假设检验练习题-答案

合集下载

假设检验考试试题及答案解析

假设检验考试试题及答案解析

假设检验考试试题及答案解析一、单选题(本大题9小题.每题1.0分,共9.0分。

请从以下每一道考题下面备选答案中选择一个最佳答案,并在答题卡上将相应题号的相应字母所属的方框涂黑。

)第1题假设检验中的显著性水平α是( )。

A 推断时犯第Ⅱ类错误的概率B 推断时犯第Ⅰ和第Ⅱ类错误的概率C 推断时犯第Ⅰ类错误的概率D 推断时犯第Ⅲ类错误的概率【正确答案】:C【本题分数】:1.0分【答案解析】[解析] 显著性水平α是犯第Ⅰ类错误的概率,也就是原假设H0为真,却拒绝H的概率。

第2题当总体服从正态分布,但总体方差未知的情况下,H0:μ=μ,H1:μ<μ则H的拒绝域为( )。

A t≤tα(n-1)B t≤-tα(n-1)C t>-tα(n-1)D t≤(n-1)【正确答案】:B【本题分数】:1.0分第3题从一批零件中抽出100个测量其直径,测得平均直径为5.2cm,标准差为1.6cm,想知道这批零件的直径是否服从标准直径5cm,因此采用t检验法,那么在显著性水平α下,接受域为( )。

模考吧网提供最优质的模拟试题,最全的历年真题,最精准的预测押题!A |t|≥tα/2(99)B |t|<tα/2(100)C |t|<tα/2(99)D |t|≤tα/2(99)【正确答案】:C【本题分数】:1.0分【答案解析】[解析] 采用t检验法进行双边检验时,因为,所以在显著性水平α下,接受域为|t|≤tα/2(99)。

第4题在假设检验中,若抽样单位数不变,显著性水平从0.01提高到0.1,则犯第二类错误的概率( )。

A 也将提高B 不变C 将会下降D 可能提高,也可能不变【正确答案】:C【本题分数】:1.0分【答案解析】[解析] 原假设H0非真时作出接受H的选择,这种错误称为第二类错误。

在一定样本容量下,减少α会引起β增大,减少β会引起α的增大。

第5题机床厂某日从两台机器所加工的同一种零件中,分别抽取两个样本,检验两台机床的加工精度是否相同,则提出假设( )。

练习八(假设检验)--1_答案卷

练习八(假设检验)--1_答案卷
【参考答案】 A
5.设对统计假设H0 构造了显著性检验方法,则下列结论错误的是( )。
A.对不同的样本观测值,所做的统计推理结果可能不同 B.对不同的样本观测值,拒绝域不同 C.拒绝域的确定与样本观测值无关 D.对一样本观测值,可能因显著性水平的不同,而使推断结果不同
【参考答案】 B
6.在统计假设的显著性检验中,下列说法错误的是( )。
姓名
学号
5. 设 样 本 X1,X2,⋯,Xn 来 自 总 体 X ∼ N (μ,σ2) ,μ 已 知 , 要 对 σ2 作 假 设 检 验 , 统 计 假 设 为
H0:
σ2
=
σ
2,
0
H1:σ
2

σ
2 0
,









(
)。
), 给定显著水平α , 则检验的拒绝域为(
【参考答案】
空(1):
∑ χ2 =
χ2=
5.78 12
= 5.78
由于χ
2 α
2
(n −1) =
1.145
< χ2 = 5.78
< 11.070 = χ2
1−
α 2
(n) 查表所得
故接受H0 ,即认为该厂这一天生产的灯泡寿命的均方差符合要求的。
A.显著性检验的基本思想是“小概率原则”,即小概率事件在一次试验中是几乎不可能发生
B.显著性水平α 是该检验犯第一类错误的概率,即“拒真”概率 C.记显著性水平为α ,则 1− α 是该检验犯第二类错误的概率,即“受伪”概率
D.若样本值落在“拒绝域”内则拒绝原假设
【参考答案】 C

第章假设检验测试答案

第章假设检验测试答案

第八章假设检验1.A2.A3.B4.D5.C6.A1.某厂生产的化纤纤度服从正态分布,纤维的纤度的标准均值为。

某天测得25根纤维的纤度的均值39x,检验与原来设计的标准均值相比是.1=否有所变化,要求的显着性水平为05α,则下列正确的假设形式是=.0()。

A.H:μ=,1H:μ≠B.0H:μ≤,1H:μ>C.H:μ<,1H:μ≥D.0H:μ≥,1H:μ<2.某一贫困地区估计营养不良人数高达20%,然而有人认为这个比例实际上还要高,要检验该说法是否正确,则假设形式为()。

A.H:π≤,1H:π>B.0H:π=,1H:π≠C.H:π≥,1H:π<D.0H:π≥,1H:π<3.一项新的减肥计划声称:在计划实施的第一周内,参加者的体重平均至少可以减轻8磅。

随机抽取40位参加该项计划的样本,结果显示:样本的体重平均减少7磅,标准差为磅,则其原假设和备择假设是()。

A.H:μ≤8,1H:μ>8B.0H:μ≥8,1H:μ<8C.H:μ≤7,1H:μ>7D.0H:μ≥7,1H:μ<74.在假设检验中,不拒绝原假设意味着()。

A.原假设肯定是正确的B.原假设肯定是错误的C.没有证据证明原假设是正确的D.没有证据证明原假设是错误的5.在假设检验中,原假设和备择假设()。

A.都有可能成立B.都有可能不成立C.只有一个成立而且必有一个成立D.原假设一定成立,备择假设不一定成立6.在假设检验中,第一类错误是指()。

A.当原假设正确时拒绝原假设B.当原假设错误时拒绝原假设C.当备择假设正确时拒绝备择假设D.当备择假设不正确时未拒绝备择假设7.B8.C9.B10.A11.D12.C7.在假设检验中,第二类错误是指()。

A.当原假设正确时拒绝原假设B.当原假设错误时未拒绝原假设C.当备择假设正确时未拒绝备择假设D.当备择假设不正确时拒绝备择假设8.指出下列假设检验哪一个属于右侧检验()。

A.H:μ=0μ,1H:μ≠0μB.0H:μ≥0μ,1H:μ<0μC.H:μ≤0μ,1H:μ>0μD.0H:μ>0μ,1H:μ≤0μ9.指出下列假设检验哪一个属于左侧检验()。

统计学:假设检验习题与答案

统计学:假设检验习题与答案

一、单选题1、在假设检验中,我们认为()。

A.原假设是不容置疑的B.拒绝域总是位于检验统计量分布的两边C.小概率事件在一次抽样中实际上不会发生D.检验统计量落入拒绝域是不可能的正确答案:C2、在假设检验中,显著性水平确定后()。

A.双边检验的拒绝域小于单边检验的拒绝域B.双边检验的拒绝域大于单边检验的拒绝域C.双边检验的拒绝域与单边检验的拒绝域不可简单直接对比D.双边检验的拒绝域等于单边检验的拒绝域正确答案:C3、单个正态总体均值的检验时若总体方差已知,()。

A.设计的检验统计量服从卡方分布B.设计的检验统计量服从F分布C.设计的检验统计量服从标准正态分布D.设计的检验统计量服从t分布正确答案:C4、总体成数的假设检验()。

A.设计的检验统计量服从标准正态分布B.设计的检验统计量服从卡方分布C.设计的检验统计量近似服从卡方分布D.设计的检验统计量近似服从标准正态分布正确答案:D5、两个正态总体均值之差的检验中,如果两个总体方差未知但相等,检验统计量t的自由度是()。

A.两样本容量之和B.两样本容量之和减2C.两样本容量之积D.两样本容量之和减1正确答案:B6、假设检验是检验()的假设值是否成立。

A.总体均值B.总体指标C.样本方差D.样本指标正确答案:B7、在大样本条件下,样本成数的抽样分布近似为()。

A.均匀分布B.卡方分布C.二项分布D.正态分布正确答案:D8、下列关于假设检验的说法,不正确的是()。

A.作出“拒绝原假设”决策时可能会犯第一类错误B.作出“不能拒绝原假设”决策时意味着原假设正确C.作出“不能拒绝原假设”决策时可能会犯第二类错误D.作出“接受原假设”决策时意味着没有充分的理由认为原假设是错误的正确答案:B9、将由显著性水平所规定的拒绝域平分为两部分,置于概率分布的两,每边占显著性水平的二分之一,这是()。

A.右侧检验B.单侧检验C.左侧检验D.双侧检验正确答案:D10、如果使用者偏重于担心出现纳伪错误而造成的损失,则应把显著性水平定得()。

假设检验测试答案

假设检验测试答案

第八章假设检验1. A2. A3. B4. D5. C6. A1. 某厂生产的化纤纤度服从正态分布,纤维的纤度的标准均值为1.40。

某天测得25根纤维的纤度的均值x =1.39,检验与原来设计的标准均值相比是否有所变化,要求的显着性水平为:=0.05,则下列正确的假设形式是()。

A. H0: [1 = 1.40, H1:卩工1.40 B . H0: < 1.40, H1:卩 >1.40C . H0: i < 1.40, H1: i > 1.40D . H0: i >1.40, H1: i < 1.402. 某一贫困地区估计营养不良人数高达20%,然而有人认为这个比例实际上还要高,要检验该说法是否正确,则假设形式为()。

A. H 0 : nW 0.2, H1: n > 0.2 B . H 0 : n = 0.2,比:兀工0.2C . H0: n >0.3, H1: n <0.3D . H0: n >0.3, H1: n <0.33. 一项新的减肥计划声称:在计划实施的第一周内,参加者的体重平均至少可以减轻8磅。

随机抽取40位参加该项计划的样本,结果显示:样本的体重平均减少7磅,标准差为3.2磅,则其原假设和备择假设是()。

A. H 0 : 1<8 , H1: 1 >8C . H 0: i<7 , H1: 1 >74. 在假设检验中,不拒绝原假设意味着(A.原假设肯定是正确的C .没有证据证明原假设是正确的5. 在假设检验中,原假设和备择假设(A.都有可能成立B. H 0 : i>8 , H1 : 1<8D. H 0: i》7 , H1: 1<7)。

B .原假设肯定是错误的D .没有证据证明原假设是错误的))B .都有可能不成立c .只有一个成立而且必有一个成立D .原假定成立)。

B .当原假设错误时拒绝原假设 D .当备择假设不正确时未拒绝备B 10. A 11.)。

(完整版)统计学假设检验习题答案

(完整版)统计学假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。

采用t 分布的检验统计量nx t /0σμ-=。

查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。

667.116/60800820=-=t 。

因为t <2.131<2.947,所以在两个水平下都接受原假设。

2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。

n=100可近似采用正态分布的检验统计量nx z /0σμ-=。

查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。

计算统计量值3100/5001000010150=-=z 。

因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。

3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。

假设检验参考答案

假设检验参考答案

第九章 假设检验(练习及习题标准答案) 一、单项选择题1.当总体服从正态分布,但总体方差未知小样本的情况下,0100:;:μμμμ〈≥H H ,则0H 的拒绝域为( ) A.)1(-≤n t t α B. )1(--≤n t t α C. )1(--〉n t t α D. )1(/2--≤n t t α 2.在假设检验中,原假设0H ,备选假设1H ,则称( )为犯第二类错误。

A.0H 为真,不拒绝1H B. 0H 为真,拒绝1H C. 0H 不真,不拒绝0H D. 0H 不真,拒绝0H 3.假设检验是对未知总体某个特征提出某种假设,而验证假设是否成立的资料是( )。

A.样本资料B.总体全部资料C.重点资料D.典型资料4.下列对总体特征值θ的假设,哪一种写法是正确的?( )。

A. 0100:;:θθθθ〈≥H HB. 0100:;:θθθθ≤≥H HC.0100:;:θθθθ〈≤H HD.0100:;:θθθθ≥=H H 5. 一家食品生产企业声称,它们生产的某种食品的合格率在95%以上。

为检验这一说法是否属实,某食品安全检测部门打算抽取部分食品进行检验,该检验的原假设和备择假设为( )A. %95:%;95:10〉≤ππH HB. %95:%;95:10≠=ππH HC. %95:%;95:10〈≥ππH HD. %95:%;95:10≥〉ππH H6.对于非正态总体,使用统计量/x z s n =估计总体均值的条件是( )A .小样本B .总体方差已知C .总体方差未知D .大样本7.在假设检验中,原假设和备选假设( )A .都有可能成立B .都有可能不成立C .只有一个成立而且必有一个成立D .原假设一定成立,备选假设不一定成立8.一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A .0:5H μ=,1:5H μ≠ B .0:5H μ≠,1:5H μ>C .0:5H μ≤,1:5H μ>D .0:5H μ≥,1:5H μ< 9.若检验的假设为00:H μμ≥,10:H μμ<,则拒绝域为( ) A .z z α> B .z z α<- C ./2z z α<-或/2z z α<- D .z z α>或z z α<-10.一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程不超过24000公里。

第8章假设检验含答案

第8章假设检验含答案
答案:C
5.在假设检验中,拒绝实际上不成立的H0假设是( ) 。
A、 犯第I类错误 B、 犯第II类错误 C、 推断正确 D、 A,B都有可能
答案:C
6.α=0.05, t>t0.05,ν,统计上可认为()。
A、两总体均数差别无显著意义 B、两样本均数差别无显著意义
C、两总体均数差别有显著意义D、两样本均数差别有显著意义
答案:A
3.在假设检验中,由于抽样偶然性,接受了实际上不成立的H0假设,则( )。
A、 犯第I类错误 B、 犯第II类错误 C、 推断正确 D、 A,B都有可能
答案:B
4.在假设检验中,接受了实际上成立的H0假设,则( )。
A、 犯第I类错误 B、 犯第II类错误 C、 推断正确 D、 A,B都有可能
9.假设检验中,显著性水平表示()。
A、P{接受 | 为假} B、P{拒绝 | 为真}
C、置信度为D、无具体含义
答案:B
11.在对总体参数的假设检验中,若给定显著性水平(0<<1),则犯第一类错误的概率为()。
A.1-B、C、/2 D、不能确定
答案:B
12.对某批产品的合格率进行假设检验,如果在显著性水平=0.05下接受了零假设,则在显著性水平=0.01下()。
C、样本量太大容易引起检验结果显著
D、样本量太小容易引起检验结果显著
答案:BC
13.以下问题可以用Z检验的有( )。
A、正态总体均值的检验,方差已知
B、正态总体均值的检验,方差未知
C、大样本下总体均值的检验
D、正态总体方差的检验
答案:AC
14.对总体均值进行检验,影响检验结论的因素有( )
A、显著性水平B、样本量n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假设检验练习题
1. 简单回答下列问题:
1)假设检验的基本步骤?
答:第一步建立假设(通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)
有三类假设
第二步选择检验统计量给出拒绝域的形式。

根据原假设的参数检验统计量:
对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A
拒绝域的形式由备择假设的形式决定
H1:W为双边
H1:W为单边
H1:W为单边
第三步:给出假设检验的显著水平
第四步给出零界值C,确定拒绝域W
有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。

例如:对于=0.05有
的双边W为
的右单边W为
的右单边W为
第五步根据样本观测值,计算和判断
计算统计量Z 、t 、当检验统计量的值落在W时能拒绝,否则接受
(计算P值227页p值由统计软件直接得出时拒绝,否则接受
计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)
2)假设检验的两类错误及其发生的概率?
答:第一类错误:当为真时拒绝,发生的概率为
第二类错误:当为假时,接受发生的概率为
3)假设检验结果判定的3种方式?
答:1.计算统计量Z 、t 、当检验统计量的值落在W时能拒绝,否则接受
2.计算P值227页p值由统计软件直接得出时拒绝,否则接受
3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受
4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么?
答:连续型(测量的数据):单样本t检验-----比较目标均值
双样本t检验-----比较两个均值
方差分析-----比较两个以上均值
等方差检验-----比较多个方差
离散型(区分或数的数据):卡方检验-----比较离散数
2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。

答:典型的Z检验
1. 提出原假设和备择假设
:平均值等于1600 :平均值不等于1600
2. 检验统计量为Z,拒绝域为双边
~~N(0,1)
3.
4. 查表得
5. 计算统计量Z,有
1.26
=1.26<1.96 (Z未落入拒绝域)
不能拒绝,目前能认为这批产品的指标的期望值μ = 1600。

3.从正态总体N(μ ,1)中抽取100 个样品,计算得 = 5.32。

试检验: H0 : μ = 5是否成立(α = 0.05 )。

答:典型的Z检验
1. 提出原假设和备择假设
:μ = 5:μ不等于5
2. 检验统计量为Z,拒绝域为双边
~~N(0,1)
3.
4. 查表得
5. 计算统计量Z,有
3.2
=3.2 1.96 (Z落入拒绝域)
X
拒绝,目前能认为这批产品的指标的期望值μ不等于5。

4.根据资料用某种旧安眠药时,平均睡眠时间为20.8 h,标准差为1.6 h。

有一种新安眠药,据说在一定剂量下,能比旧安眠药平均增加睡眠时间3 h。

为了检验这个说法是否正确,收集到一组使用新安眠药的睡眠时间(单位:h)为:26.7,22.0,24.1,21.0,27.2,25.0,23.4。

试问:从这组数据能否说明新安眠药已达到新的疗效(假定睡眠时间服从正态分布,α = 0.05 )。

答:分析:未知,假设检验中的t检验
第一步提出原假设和备择假设
=23.8 23.8
第二步检验统计量为t,拒绝域为双边
~~t(5)
第三、四步:时查表得
第五步:计算统计量t,有
=0.46
t=0.46<2.571 (t未落入拒绝域)
接受,此新安眠药已达到新的疗效.
5.测定某种溶液中的水份,由其10 个测定值求得= 0.452%, s = 0.037%,设测定值总体服从正态分布N(μ ,σ2 ),试在显著水平α = 0.05 下,分别检验假设:
(1) H0: μ = 0.5% ;
X
(2) H0: σ = 0.04% 。

6.有甲、乙两台机床加工同样产品,从这两台机床加工的产品中随机抽取若干件,测得产品直径(单位:mm)为
机车甲 20.5 19.8 19.7 20.4 20.1 20.0 19.0 19.9
机车乙 19.7 20.8 20.5 19.8 19.4 20.6 19.2
假定两台机床加工的产品的直径都服从正态分布,且总体方差相等,试比较甲、乙两台机床加工的产品的直径有无显著差异(α = 0.05 )。

7.测得两批电子器件的样品的电阻(单位:Ω )为
A 批: 0.140 0.138 0.143 0.142 0.144 0.137
B 批: 0.135 0.140 0.142 0.138 0.136 0.140
设这两批器材的电阻值总体分别服从分布N (μ12,σ12 ),N(μ22 ,σ22 ),且两样本独立。

(1) 检验假设H0: σ12 =σ22 (取α = 0.05 );
(2) 在(1)的基础上检验H 0 :μ1 = μ2 (取α = 0.05 )。

8.对吸烟者生肺病的情况作过调查,数据如下:
试问:生肺病与吸烟是否有关?
9. 根据某地环境保护的规定,倾入河流的废水中一种有毒化学物质的平均含量不得超过3ppm。

已知废水中该有毒化学物质的含量X服从正态分布。

该地区环保组织对沿涸一工厂进行检查,测定其每天倾入河流废水中该有毒物质的含量,15天的数据如下(单位为ppm):3.1,3.2,3.3,2.9,3.5,3.4,2.5,4.3,2.9,3.6,3.2,3.0,2.7,3.5,2.9。

试在α = 0.05的水平上判断该工厂的排放是否符合环保规定?
答:分析:未知,假设检验中的t检验
第一步提出原假设和备择假设
第二步检验统计量为t,拒绝域为单边
~~t(7)
第三、四步:时查表得
第五步:计算统计量t,有
=9.77
未落入拒绝域
接受
10. 用三台机器生产规格相同的铝合金薄板,取样测量铝合金薄板的厚度结果如下:
我们假定影响铝合金薄板厚度的因素除机器之外其它的因素都相同,试判断机器对铝合金薄板的厚度是否有显著影响。

练习题答案
1.略
2.接受H0
3.拒绝H0
4.新安眠药已达到新的疗效。

5.(1)拒绝H0;(2)接受H0。

6直径无显著差异。

7.(1) 接受H0;(2)接受H0。

8. 有关系,p=0.022。

9. 不符合环保规定。

10.有影响。

相关文档
最新文档