f′(x)=3(x+1)(x﹣1),当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在x=1处取得极小值2,在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4;(2)由(1)知,f(x)=x3﹣3x+4,当x∈[﹣3,1]时,f′(x)=3(x+1)(x﹣1),当﹣3<x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在[﹣3,﹣1)上递增,在(﹣1,1]上递减,而f(﹣3)=﹣14,f(1)=2,所以f(x)max=f(﹣1)=6,f(x)min=f(﹣3)=﹣14.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(十五)导数与函数的极值、最值[小题常考题点——准解快解]1.(2018·太原一模)函数y=f(x)的导函数的图象如图所示,则下列说法错误的是()A.(-1,3)为函数y=f(x)的单调递增区间B.(3,5)为函数y=f(x)的单调递减区间C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值解析:选C由函数y=f(x)的导函数的图象可知,当x<-1或3<x<5时,f′(x)<0,y =f(x)单调递减;当x>5或-1<x<3时,f′(x)>0,y=f(x)单调递增.所以函数y=f(x)的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y=f(x)在x=-1,5处取得极小值,在x=3处取得极大值,故选项C错误,故选C.2.函数f(x)=2x3+9x2-2在[-4,2]上的最大值和最小值分别是()A.25,-2 B.50,14C.50,-2 D.50,-14解析:选C因为f(x)=2x3+9x2-2,所以f′(x)=6x2+18x,当x∈[-4,-3)或x∈(0,2]时,f′(x)>0,f(x)为增函数,当x∈(-3,0)时,f′(x)<0,f(x)为减函数,由f(-4)=14,f(-3)=25,f(0)=-2,f(2)=50,故函数f(x)=2x3+9x2-2在[-4,2]上的最大值和最小值分别是50,-2.3.已知a∈R,函数f(x)=13x3-ax2+ax+2的导函数f′(x) 在(-∞,1)上有最小值,若函数g(x)=f′(x)x,则()A.g(x)在(1,+∞)上有最大值B.g(x)在(1,+∞)上有最小值C.g(x)在(1,+∞)上为减函数D.g(x)在(1,+∞)上为增函数解析:选D函数f(x)=13x3-ax2+ax+2的导函数f′(x)=x2-2ax+a,f′(x)图象的对称轴为x=a,又f′(x)在(-∞,1)上有最小值,所以a<1.函数g(x)=f′(x)x=x+ax-2a,g′(x)=1-ax2=x2-ax2,当x∈(1,+∞)时,g′(x)>0,所以g(x)在(1,+∞)上为增函数.故选D.4.(2018·河南模拟)若函数f (x )=13x 3-⎝⎛⎭⎫1+b 2x 2+2bx 在区间[-3,1]上不是单调函数,则f (x )在R 上的极小值为( )A .2b -43B.32b -23 C .0D .b 2-16b 3解析:选A 由题意得f ′(x )=(x -b )(x -2).因为f (x )在区间[-3,1]上不是单调函数,所以-3<b <1.由f ′(x )>0,解得x >2或x <b ;由f ′(x )<0,解得b <x <2.所以f (x ) 的极小值为f (2)=2b -43.故选A.5.(2018·河南息县第一高级中学段测)函数f (x )=x 3-3x -1,若对于区间(-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( )A .20B .18C .3D .0解析:选A 对于区间(-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,等价于在区间(-3,2]上,f (x )max -f (x )min ≤t .∵f (x )=x 3-3x -1,∴f ′(x )=3x 2-3=3(x -1)(x +1).∵x ∈(-3,2],∴函数f (x )在(-3,-1),(1,2)上单调递增,在(-1,1)上单调递减,∴f (x )max =f (2)=f (-1)=1,f (x )min =f (-3)=-19,∴f (x )max -f (x )min =20,∴t ≥20,即实数t 的最小值是20.6.(2018·安徽百校论坛联考)已知函数f (x )=a e x -x 2-(2a +1)x ,若函数f (x )在区间(0,ln 2)上有最值,则实数a 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(-2,-1)D .(-∞,0)∪(0,1)解析:选A f ′(x )=a (e x -2)-2x -1.∵x ∈(0,ln 2),∴e x -2<0,-2x -1<0.当a ≥0时,f ′(x )<0在(0,ln 2)上恒成立,即函数f (x )在(0,ln 2)上单调递减,函数y =f (x )在区间(0,ln 2)上无最值.当a <0时,设g (x )=a (e x -2)-2x -1,则g ′(x )=a e x -2<0,∴g (x )在(0,ln 2)上为减函数.又∵g (0)=-a -1,g (ln 2)=-2ln 2-1<0,若函数f (x )在区间(0,ln 2)上有最值,则函数g (x )有零点,即g (x )=0有解,∴g (0)=-a -1>0,解得a <-1.故选A.[大题常考题点——稳解全解]1.(2018·济宁模拟)已知函数f (x )=1+ln x kx (k ≠0).求函数f (x )的极值.解:f (x )=1+ln xkx ,其定义域为(0,+∞), 则f ′(x )=-ln xkx 2.令f ′(x )=0,得x =1,当k >0时,若0<x <1,则f ′(x )>0; 若x >1,则f ′(x )<0,∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,即当x =1时,函数f (x )取得极大值1k ,无极小值.当k <0时,若0<x <1,则f ′(x )<0; 若x >1,则f ′(x )>0,∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,即当x =1时,函数f (x )取得极小值1k,无极大值. 2.(2018·石家庄模拟)已知函数f (x )=ax -2x -3ln x ,其中a 为常数.(1)当函数f (x )的图象在点⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线的斜率为1时,求函数f (x )在⎣⎡⎦⎤32,3上的最小值;(2)若函数f (x )在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围. 解:(1)因为f ′(x )=a +2x 2-3x ,所以f ′⎝⎛⎭⎫23=a =1, 故f (x )=x -2x -3ln x ,则f ′(x )=(x -1)(x -2)x 2.由f ′(x )=0得x =1或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:从而在⎣⎡⎦32,3上,f (x )有最小值, 且最小值为f (2)=1-3ln 2.(2)f ′(x )=a +2x 2-3x =ax 2-3x +2x 2(x >0),由题设可得方程ax 2-3x +2=0有两个不等的正实根, 不妨设这两个根为x 1,x 2,且x 1≠x 2,则⎩⎪⎨⎪⎧Δ=9-8a >0,x 1+x 2=3a >0,x 1x 2=2a>0解得0<a <98.故所求a 的取值范围为⎝⎛⎭⎫0,98. 3.(2018·汉中模拟)已知函数f (x )=ln x -mx (m ∈R ).(1)若函数y =f (x )的图象过点P (1,-1),求曲线y =f (x )在点P 处的切线方程; (2)求函数f (x )在区间[1,e]上的最大值. 解:(1)因为点P (1,-1)在曲线y =f (x )上, 所以-m =-1,解得m =1. 因为f ′(x )=1x -1,所以f ′(1)=0,所以切线的方程为y =-1. (2)f ′(x )=1x -m =1-mx x.①当m ≤0时,由x ∈[1,e],得f ′(x )>0,所以函数f (x )在[1,e]上单调递增, 则f (x )max =f (e)=1-m e ;②当1m ≥e ,即0<m ≤1e 时,由x ∈[1,e],得f ′(x )>0,所以函数f (x )在[1,e]上单调递增,则f (x )max =f (e)=1-m e ; ③当1<1m <e ,即1e<m <1时,函数f (x )在⎣⎡⎭⎫1,1m 上单调递增,在⎝⎛⎦⎤1m ,e 上单调递减,则f (x )max =f ⎝⎛⎭⎫1m =-ln m -1; ④当0<1m ≤1,即m ≥1时,由x ∈[1,e],得f ′(x )≤0, 所以函数f (x )在[1,e]上单调递减, 则f (x )max =f (1)=-m .综上,当m ≤1e 时,f (x )max =1-m e ;当1e <m <1时,f (x )max =-ln m -1; 当m ≥1时,f (x )max =-m .4.(2018·河南安阳调研)已知函数f (x )=12x 2-(a +1)x +a ln x +1,a ∈R .(1)若x =3是f (x )的极值点,求f (x )的极大值;(2)求a 的范围,使得f (x )≥1恒成立. 解:(1)f ′(x )=x -(a +1)+ax (x >0). ∵x =3是f (x )的极值点,∴f ′(3)=3-(a +1)+a3=0,解得a =3.当a =3时,f ′(x )=x 2-4x +3x =(x -1)(x -3)x . 当x 变化时,f ′(x ),f (x )的变化见下表:∴f (x )的极大值为f (1)=-52.(2)f (x )≥1恒成立,即x >0时, 12x 2-(a +1)x +a ln x ≥0恒成立. 设g (x )=12x 2-(a +1)x +a ln x ,则g ′(x )=x -(a +1)+a x =(x -1)(x -a )x. ①当a ≤0时,由g ′(x )<0得g (x )的单调递减区间为(0,1), 由g ′(x )>0得g (x )的单调递增区间为(1,+∞), ∴g (x )min =g (1)=-a -12≥0,解得a ≤-12.②当0<a <1时,由g ′(x )<0得g (x )的单调递减区间为(a,1),由g ′(x )>0得g (x )的单调递增区间为(0,a ),(1,+∞),此时g (1)=-a -12<0,不合题意.③当a =1时,g (x )在(0,+∞)上单调递增,此时g (1)=-a -12<0,不合题意.④当a >1时,由g ′(x )<0得g (x )的单调递减区间为(1,a ), 由g ′(x )>0得g (x )的单调递增区间为(0,1),(a ,+∞), 此时g (1)=-a -12<0,不合题意.综上所述,当a ≤-12时,f (x )≥1恒成立.。

相关文档
最新文档